Update Content - 2021-03-14

This commit is contained in:
Thomas Dehaeze 2021-03-14 16:00:24 +01:00
parent bc7e4c11cd
commit ad6093b3ff
28 changed files with 332 additions and 345 deletions

View File

@ -10,9 +10,9 @@ Tags
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------|-------------------------------|----------| |-----------------------------------|----------|
| Dewesoft | [link](https://dewesoft.com/) | Slovenia | | [Dewesoft](https://dewesoft.com/) | Slovenia |
| Oros | [link](https://www.oros.com/) | France | | [Oros](https://www.oros.com/) | France |
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -10,18 +10,18 @@ Tags
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|-------------------|----------------------------------------------------------------------------------|-------------| |-----------------------------------------------------------------------------------------------|-------------|
| TMC | [link](https://www.techmfg.com/) | USA | | [TMC](https://www.techmfg.com/) | USA |
| Newport | [link](https://www.newport.com/c/optical-tables-%26-isolation-systems) | USA | | [Newport](https://www.newport.com/c/optical-tables-%26-isolation-systems) | USA |
| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=42) | USA | | [Thorlabs](https://www.thorlabs.com/navigation.cfm?guide%5FID=42) | USA |
| IDE | [link](https://www.ideworld.com/en/active%5Fvibration%5Fisolation.html) | Germany | | [IDE](https://www.ideworld.com/en/active%5Fvibration%5Fisolation.html) | Germany |
| Harvard Apparatus | [link](https://www.warneronline.com/labmate-vibraplane-workstations-9100-series) | USA | | [Harvard Apparatus](https://www.warneronline.com/labmate-vibraplane-workstations-9100-series) | USA |
| Herzan | [link](https://www.herzan.com/products/active-vibration-control/avi-series.html) | USA | | [Herzan](https://www.herzan.com/products/active-vibration-control/avi-series.html) | USA |
| Standa | [link](http://www.standa.lt/products/catalog/optical%5Ftables?item=335) | Lithuania | | [Standa](http://www.standa.lt/products/catalog/optical%5Ftables?item=335) | Lithuania |
| Table Stable | [link](http://www.tablestable.com/en/products/list/2/) | Switzerland | | [Table Stable](http://www.tablestable.com/en/products/list/2/) | Switzerland |
| Accurion | [link](https://www.halcyonics.com/active-vibration-isolation-products) | Germany | | [Accurion](https://www.halcyonics.com/active-vibration-isolation-products) | Germany |
| Vibiso | [link](https://vibiso.com/?page%5Fid=3433) | USA | | [Vibiso](https://vibiso.com/?page%5Fid=3433) | USA |
## Vibration Isolating Pads {#vibration-isolating-pads} ## Vibration Isolating Pads {#vibration-isolating-pads}

View File

@ -23,9 +23,9 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati
Interestingly, the noise amplitude is uniformly distributed. Interestingly, the noise amplitude is uniformly distributed.
The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., its a uniform distribution). The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., its a uniform distribution).
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#orgf547b74)). Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org2f8924a)).
<a id="orgf547b74"></a> <a id="org2f8924a"></a>
{{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}} {{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}}
@ -74,4 +74,6 @@ The quantization is:
</div> </div>
{{< youtube b9lxtOJj3yU >}}
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -4,10 +4,6 @@ author = ["Thomas Dehaeze"]
draft = false draft = false
+++ +++
Backlinks:
- [Connectors]({{< relref "connectors" >}})
Tags Tags
: [Connectors]({{< relref "connectors" >}}) : [Connectors]({{< relref "connectors" >}})
@ -21,12 +17,12 @@ Tags
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------|------------------------------------------------|-------------| |-----------------------------------------------------|-------------|
| LEMO | [link](https://www.lemo.com/en) | Switzerland | | [LEMO](https://www.lemo.com/en) | Switzerland |
| Helukabel | [link](https://www.helukabel.com/fr/home.html) | Germany | | [Helukabel](https://www.helukabel.com/fr/home.html) | Germany |
| Belden | [link](https://www.belden.com/) | USA | | [Belden](https://www.belden.com/) | USA |
| Alphawire | [link](https://www.alphawire.com/) | USA | | [Alphawire](https://www.alphawire.com/) | USA |
## Software {#software} ## Software {#software}

