diff --git a/content/zettels/flexible_joints.md b/content/zettels/flexible_joints.md
index 8b26d74..44071fd 100644
--- a/content/zettels/flexible_joints.md
+++ b/content/zettels/flexible_joints.md
@@ -44,13 +44,19 @@ Typical materials used for flexible joints are:
- Titanium
+## Manufacturers {#manufacturers}
+
+
+Prototyping kits:
+
+
## Bibliography {#bibliography}
-
Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In
Proceedings 2000 Icra. Millennium Conference. Ieee International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00ch37065), nil. doi:
10.1109/robot.2000.844878.
+
Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). doi:
10.1109/robot.2000.844878.
Cosandier, Florent. 2017.
Flexure Mechanism Design. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
Henein, Simon. 2003.
Conception Des Guidages Flexibles. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
-
———. 2010. “Flexures: Simply Subtle.” In
Diamond Light Source Proceedings, Medsi 2010. Cambridge University Press.
+
———. 2010. “Flexures: Simply Subtle.” In
Diamond Light Source Proceedings, MEDSI 2010. Cambridge University Press.
Lobontiu, Nicolae. 2002.
Compliant Mechanisms: Design of Flexure Hinges. CRC press.
Smith, Stuart T. 2000.
Flexures: Elements of Elastic Mechanisms. Crc Press.
———. 2005.
Foundations of Ultra-Precision Mechanism Design. Vol. 2. CRC Press.
diff --git a/content/zettels/tuned_mass_damper.md b/content/zettels/tuned_mass_damper.md
index 7f1721a..97262a3 100644
--- a/content/zettels/tuned_mass_damper.md
+++ b/content/zettels/tuned_mass_damper.md
@@ -120,39 +120,40 @@ The following mass ratios are tested:
mus = [0.01, 0.02, 0.05, 0.1];
```
-The obtained transfer functions are shown in Figure [1](#figure--fig:tuned-mass-damper-mass-effect).
+The obtained transfer functions are shown in Figure [3](#figure--fig:tuned-mass-damper-mass-effect).
-{{< figure src="/ox-hugo/tuned_mass_damper_mass_effect.png" caption="
Figure 1: Effect of the TMD mass on its efficiency" >}}
+{{< figure src="/ox-hugo/tuned_mass_damper_mass_effect.png" caption="
Figure 3: Effect of the TMD mass on its efficiency" >}}
-The maximum amplification (i.e. \\(\mathcal{H}\_\infty\\) norm) of the transmissibility as a function of the mass ratio is shown in Figure [1](#figure--fig:tuned-mass-damper-effect-mass-ratio).
+The maximum amplification (i.e. \\(\mathcal{H}\_\infty\\) norm) of the transmissibility as a function of the mass ratio is shown in Figure [4](#figure--fig:tuned-mass-damper-effect-mass-ratio).
This relation can help to determine the minimum mass of the TMD that will give acceptable results.
-{{< figure src="/ox-hugo/tuned_mass_damper_effect_mass_ratio.png" caption="
Figure 1: Maximum amplification due to resonance as a function of the mass ratio" >}}
+{{< figure src="/ox-hugo/tuned_mass_damper_effect_mass_ratio.png" caption="
Figure 4: Maximum amplification due to resonance as a function of the mass ratio" >}}
## Manufacturers {#manufacturers}
-
-
-
+-
+-
+-
## Ways to add damping {#ways-to-add-damping}
Possible damping sources:
-- Magnetic (eddy current)
+- Magnetic ([Eddy Current Damping]({{< relref "eddy_current_damping.md" >}}))
- Viscous fluid
+- Elastomer ([example](https://www.dspe.nl/knowledge/dppm-cases/tuned-mass-damper-with-damped-mass-far-away-from-point-of-interest/))
| Fuild | Reference |
|----------------------|---------------------------------------------------|
| Rocol Kilopoise 0868 | (Verbaan 2015) |
-
Elias, Said, and Vasant Matsagar. 2017. “Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers.”
Annual Reviews in Control 44 (nil): 129–56. doi:
10.1016/j.arcontrol.2017.09.015.
+
Elias, Said, and Vasant Matsagar. 2017. “Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers.”
Annual Reviews in Control 44: 129–56. doi:
10.1016/j.arcontrol.2017.09.015.
Verbaan, C.A.M. 2015. “Robust mass damper design for bandwidth increase of motion stages.” Mechanical Engineering; Technische Universiteit Eindhoven.