Update Content - 2023-10-24

This commit is contained in:
Thomas Dehaeze 2023-10-24 10:05:51 +02:00
parent d29d8c2fe8
commit c6d1627939
2 changed files with 18 additions and 11 deletions

View File

@ -44,13 +44,19 @@ Typical materials used for flexible joints are:
- Titanium - Titanium
## Manufacturers {#manufacturers}
<https://www.flexpivots.com/>
Prototyping kits: <https://www.motusmechanical.com/>
## Bibliography {#bibliography} ## Bibliography {#bibliography}
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body"> <style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In <i>Proceedings 2000 Icra. Millennium Conference. Ieee International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00ch37065)</i>, nil. doi:<a href="https://doi.org/10.1109/robot.2000.844878">10.1109/robot.2000.844878</a>.</div> <div class="csl-entry"><a id="citeproc_bib_item_1"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In <i>Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)</i>. doi:<a href="https://doi.org/10.1109/robot.2000.844878">10.1109/robot.2000.844878</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Cosandier, Florent. 2017. <i>Flexure Mechanism Design</i>. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.</div> <div class="csl-entry"><a id="citeproc_bib_item_2"></a>Cosandier, Florent. 2017. <i>Flexure Mechanism Design</i>. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Henein, Simon. 2003. <i>Conception Des Guidages Flexibles</i>. Lausanne, Suisse: Presses polytechniques et universitaires romandes.</div> <div class="csl-entry"><a id="citeproc_bib_item_3"></a>Henein, Simon. 2003. <i>Conception Des Guidages Flexibles</i>. Lausanne, Suisse: Presses polytechniques et universitaires romandes.</div>
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>———. 2010. “Flexures: Simply Subtle.” In <i>Diamond Light Source Proceedings, Medsi 2010</i>. Cambridge University Press.</div> <div class="csl-entry"><a id="citeproc_bib_item_4"></a>———. 2010. “Flexures: Simply Subtle.” In <i>Diamond Light Source Proceedings, MEDSI 2010</i>. Cambridge University Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>Lobontiu, Nicolae. 2002. <i>Compliant Mechanisms: Design of Flexure Hinges</i>. CRC press.</div> <div class="csl-entry"><a id="citeproc_bib_item_5"></a>Lobontiu, Nicolae. 2002. <i>Compliant Mechanisms: Design of Flexure Hinges</i>. CRC press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_6"></a>Smith, Stuart T. 2000. <i>Flexures: Elements of Elastic Mechanisms</i>. Crc Press.</div> <div class="csl-entry"><a id="citeproc_bib_item_6"></a>Smith, Stuart T. 2000. <i>Flexures: Elements of Elastic Mechanisms</i>. Crc Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_7"></a>———. 2005. <i>Foundations of Ultra-Precision Mechanism Design</i>. Vol. 2. CRC Press.</div> <div class="csl-entry"><a id="citeproc_bib_item_7"></a>———. 2005. <i>Foundations of Ultra-Precision Mechanism Design</i>. Vol. 2. CRC Press.</div>

View File

@ -120,39 +120,40 @@ The following mass ratios are tested:
mus = [0.01, 0.02, 0.05, 0.1]; mus = [0.01, 0.02, 0.05, 0.1];
``` ```
The obtained transfer functions are shown in Figure [1](#figure--fig:tuned-mass-damper-mass-effect). The obtained transfer functions are shown in Figure [3](#figure--fig:tuned-mass-damper-mass-effect).
<a id="figure--fig:tuned-mass-damper-mass-effect"></a> <a id="figure--fig:tuned-mass-damper-mass-effect"></a>
{{< figure src="/ox-hugo/tuned_mass_damper_mass_effect.png" caption="<span class=\"figure-number\">Figure 1: </span>Effect of the TMD mass on its efficiency" >}} {{< figure src="/ox-hugo/tuned_mass_damper_mass_effect.png" caption="<span class=\"figure-number\">Figure 3: </span>Effect of the TMD mass on its efficiency" >}}
The maximum amplification (i.e. \\(\mathcal{H}\_\infty\\) norm) of the transmissibility as a function of the mass ratio is shown in Figure [1](#figure--fig:tuned-mass-damper-effect-mass-ratio). The maximum amplification (i.e. \\(\mathcal{H}\_\infty\\) norm) of the transmissibility as a function of the mass ratio is shown in Figure [4](#figure--fig:tuned-mass-damper-effect-mass-ratio).
This relation can help to determine the minimum mass of the TMD that will give acceptable results. This relation can help to determine the minimum mass of the TMD that will give acceptable results.
<a id="figure--fig:tuned-mass-damper-effect-mass-ratio"></a> <a id="figure--fig:tuned-mass-damper-effect-mass-ratio"></a>
{{< figure src="/ox-hugo/tuned_mass_damper_effect_mass_ratio.png" caption="<span class=\"figure-number\">Figure 1: </span>Maximum amplification due to resonance as a function of the mass ratio" >}} {{< figure src="/ox-hugo/tuned_mass_damper_effect_mass_ratio.png" caption="<span class=\"figure-number\">Figure 4: </span>Maximum amplification due to resonance as a function of the mass ratio" >}}
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
<https://vibratec.se/en/product/high-frequency-tuned-mass-damper/> - <https://vibratec.se/en/product/high-frequency-tuned-mass-damper/>
<https://micromega-dynamics.com/products/vibration-control/passive-damping-devices/> - <https://micromega-dynamics.com/products/vibration-control/passive-damping-devices/>
<https://www.csaengineering.com/products-services/tuned-dampers-absorbers.html> - <https://www.csaengineering.com/products-services/tuned-dampers-absorbers.html>
## Ways to add damping {#ways-to-add-damping} ## Ways to add damping {#ways-to-add-damping}
Possible damping sources: Possible damping sources:
- Magnetic (eddy current) - Magnetic ([Eddy Current Damping]({{< relref "eddy_current_damping.md" >}}))
- Viscous fluid - Viscous fluid
- Elastomer ([example](https://www.dspe.nl/knowledge/dppm-cases/tuned-mass-damper-with-damped-mass-far-away-from-point-of-interest/))
| Fuild | Reference | | Fuild | Reference |
|----------------------|---------------------------------------------------| |----------------------|---------------------------------------------------|
| Rocol Kilopoise 0868 | (<a href="#citeproc_bib_item_2">Verbaan 2015</a>) | | Rocol Kilopoise 0868 | (<a href="#citeproc_bib_item_2">Verbaan 2015</a>) |
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body"> <style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Elias, Said, and Vasant Matsagar. 2017. “Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers.” <i>Annual Reviews in Control</i> 44 (nil): 12956. doi:<a href="https://doi.org/10.1016/j.arcontrol.2017.09.015">10.1016/j.arcontrol.2017.09.015</a>.</div> <div class="csl-entry"><a id="citeproc_bib_item_1"></a>Elias, Said, and Vasant Matsagar. 2017. “Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers.” <i>Annual Reviews in Control</i> 44: 12956. doi:<a href="https://doi.org/10.1016/j.arcontrol.2017.09.015">10.1016/j.arcontrol.2017.09.015</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Verbaan, C.A.M. 2015. “Robust mass damper design for bandwidth increase of motion stages.” Mechanical Engineering; Technische Universiteit Eindhoven.</div> <div class="csl-entry"><a id="citeproc_bib_item_2"></a>Verbaan, C.A.M. 2015. “Robust mass damper design for bandwidth increase of motion stages.” Mechanical Engineering; Technische Universiteit Eindhoven.</div>
</div> </div>