View File

@ -16,17 +16,17 @@ Tags
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|----------------|----------------------------------------------------------------------------------------------------|-------------| |--------------------------------------------------------------------------------------------------------|-------------|
| Micro Sense | [link](http://www.microsense.net/products-position-sensors.htm) | USA | | [Micro Sense](http://www.microsense.net/products-position-sensors.htm) | USA |
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/capacitive-sensor/) | Germany | | [Micro-Epsilon](https://www.micro-epsilon.com/displacement-position-sensors/capacitive-sensor/) | Germany |
| PI | [link](https://www.physikinstrumente.com/en/technology/sensor-technologies/capacitive-sensors/) | Germany | | [PI](https://www.physikinstrumente.com/en/technology/sensor-technologies/capacitive-sensors/) | Germany |
| Unipulse | [link](https://www.unipulse.com/product/ps-ia/) | Japan | | [Unipulse](https://www.unipulse.com/product/ps-ia/) | Japan |
| Lion-Precision | [link](https://www.lionprecision.com/products/capacitive-sensors) | USA | | [Lion-Precision](https://www.lionprecision.com/products/capacitive-sensors) | USA |
| Fogale | [link](http://www.fogale.fr/brochures.html) | USA | | [Fogale](http://www.fogale.fr/brochures.html) | USA |
| Queensgate | [link](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-sensors) | UK | | [Queensgate](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-sensors) | UK |
| Capacitec | [link](https://www.capacitec.com/Displacement-Sensing-Systems) | USA | | [Capacitec](https://www.capacitec.com/Displacement-Sensing-Systems) | USA |
| MTIinstruments | [link](https://www.mtiinstruments.com/products/non-contact-measurement/capacitance-sensors/) | USA | | [MTIinstruments](https://www.mtiinstruments.com/products/non-contact-measurement/capacitance-sensors/) | USA |
| Althen | [link](https://www.althensensors.com/sensors/linear-position-sensors/capacitive-position-sensors/) | Netherlands | | [Althen](https://www.althensensors.com/sensors/linear-position-sensors/capacitive-position-sensors/) | Netherlands |
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -17,38 +17,38 @@ This can be typically used to interface with piezoelectric sensors.
## Basic Circuit {#basic-circuit} ## Basic Circuit {#basic-circuit}
Two basic circuits of charge amplifiers are shown in Figure [1](#org3aa62a6) (taken from ([Fleming 2010](#orgd8b7cb4))) and Figure [2](#org18afeb8) (taken from ([Schmidt, Schitter, and Rankers 2014](#orga9d9a6b))) Two basic circuits of charge amplifiers are shown in Figure [1](#org4fccf5a) (taken from ([Fleming 2010](#org17ae69b))) and Figure [2](#orgad97f51) (taken from ([Schmidt, Schitter, and Rankers 2014](#orge90efed)))
<a id="org3aa62a6"></a> <a id="org4fccf5a"></a>
{{< figure src="/ox-hugo/charge_amplifier_circuit.png" caption="Figure 1: Electrical model of a piezoelectric force sensor is shown in gray. The op-amp charge amplifier is shown on the right. The output voltage \\(V\_s\\) equal to \\(-q/C\_s\\)" >}} {{< figure src="/ox-hugo/charge_amplifier_circuit.png" caption="Figure 1: Electrical model of a piezoelectric force sensor is shown in gray. The op-amp charge amplifier is shown on the right. The output voltage \\(V\_s\\) equal to \\(-q/C\_s\\)" >}}
<a id="org18afeb8"></a> <a id="orgad97f51"></a>
{{< figure src="/ox-hugo/charge_amplifier_circuit_bis.png" caption="Figure 2: A piezoelectric accelerometer with a charge amplifier as signal conditioning element" >}} {{< figure src="/ox-hugo/charge_amplifier_circuit_bis.png" caption="Figure 2: A piezoelectric accelerometer with a charge amplifier as signal conditioning element" >}}
The input impedance of the charge amplifier is very small (unlike when using a voltage amplifier). The input impedance of the charge amplifier is very small (unlike when using a voltage amplifier).
The gain of the charge amplified (Figure [1](#org3aa62a6)) is equal to: The gain of the charge amplified (Figure [1](#org4fccf5a)) is equal to:
\\[ \frac{V\_s}{q} = \frac{-1}{C\_s} \\] \\[ \frac{V\_s}{q} = \frac{-1}{C\_s} \\]
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------| |----------------------------------------------------------------------------------------------------------------------------------------------|---------|
| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA | | [PCB](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA |
| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany | | [HBM](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany |
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | | [Kistler](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | | [MMF](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
| DJB | [link](https://www.djbinstruments.com/products/instrumentation/view/9-Channel-Charge-Voltage-Amplifier-IEPE-Signal-Conditioning-Rack-Mounted) | UK | | [DJB](https://www.djbinstruments.com/products/instrumentation/view/9-Channel-Charge-Voltage-Amplifier-IEPE-Signal-Conditioning-Rack-Mounted) | UK |
| MTI Instruments | [link](https://www.mtiinstruments.com/products/turbine-balancing-vibration-analysis/charge-amplifiers/ca1800/) | USA | | [MTI Instruments](https://www.mtiinstruments.com/products/turbine-balancing-vibration-analysis/charge-amplifiers/ca1800/) | USA |
| Sinocera | [link](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China | | [Sinocera](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China |
| L-Card | [link](https://en.lcard.ru/products/accesories/le-41) | Rusia | | [L-Card](https://en.lcard.ru/products/accesories/le-41) | Rusia |
## Bibliography {#bibliography} ## Bibliography {#bibliography}
<a id="orgd8b7cb4"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):43347. <https://doi.org/10.1109/tmech.2009.2028422>. <a id="org17ae69b"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):43347. <https://doi.org/10.1109/tmech.2009.2028422>.
<a id="orga9d9a6b"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press. <a id="orge90efed"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.

View File

@ -10,18 +10,18 @@ Tags
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------|-------------------------------------------------|-------------| |----------------------------------------------------|-------------|
| LEMO | [link](https://www.lemo.com/en) | Switzerland | | [LEMO](https://www.lemo.com/en) | Switzerland |
| Fischer | [link](https://www.fischerconnectors.com/uk/en) | Switzerland | | [Fischer](https://www.fischerconnectors.com/uk/en) | Switzerland |
| EDO | [link](https://www.odu-connectors.com/) | Germany | | [EDO](https://www.odu-connectors.com/) | Germany |
## BNC {#bnc} ## BNC {#bnc}
BNC connectors can have an impedance of 50Ohms or 75Ohms as shown in Figure [1](#orgada3acd). BNC connectors can have an impedance of 50Ohms or 75Ohms as shown in Figure [1](#orgfe209b2).
<a id="orgada3acd"></a> <a id="orgfe209b2"></a>
{{< figure src="/ox-hugo/bnc_50_75_ohms.jpg" caption="Figure 1: 75Ohms and 50Ohms BNC connectors" >}} {{< figure src="/ox-hugo/bnc_50_75_ohms.jpg" caption="Figure 1: 75Ohms and 50Ohms BNC connectors" >}}

View File

@ -10,13 +10,13 @@ Tags
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|----------------|---------------------------------------------------------------------------------------------|-------------| |---------------------------------------------------------------------------------------------------|-------------|
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/) | Germany | | [Micro-Epsilon](https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/) | Germany |
| Lion Precision | [link](https://www.lionprecision.com/products/eddy-current-sensors) | USA | | [Lion Precision](https://www.lionprecision.com/products/eddy-current-sensors) | USA |
| Cedrat | [link](https://www.cedrat-technologies.com/en/products/sensors/eddy-current-sensors.html) | France | | [Cedrat](https://www.cedrat-technologies.com/en/products/sensors/eddy-current-sensors.html) | France |
| Kaman | [link](https://www.kamansensors.com/product/smt-9700/) | USA | | [Kaman](https://www.kamansensors.com/product/smt-9700/) | USA |
| Keyence | [link](https://www.keyence.com/ss/products/measure/measurement%5Flibrary/type/inductive/) | USA | | [Keyence](https://www.keyence.com/ss/products/measure/measurement%5Flibrary/type/inductive/) | USA |
| Althen | [link](https://www.althensensors.com/sensors/linear-position-sensors/eddy-current-sensors/) | Netherlands | | [Althen](https://www.althensensors.com/sensors/linear-position-sensors/eddy-current-sensors/) | Netherlands |
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -12,11 +12,11 @@ There are two main types of encoders: optical encoders, and magnetic encoders.
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|----------------|-----------------------------------------------------------------------|---------| |---------------------------------------------------------------------------------|---------|
| Heidenhain | [link](https://www.heidenhain.com/en%5FUS/products/linear-encoders/) | Germany | | [Heidenhain](https://www.heidenhain.com/en%5FUS/products/linear-encoders/) | Germany |
| MicroE Systems | [link](https://www.celeramotion.com/microe/products/linear-encoders/) | USA | | [MicroE Systems](https://www.celeramotion.com/microe/products/linear-encoders/) | USA |
| Renishaw | [link](https://www.renishaw.com/en/browse-encoder-range--6440) | UK | | [Renishaw](https://www.renishaw.com/en/browse-encoder-range--6440) | UK |
| Celera Motion | [link](https://www.celeramotion.com/microe/) | USA | | [Celera Motion](https://www.celeramotion.com/microe/) | USA |
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -17,9 +17,9 @@ There are two main technique for force sensors:
The choice between the two is usually based on whether the measurement is static (strain gauge) or dynamics (piezoelectric). The choice between the two is usually based on whether the measurement is static (strain gauge) or dynamics (piezoelectric).
Main differences between the two are shown in Figure [1](#org40d75e8). Main differences between the two are shown in Figure [1](#org921c881).
<a id="org40d75e8"></a> <a id="org921c881"></a>
{{< figure src="/ox-hugo/force_sensor_piezo_vs_strain_gauge.png" caption="Figure 1: Piezoelectric Force sensor VS Strain Gauge Force sensor" >}} {{< figure src="/ox-hugo/force_sensor_piezo_vs_strain_gauge.png" caption="Figure 1: Piezoelectric Force sensor VS Strain Gauge Force sensor" >}}
@ -29,18 +29,18 @@ Main differences between the two are shown in Figure [1](#org40d75e8).
### Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor} ### Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor}
An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#orgc01e36f)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org26fffc0)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
### Manufacturers {#manufacturers} ### Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------|------------------------------------------------------------------------------------------------|---------| |---------------------------------------------------------------------------------------------------|---------|
| PCB | [link](https://www.pcb.com/products/productfinder.aspx?tx=17) | USA | | [PCB](https://www.pcb.com/products/productfinder.aspx?tx=17) | USA |
| HBM | [link](https://www.hbm.com/en/6107/force-sensors-with-flange-mounting/) | Germany | | [HBM](https://www.hbm.com/en/6107/force-sensors-with-flange-mounting/) | Germany |
| Kistler | [link](https://www.kistler.com/fr/produits/composants/capteurs-de-force/?pfv%5Fmetrics=metric) | Swiss | | [Kistler](https://www.kistler.com/fr/produits/composants/capteurs-de-force/?pfv%5Fmetrics=metric) | Swiss |
| MMF | [link](https://www.mmf.de/force%5Ftransducers.htm) | Germany | | [MMF](https://www.mmf.de/force%5Ftransducers.htm) | Germany |
| Sinocera | [link](http://www.china-yec.net/sensors/) | China | | [Sinocera](http://www.china-yec.net/sensors/) | China |
### Signal Conditioner {#signal-conditioner} ### Signal Conditioner {#signal-conditioner}
@ -65,16 +65,16 @@ However, if a charge conditioner is used, the signal will be doubled.
### Manufacturers {#manufacturers} ### Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------|----------------------------------------------------------------------------|----------------| |--------------------------------------------------------------------------------|----------------|
| Sensel | [link](https://www.sensel-measurement.fr/en/3-load-cell) | France | | [Sensel](https://www.sensel-measurement.fr/en/3-load-cell) | France |
| Omega | [link](https://www.omega.com/en-us/resources/load-cells) | United Kingdom | | [Omega](https://www.omega.com/en-us/resources/load-cells) | United Kingdom |
| Megatron | [link](https://www.megatron.de/en/category/load-cells.html) | Germany | | [Megatron](https://www.megatron.de/en/category/load-cells.html) | Germany |
| PCB | [link](https://www.pcb.com/products/product-finder?tx=19) | USA | | [PCB](https://www.pcb.com/products/product-finder?tx=19) | USA |
| Interface | [link](https://quickship.interfaceforce.com/product-category/load-cells/) | USA | | [Interface](https://quickship.interfaceforce.com/product-category/load-cells/) | USA |
| Althen | [link](https://www.althensensors.com/sensors/weighing-sensors-load-cells/) | Netherlands | | [Althen](https://www.althensensors.com/sensors/weighing-sensors-load-cells/) | Netherlands |
## Bibliography {#bibliography} ## Bibliography {#bibliography}
<a id="orgc01e36f"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):43347. <https://doi.org/10.1109/tmech.2009.2028422>. <a id="org26fffc0"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):43347. <https://doi.org/10.1109/tmech.2009.2028422>.

View File

@ -7,6 +7,11 @@ draft = false
Tags Tags
: :
<https://www.microplan-group.com/fr/>
## Manufacturers {#manufacturers}
| Manufacturers | Country |
|--------------------------------------------------|---------|
| [Microplan](https://www.microplan-group.com/fr/) | France |
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -10,55 +10,55 @@ Tags
## Review of Absolute (inertial) Position Sensors {#review-of-absolute--inertial--position-sensors} ## Review of Absolute (inertial) Position Sensors {#review-of-absolute--inertial--position-sensors}
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#orgf3cd363)) - Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#orgb31e055))
- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#orgf2d375a)) - Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#orgcd873cb))
<a id="org62aabc7"></a> <a id="org392ac3e"></a>
{{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}} {{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}}
## Accelerometers {#accelerometers} ## Accelerometers {#accelerometers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|--------------------|---------------------------------------------------------------------------------------------|-------------| |------------------------------------------------------------------------------------------------|-------------|
| Micromega Dynamics | [link](https://micromega-dynamics.com/products/) | Belgium | | [Micromega Dynamics](https://micromega-dynamics.com/products/) | Belgium |
| MMF | [link](https://www.mmf.de/seismic%5Faccelerometers.htm) | Germany | | [MMF](https://www.mmf.de/seismic%5Faccelerometers.htm) | Germany |
| PCB | [link](https://www.pcb.com/products/productfinder.aspx?tx=14) | USA | | [PCB](https://www.pcb.com/products/productfinder.aspx?tx=14) | USA |
| Guralp | [link](https://www.guralp.com/products/surface) | UK | | [Guralp](https://www.guralp.com/products/surface) | UK |
| Nanometric | [link](https://www.nanometrics.ca/products/accelerometers) | Canada | | [Nanometric](https://www.nanometrics.ca/products/accelerometers) | Canada |
| Kistler | [link](https://www.kistler.com/fr/produits/composants/accelerometres/?pfv%5Fmetrics=metric) | Swiss | | [Kistler](https://www.kistler.com/fr/produits/composants/accelerometres/?pfv%5Fmetrics=metric) | Swiss |
| Beran | [link](https://www.beraninstruments.com/Products/Vibration-Transducers-and-Cabling) | UK | | [Beran](https://www.beraninstruments.com/Products/Vibration-Transducers-and-Cabling) | UK |
| Althen | [link](https://www.althensensors.com/fr/capteurs/capteurs-d-acceleration/) | Netherlands | | [Althen](https://www.althensensors.com/fr/capteurs/capteurs-d-acceleration/) | Netherlands |
Wireless Accelerometers Wireless Accelerometers
- <https://micromega-dynamics.com/products/recovib/miniature-vibration-recorder/> - <https://micromega-dynamics.com/products/recovib/miniature-vibration-recorder/>
<a id="org3ec0b63"></a> <a id="org4561c6d"></a>
{{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="Figure 2: Characteristics of commercially available accelerometers <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \&amp; Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">collette11_review</a></sup>" >}} {{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="Figure 2: Characteristics of commercially available accelerometers <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \&amp; Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">collette11_review</a></sup>" >}}
## Geophones and Seismometers {#geophones-and-seismometers} ## Geophones and Seismometers {#geophones-and-seismometers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|-----------------------|---------------------------------------------------------------------------------------------|---------| |--------------------------------------------------------------------------------------------|---------|
| Sercel | [link](http://www.sercel.com/products/Pages/seismometers.aspx) | France | | [Sercel](http://www.sercel.com/products/Pages/seismometers.aspx) | France |
| Wilcoxon | [link](https://wilcoxon.com/) | USA | | [Wilcoxon](https://wilcoxon.com/) | USA |
| Geospace technologies | [link](https://www.geospace.com/sensors/#) | USA | | [Geospace technologies](https://www.geospace.com/sensors/#) | USA |
| Ion | [link](https://www.iongeo.com/technologies/hardware/seismic-equipment/precision-geophones/) | USA | | [Ion](https://www.iongeo.com/technologies/hardware/seismic-equipment/precision-geophones/) | USA |
| Streckeisen | [link](https://streckeisen.swiss/en/products/overview/) | Swiss | | [Streckeisen](https://streckeisen.swiss/en/products/overview/) | Swiss |
| Guralp | [link](https://www.guralp.com/products/surface) | UK | | [Guralp](https://www.guralp.com/products/surface) | UK |
| Nanometric | [link](https://www.nanometrics.ca/products/seismometers) | Canada | | [Nanometric](https://www.nanometrics.ca/products/seismometers) | Canada |
<a id="orgbe921a0"></a> <a id="orgd74071e"></a>
{{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="Figure 3: Characteristics of commercially available geophones <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \&amp; Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">collette11_review</a></sup>" >}} {{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="Figure 3: Characteristics of commercially available geophones <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \&amp; Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">collette11_review</a></sup>" >}}
## Bibliography {#bibliography} ## Bibliography {#bibliography}
<a id="orgf3cd363"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):12891300. <https://doi.org/10.1785/0120110223>. <a id="orgb31e055"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):12891300. <https://doi.org/10.1785/0120110223>.
<a id="orgf2d375a"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_. <a id="orgcd873cb"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_.

View File

@ -12,10 +12,10 @@ And instrumented hammer consist of a regular hammer with a force sensor fixed at
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------|---------------------------------------------------------------------------------------------------------------|----------| |--------------------------------------------------------------------------------------------------------------|----------|
| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/impact-hammers-electrodynamic-shakers/impact-hammers) | USA | | [PCB](https://www.pcb.com/sensors-for-test-measurement/impact-hammers-electrodynamic-shakers/impact-hammers) | USA |
| DJB | [link](https://www.djbinstruments.com/products/instrumentation/impact-hammers) | UK | | [DJB](https://www.djbinstruments.com/products/instrumentation/impact-hammers) | UK |
| Dewesoft | [link](https://dewesoft.com/fr/products/interfaces-and-sensors/accelerometers-and-modal-hammers) | Slovenia | | [Dewesoft](https://dewesoft.com/fr/products/interfaces-and-sensors/accelerometers-and-modal-hammers) | Slovenia |
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -10,21 +10,21 @@ Tags
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------|----------------------------------------------------------------------------------------------------------|-------------| |--------------------------------------------------------------------------------------------------------------|-------------|
| Attocube | [link](http://www.attocube.com/) | Germany | | [Attocube](http://www.attocube.com/) | Germany |
| Zygo | [link](https://www.zygo.com/?/met/markets/stageposition/zmi/) | USA | | [Zygo](https://www.zygo.com/?/met/markets/stageposition/zmi/) | USA |
| Smaract | [link](https://www.smaract.com/interferometry) | Germany | | [Smaract](https://www.smaract.com/interferometry) | Germany |
| Qutools | [link](https://www.qutools.com/qudis/) | Germany | | [Qutools](https://www.qutools.com/qudis/) | Germany |
| Renishaw | [link](https://www.renishaw.com/en/fibre-optic-laser-encoder-products--6594) | UK | | [Renishaw](https://www.renishaw.com/en/fibre-optic-laser-encoder-products--6594) | UK |
| Sios | [link](https://sios-de.com/products/length-measurement/laser-interferometer/) | Germany | | [Sios](https://sios-de.com/products/length-measurement/laser-interferometer/) | Germany |
| Keysight | [link](https://www.keysight.com/en/pc-1000000393%3Aepsg%3Apgr/laser-heads?nid=-536900395.0&cc=FR&lc=fre) | USA | | [Keysight](https://www.keysight.com/en/pc-1000000393%3Aepsg%3Apgr/laser-heads?nid=-536900395.0&cc=FR&lc=fre) | USA |
| Optics11 | [link](https://optics11.com/) | Netherlands | | [Optics11](https://optics11.com/) | Netherlands |
## Effect of Refractive Index - Environmental Units {#effect-of-refractive-index-environmental-units} ## Effect of Refractive Index - Environmental Units {#effect-of-refractive-index-environmental-units}
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#org7c4b7ca))). The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#org68c8bbb))).
<a id="table--tab:index-air"></a> <a id="table--tab:index-air"></a>
<div class="table-caption"> <div class="table-caption">
@ -59,16 +59,16 @@ Typical characteristics of commercial environmental units are shown in Table [2]
## Interferometer Precision {#interferometer-precision} ## Interferometer Precision {#interferometer-precision}
Figure [1](#orgb0b437f) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#org60051d3))). Figure [1](#org960bbd9) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#orgd724d07))).
<a id="orgb0b437f"></a> <a id="org960bbd9"></a>
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}} {{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
## Sources of uncertainty {#sources-of-uncertainty} ## Sources of uncertainty {#sources-of-uncertainty}
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#orgd3162b8)). Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#orgeacbea1)).
It includes: It includes:
@ -78,18 +78,18 @@ It includes:
- Pressure: \\(K\_P \approx 0.27 ppm hPa^{-1}\\) - Pressure: \\(K\_P \approx 0.27 ppm hPa^{-1}\\)
- Humidity: \\(K\_{HR} \approx 0.01 ppm \% RH^{-1}\\) - Humidity: \\(K\_{HR} \approx 0.01 ppm \% RH^{-1}\\)
- These errors can partially be compensated using an environmental unit. - These errors can partially be compensated using an environmental unit.
- Air turbulence (Figure [2](#org74b0d34)) - Air turbulence (Figure [2](#orgd403994))
- Non linearity - Non linearity
<a id="org74b0d34"></a> <a id="orgd403994"></a>
{{< figure src="/ox-hugo/interferometers_air_turbulence.png" caption="Figure 2: Effect of air turbulences on measurement stability" >}} {{< figure src="/ox-hugo/interferometers_air_turbulence.png" caption="Figure 2: Effect of air turbulences on measurement stability" >}}
## Bibliography {#bibliography} ## Bibliography {#bibliography}
<a id="orgd3162b8"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>. <a id="orgeacbea1"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
<a id="org60051d3"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):188190. <https://doi.org/10.1007/s12541-017-0217-y>. <a id="orgd724d07"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):188190. <https://doi.org/10.1007/s12541-017-0217-y>.
<a id="org7c4b7ca"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:305163. <a id="org68c8bbb"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:305163.

View File

@ -0,0 +1,18 @@
+++
title = "Linear Guides"
author = ["Thomas Dehaeze"]
draft = false
+++
Tags
:
## Manufacturers {#manufacturers}
| Manufacturers | Country |
|----------------------------------------------------------------------------------------------------------------------------|---------|
| [Bosch Rexroth](https://www.boschrexroth.com/en/xc/products/product-groups/linear-motion-technology/topics/linear-guides/) | Germany |
| [THK](https://www.thk.com/?q=eng/node/231) | Japan |
<./biblio/references.bib>

View File

@ -10,10 +10,10 @@ Tags
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------|--------------------------------------------------------------------------------------------|-------------| |-----------------------------------------------------------------------------------------------------|-------------|
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/inductive-sensor-lvdt/) | Germany | | [Micro-Epsilon](https://www.micro-epsilon.com/displacement-position-sensors/inductive-sensor-lvdt/) | Germany |
| Keyence | [link](https://www.keyence.eu/products/measure/contact-distance-lvdt/gt2/index.jsp) | USA | | [Keyence](https://www.keyence.eu/products/measure/contact-distance-lvdt/gt2/index.jsp) | USA |
| Althen | [link](https://www.althensensors.com/sensors/linear-position-sensors/lvdt-sensors/) | Netherlands | | [Althen](https://www.althensensors.com/sensors/linear-position-sensors/lvdt-sensors/) | Netherlands |
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -13,26 +13,26 @@ Tags
### Manufacturers {#manufacturers} ### Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------------|----------------------------------------------------------------------------------------------------------------|-----------| |----------------------------------------------------------------------------------------------------------------------|-----------|
| Cedrat | [link](http://www.cedrat-technologies.com/) | France | | [Cedrat](http://www.cedrat-technologies.com/) | France |
| PI | [link](https://www.physikinstrumente.com/en/) | USA | | [PI](https://www.physikinstrumente.com/en/) | USA |
| Piezo System | [link](https://www.piezosystem.com/products/piezo%5Factuators/stacktypeactuators/) | Germany | | [Piezo System](https://www.piezosystem.com/products/piezo%5Factuators/stacktypeactuators/) | Germany |
| Noliac | [link](http://www.noliac.com/products/actuators/plate-stacks/) | Denmark | | [Noliac](http://www.noliac.com/products/actuators/plate-stacks/) | Denmark |
| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA | | [Thorlabs](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA |
| PiezoDrive | [link](https://www.piezodrive.com/actuators/) | Australia | | [PiezoDrive](https://www.piezodrive.com/actuators/) | Australia |
| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/10.html) | Japan | | [Mechano Transformer](http://www.mechano-transformer.com/en/products/10.html) | Japan |
| CoreMorrow | [link](http://www.coremorrow.com/en/pro-9-1.html) | China | | [CoreMorrow](http://www.coremorrow.com/en/pro-9-1.html) | China |
| PiezoData | [link](https://www.piezodata.com/piezo-stack-actuator-2/) | China | | [PiezoData](https://www.piezodata.com/piezo-stack-actuator-2/) | China |
| Queensgate | [link](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-actuators-translators) | UK | | [Queensgate](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-actuators-translators) | UK |
| Matsusada Precision | [link](https://www.matsusada.com/product/pz/) | Japan | | [Matsusada Precision](https://www.matsusada.com/product/pz/) | Japan |
| Sinocera | [link](http://www.china-yec.net/piezoelectric-ceramics/) | China | | [Sinocera](http://www.china-yec.net/piezoelectric-ceramics/) | China |
| Fuji Ceramisc | [link](http://www.fujicera.co.jp/en/) | Japan | | [Fuji Ceramisc](http://www.fujicera.co.jp/en/) | Japan |
### Model {#model} ### Model {#model}
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgba89e54)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#org8e467ce)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel. Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
@ -49,34 +49,34 @@ with:
Some manufacturers propose "raw" plate actuators that can be used as actuator / sensors. Some manufacturers propose "raw" plate actuators that can be used as actuator / sensors.
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------|-------------------------------------------------------------------|---------| |---------------------------------------------------------------------|---------|
| Noliac | [link](http://www.noliac.com/products/actuators/plate-actuators/) | Denmak | | [Noliac](http://www.noliac.com/products/actuators/plate-actuators/) | Denmak |
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators} ## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org2aa3084)): The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org5363d27)):
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height. > The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
> The flatter is the actuator, the higher is the amplification. > The flatter is the actuator, the higher is the amplification.
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org2b7ba31)). A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org6963733)).
<a id="org0387c40"></a> <a id="org050f47d"></a>
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \&amp; Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">ling16_enhan_mathem_model_displ_amplif</a></sup>" >}} {{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \&amp; Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">ling16_enhan_mathem_model_displ_amplif</a></sup>" >}}
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------| |----------------------------------------------------------------------------------------------------|-----------|
| Cedrat | [link](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) | France | | [Cedrat](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) | France |
| PiezoDrive | [link](https://www.piezodrive.com/actuators/ap-series-amplified-piezoelectric-actuators/) | Australia | | [PiezoDrive](https://www.piezodrive.com/actuators/ap-series-amplified-piezoelectric-actuators/) | Australia |
| Dynamic-Structures | [link](https://www.dynamic-structures.com/category/piezo-actuators-stages) | USA | | [Dynamic-Structures](https://www.dynamic-structures.com/category/piezo-actuators-stages) | USA |
| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA | | [Thorlabs](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA |
| Noliac | [link](http://www.noliac.com/products/actuators/amplified-actuators/) | Denmark | | [Noliac](http://www.noliac.com/products/actuators/amplified-actuators/) | Denmark |
| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F5.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F3.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5Fmtkk.html) | Japan | | [Mechano Transformer](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F5.html) | Japan |
| CoreMorrow | [link](http://www.coremorrow.com/en/pro-13-1.html) | China | | [CoreMorrow](http://www.coremorrow.com/en/pro-13-1.html) | China |
| PiezoData | [link](https://www.piezodata.com/piezoelectric-actuator-amplifier/) | China | | [PiezoData](https://www.piezodata.com/piezoelectric-actuator-amplifier/) | China |
## Specifications {#specifications} ## Specifications {#specifications}
@ -155,43 +155,43 @@ For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolut
### Electrical Capacitance {#electrical-capacitance} ### Electrical Capacitance {#electrical-capacitance}
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#orgb209f5d)). The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org8857f21)).
This is due to the fact that voltage amplifier has a limitation on the deliverable current. This is due to the fact that voltage amplifier has a limitation on the deliverable current.
[Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used. [Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
<a id="orgb209f5d"></a> <a id="org8857f21"></a>
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}} {{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load} ## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#orgff2ea88)). When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org35eead3)).
<a id="orgff2ea88"></a> <a id="org35eead3"></a>
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}} {{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load} ## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgbfa1482)): Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgf00c960)):
\begin{equation} \begin{equation}
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e} \Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
\end{equation} \end{equation}
<a id="orgbfa1482"></a> <a id="orgf00c960"></a>
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}} {{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
For piezo actuators, force and displacement are inversely related (Figure [5](#orgbee5c88)). For piezo actuators, force and displacement are inversely related (Figure [5](#orgb6392e0)).
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement. Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated. Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced. When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
<a id="orgbee5c88"></a> <a id="orgb6392e0"></a>
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}} {{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
@ -203,8 +203,8 @@ Piezoelectric actuators can be driven either using a voltage to charge converter
## Bibliography {#bibliography} ## Bibliography {#bibliography}
<a id="org2aa3084"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):314. <https://doi.org/10.1080/00150190701351865>. <a id="org5363d27"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):314. <https://doi.org/10.1080/00150190701351865>.
<a id="orgba89e54"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):43347. <https://doi.org/10.1109/tmech.2009.2028422>. <a id="org8e467ce"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):43347. <https://doi.org/10.1109/tmech.2009.2028422>.
<a id="org2b7ba31"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.” <a id="org6963733"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”

View File

@ -4,23 +4,17 @@ author = ["Thomas Dehaeze"]
draft = false draft = false
+++ +++
Backlinks:
- [Position control in lithographic equipment]({{< relref "butler11_posit_contr_lithog_equip" >}})
- [An instrument for 3d x-ray nano-imaging]({{< relref "holler12_instr_x_ray_nano_imagin" >}})
- [Interferometric characterization of rotation stages for x-ray nanotomography]({{< relref "stankevic17_inter_charac_rotat_stages_x_ray_nanot" >}})
Tags Tags
: :
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------|-------------------------------------------|---------| |------------------------------------------------------------------|---------|
| Kohzu | [link](https://www.kohzuprecision.com/i/) | Japan | | [Kohzu](https://www.kohzuprecision.com/i/) | Japan |
| PI | | | | [PI](https://www.physikinstrumente.com/en/) | USA |
| Attocube | | | | [Attocube](https://www.attocube.com/en/products/nanopositioners) | Germany |
| Newport | | | | [Newport](https://www.newport.com/c/manual-positioning) | |
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -10,9 +10,9 @@ Tags
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|-------------------|-------------------------------------------|---------| |--------------------------------------------------------|---------|
| Huber | [link](https://www.xhuber.com/en/) | Germany | | [Huber](https://www.xhuber.com/en/) | Germany |
| LAB Motion System | [link](http://www.leuvenairbearings.com/) | Belgium | | [LAB Motion System](http://www.leuvenairbearings.com/) | Belgium |
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -4,24 +4,20 @@ author = ["Thomas Dehaeze"]
draft = false draft = false
+++ +++
Backlinks:
- [Modal Analysis]({{< relref "modal_analysis" >}})
Tags Tags
: [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}}) : [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|--------------------|----------------------------------------------------------------------------------|-----------| |---------------------------------------------------------------------------------------------|-----------|
| Labsen | [link](http://labsentec.com.au/category/products/vibrationshock/) | Australia | | [Labsen](http://labsentec.com.au/category/products/vibrationshock/) | Australia |
| The Modal Shop | [link](http://www.modalshop.com/excitation/Electrodynamic-Exciter-Family?ID=243) | USA | | [The Modal Shop](http://www.modalshop.com/excitation/Electrodynamic-Exciter-Family?ID=243) | USA |
| Deweshop | [link](https://dewesoft.com/fr/products/interfaces-and-sensors/shakers) | Slovenia | | [Deweshop](https://dewesoft.com/fr/products/interfaces-and-sensors/shakers) | Slovenia |
| Bruel and Kjaer | [link](https://www.bksv.com/en/products/shakers-and-exciters/LDS-shaker-systems) | Denmark | | [Bruel and Kjaer](https://www.bksv.com/en/products/shakers-and-exciters/LDS-shaker-systems) | Denmark |
| YMC | [link](http://www.chinaymc.com/product/showproduct.php?id=78&lang=en) | China | | [YMC](http://www.chinaymc.com/product/showproduct.php?id=78&lang=en) | China |
| Vibration Research | [link](https://vibrationresearch.com/shakers/) | USA | | [Vibration Research](https://vibrationresearch.com/shakers/) | USA |
| Sentek Dynamics | [link](https://www.sentekdynamics.com/) | USA | | [Sentek Dynamics](https://www.sentekdynamics.com/) | USA |
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -4,18 +4,14 @@ author = ["Thomas Dehaeze"]
draft = false draft = false
+++ +++
Backlinks:
- [Rotation Stage]({{< relref "rotation_stage" >}})
Tags Tags
: [Rotation Stage]({{< relref "rotation_stage" >}}) : [Rotation Stage]({{< relref "rotation_stage" >}})
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------|---------------------------------|---------| |-----------------------------------|---------|
| Moflon | [link](https://www.moflon.com/) | China | | [Moflon](https://www.moflon.com/) | China |
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -10,10 +10,13 @@ Tags
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------|-----------------------------------------|---------| |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Vanel | [link](https://www.vanel.com/index.php) | France | | [Vanel](https://www.vanel.com/index.php) | France |
| Axcesspring | [link](https://www.acxesspring.com/) | US | | [Axcesspring](https://www.acxesspring.com/) | US |
| Raymond | [link](https://www.asraymond.com/) | US | | [Raymond](https://www.asraymond.com/) | US |
| [Paulstra](https://www.paulstra-industry.com/en/ranges/metal-mountings/v1210) | France |
| [Norelem](https://www.norelem.com/us/en/Products/Product-overview/Systems-and-components-for-machine-and-plant-construction/26000-Compression-springs-Elastomer-springs-Rubber-buffers-Shock-absorbers-Gas-springs.html) | France |
| [VibraSystems](https://vibrasystems.com/elastomer-and-spring-hangers.html) | USA |
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -10,16 +10,16 @@ Tags
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------| |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| PI | [link](https://www.physikinstrumente.com/en/products/parallel-kinematic-hexapods/) | Germany | | [PI](https://www.physikinstrumente.com/en/products/parallel-kinematic-hexapods/) | Germany |
| Newport | [link](https://www.newport.com/search/?q1=hexapod%3Arelevance%3Acompatibility%3AMETRIC%3AisObsolete%3Afalse%3A-excludeCountries%3AFR%3AnpCategory%3Ahexapods&ajax&text=hexapod) | USA | | [Newport](https://www.newport.com/search/?q1=hexapod%3Arelevance%3Acompatibility%3AMETRIC%3AisObsolete%3Afalse%3A-excludeCountries%3AFR%3AnpCategory%3Ahexapods&ajax&text=hexapod) | USA |
| Symetrie | [link](https://symetrie.fr/en/hexapods-en/positioning-hexapods/) | France | | [Symetrie](https://symetrie.fr/en/hexapods-en/positioning-hexapods/) | France |
| CSA Engineering | [link](https://www.csaengineering.com/products-services/hexapod-positioning-systems/hexapod-models.html) | USA | | [CSA Engineering](https://www.csaengineering.com/products-services/hexapod-positioning-systems/hexapod-models.html) | USA |
| Aerotech | [link](https://www.aerotech.com/product-catalog/hexapods.aspx) | USA | | [Aerotech](https://www.aerotech.com/product-catalog/hexapods.aspx) | USA |
| SmarAct | [link](https://www.smaract.com/smarpod) | Germany | | [SmarAct](https://www.smaract.com/smarpod) | Germany |
| Gridbots | [link](https://www.gridbots.com/hexamove.html) | India | | [Gridbots](https://www.gridbots.com/hexamove.html) | India |
| Alio Industries | [link](https://www.alioindustries.com/) | USA | | [Alio Industries](https://www.alioindustries.com/) | USA |
## Stewart Platforms at ESRF {#stewart-platforms-at-esrf} ## Stewart Platforms at ESRF {#stewart-platforms-at-esrf}
@ -36,36 +36,36 @@ Tags
Papers by J.E. McInroy: Papers by J.E. McInroy:
- ([OBrien et al. 1998](#orgb07a9df)) - ([OBrien et al. 1998](#org301ae65))
- ([McInroy, OBrien, and Neat 1999](#orgbcce212)) - ([McInroy, OBrien, and Neat 1999](#org43a0fe2))
- ([McInroy 1999](#org37afc8d)) - ([McInroy 1999](#org41ba097))
- ([McInroy and Hamann 2000](#org888db09)) - ([McInroy and Hamann 2000](#org73060fc))
- ([Chen and McInroy 2000](#org86c277d)) - ([Chen and McInroy 2000](#org2b98584))
- ([McInroy 2002](#org748da49)) - ([McInroy 2002](#org2d6222b))
- ([Li, Hamann, and McInroy 2001](#orgcdecf89)) - ([Li, Hamann, and McInroy 2001](#org6598adc))
- ([Lin and McInroy 2003](#orgff3d7a7)) - ([Lin and McInroy 2003](#orgfc1736f))
- ([Jafari and McInroy 2003](#org701d32b)) - ([Jafari and McInroy 2003](#org72de1d8))
- ([Chen and McInroy 2004](#orgd01130a)) - ([Chen and McInroy 2004](#org6bdfb26))
## Bibliography {#bibliography} ## Bibliography {#bibliography}
<a id="orgd01130a"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):41321. <https://doi.org/10.1109/tcst.2004.824339>. <a id="org6bdfb26"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):41321. <https://doi.org/10.1109/tcst.2004.824339>.
<a id="org86c277d"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>. <a id="org2b98584"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
<a id="org701d32b"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595603. <https://doi.org/10.1109/tra.2003.814506>. <a id="org72de1d8"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595603. <https://doi.org/10.1109/tra.2003.814506>.
<a id="orgff3d7a7"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):26772. <https://doi.org/10.1109/tcst.2003.809248>. <a id="orgfc1736f"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):26772. <https://doi.org/10.1109/tcst.2003.809248>.
<a id="orgcdecf89"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>. <a id="org6598adc"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
<a id="org37afc8d"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>. <a id="org41ba097"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
<a id="org748da49"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):9599. <https://doi.org/10.1109/3516.990892>. <a id="org2d6222b"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):9599. <https://doi.org/10.1109/3516.990892>.
<a id="org888db09"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):37281. <https://doi.org/10.1109/70.864229>. <a id="org73060fc"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):37281. <https://doi.org/10.1109/70.864229>.
<a id="orgbcce212"></a>McInroy, J.E., J.F. OBrien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):9195. <https://doi.org/10.1109/3516.752089>. <a id="org43a0fe2"></a>McInroy, J.E., J.F. OBrien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):9195. <https://doi.org/10.1109/3516.752089>.
<a id="orgb07a9df"></a>OBrien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>. <a id="org301ae65"></a>OBrien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.

View File

@ -10,14 +10,14 @@ Tags
## MEMS Based Tip-Tilt Mirrors {#mems-based-tip-tilt-mirrors} ## MEMS Based Tip-Tilt Mirrors {#mems-based-tip-tilt-mirrors}
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------|-------------------------------------------------------------------------------------------|-------------| |------------------------------------------------------------------------------------------------|-------------|
| Sercalo | [link](https://www.sercalo.com/products/mems-mirrors) | Switzerland | | [Sercalo](https://www.sercalo.com/products/mems-mirrors) | Switzerland |
| KOC | [link](http://www.koreaoptron.co.kr/default/newproduct/mems%5F01%5F02.php) | Korea | | [KOC](http://www.koreaoptron.co.kr/default/newproduct/mems%5F01%5F02.php) | Korea |
| Mirrorcle | [link](https://www.mirrorcletech.com/wp/products/mems-mirrors/) | USA | | [Mirrorcle](https://www.mirrorcletech.com/wp/products/mems-mirrors/) | USA |
| Preciseley | [link](https://www.preciseley.com/mems-tilting-mirror.html) | Canada | | [Preciseley](https://www.preciseley.com/mems-tilting-mirror.html) | Canada |
| Hamamatsu | [link](https://www.hamamatsu.com/eu/en/product/optical-components/mems-mirror/index.html) | Japan | | [Hamamatsu](https://www.hamamatsu.com/eu/en/product/optical-components/mems-mirror/index.html) | Japan |
| Maradin | [link](http://www.maradin.co.il/products/mar1100-mems-2d-laser-scanning-mirror/) | Israel | | [Maradin](http://www.maradin.co.il/products/mar1100-mems-2d-laser-scanning-mirror/) | Israel |
| Opus | [link](http://www.opusmicro.com/mems%5Fen.html) | Taiwan | | [Opus](http://www.opusmicro.com/mems%5Fen.html) | Taiwan |
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -4,10 +4,6 @@ author = ["Thomas Dehaeze"]
draft = false draft = false
+++ +++
Backlinks:
- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
Tags Tags
: [Electronics]({{< relref "electronics" >}}), [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}}) : [Electronics]({{< relref "electronics" >}}), [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
@ -18,11 +14,4 @@ A Transconductance Amplifier converts the control voltage into current with a cu
Such a converter is called a voltage-to-current converter, also named a voltage-controlled current source or _transconductance_ amplifier. Such a converter is called a voltage-to-current converter, also named a voltage-controlled current source or _transconductance_ amplifier.
## Manufacturers {#manufacturers}
| Manufacturers | Links | Country |
|---------------|-------|---------|
| | | |
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -17,11 +17,11 @@ It is generally used to interface a sensor which outputs a current proportional
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------|------------------------------------------------------------------------------------------------------|---------| |------------------------------------------------------------------------------------------------------------|---------|
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | | [Kistler](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | | [MMF](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) | Germany | | [Femto](https://www.femto.de/en/products/current-amplifiers.html) | Germany |
| FMB Oxford | [link](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK | | [FMB Oxford](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK |
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -4,12 +4,6 @@ author = ["Thomas Dehaeze"]
draft = false draft = false
+++ +++
Backlinks:
- [Transconductance Amplifiers]({{< relref "transconductance_amplifiers" >}})
- [Actuators]({{< relref "actuators" >}})
- [Shaker]({{< relref "shaker" >}})
Tags Tags
: [Actuators]({{< relref "actuators" >}}) : [Actuators]({{< relref "actuators" >}})
@ -22,7 +16,7 @@ Tags
## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator} ## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator}
([Schmidt, Schitter, and Rankers 2014](#org6fb1bd5)) ([Schmidt, Schitter, and Rankers 2014](#org8334379))
## Driving Electronics {#driving-electronics} ## Driving Electronics {#driving-electronics}
@ -32,20 +26,20 @@ As the force is proportional to the current, a [Transconductance Amplifiers]({{<
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|----------------------|----------------------------------------------|-------------| |--------------------------------------------------------------|-------------|
| Geeplus | [link](https://www.geeplus.com/) | UK | | [Geeplus](https://www.geeplus.com/) | UK |
| Maccon | [link](https://www.maccon.de/en.html) | Germany | | [Maccon](https://www.maccon.de/en.html) | Germany |
| TDS PP | [link](https://www.tds-pp.com/en/) | Switzerland | | [TDS PP](https://www.tds-pp.com/en/) | Switzerland |
| H2tech | [link](https://www.h2wtech.com/) | USA | | [H2tech](https://www.h2wtech.com/) | USA |
| PBA Systems | [link](http://www.pbasystems.com.sg/) | Singapore | | [PBA Systems](http://www.pbasystems.com.sg/) | Singapore |
| Celera Motion | [link](https://www.celeramotion.com/) | USA | | [Celera Motion](https://www.celeramotion.com/) | USA |
| Beikimco | [link](http://www.beikimco.com/) | USA | | [Beikimco](http://www.beikimco.com/) | USA |
| Electromate | [link](https://www.electromate.com/) | Canada | | [Electromate](https://www.electromate.com/) | Canada |
| Magnetic Innovations | [link](https://www.magneticinnovations.com/) | Netherlands | | [Magnetic Innovations](https://www.magneticinnovations.com/) | Netherlands |
| Monticont | [link](http://www.moticont.com/) | USA | | [Monticont](http://www.moticont.com/) | USA |
## Bibliography {#bibliography} ## Bibliography {#bibliography}
<a id="org6fb1bd5"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press. <a id="org8334379"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.

View File

@ -4,11 +4,6 @@ author = ["Thomas Dehaeze"]
draft = false draft = false
+++ +++
Backlinks:
- [Signal Conditioner]({{< relref "signal_conditioner" >}})
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
Tags Tags
: [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}), [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}}), [Electronics]({{< relref "electronics" >}}) : [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}), [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}}), [Electronics]({{< relref "electronics" >}})
@ -18,30 +13,29 @@ Tags
### Manufacturers {#manufacturers} ### Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Country |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------| |-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Piezo Drive | [link](https://www.piezodrive.com/drivers/) | Australia | | [Piezo Drive](https://www.piezodrive.com/drivers/) | Australia |
| Falco System | [link](https://www.falco-systems.com/products.html) | Netherlands | | [Falco System](https://www.falco-systems.com/products.html) | Netherlands |
| PI | [link](https://www.pi-usa.us/en/products/controllers-drivers-motion-control-software/piezo-drivers-controllers-power-supplies-high-voltage-amplifiers/) | USA | | [PI](https://www.pi-usa.us/en/products/controllers-drivers-motion-control-software/piezo-drivers-controllers-power-supplies-high-voltage-amplifiers/) | USA |
| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=2085) | USA | | [Thorlabs](https://www.thorlabs.com/navigation.cfm?guide%5FID=2085) | USA |
| Micromega Dynamics | | Belgium | | [Lab Systems](https://www.lab-systems.com/products/amplifier/amplifier.html) | Isreal |
| Lab Systems | [link](https://www.lab-systems.com/products/amplifier/amplifier.html) | Isreal | | [Piezomechanics](https://www.piezomechanik.com/products/) | Germany |
| Piezomechanics | [link](https://www.piezomechanik.com/products/) | Germany | | [Cedrat Technologies](https://www.cedrat-technologies.com/en/products/piezo-controllers/electronic-amplifier-boards.html) | France |
| Cedrat Technologies | [link](https://www.cedrat-technologies.com/en/products/piezo-controllers/electronic-amplifier-boards.html) | France | | [Trek](https://www.trekinc.com/products/HV%5FAmp.asp) | USA |
| Trek | [link](https://www.trekinc.com/products/HV%5FAmp.asp) | USA | | [Madcitylabs](http://www.madcitylabs.com/piezoactuators.html) | USA |
| Madcitylabs | [link](http://www.madcitylabs.com/piezoactuators.html) | USA | | [Piezosystem](https://www.piezosystem.com/products/controller/) | Germany |
| Piezosystem | [link](https://www.piezosystem.com/products/controller/) | Germany | | [Matsusada Precision](https://www.matsusada.com/product/pz/) | Japan |
| Matsusada Precision | [link](https://www.matsusada.com/product/pz/) | Japan | | [Mechano Transformer](http://www.mechano-transformer.com/en/products/08.html) | Japan |
| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/08.html) | Japan |
### Limitation in Current {#limitation-in-current} ### Limitation in Current {#limitation-in-current}
The piezoelectric stack can be represented as a capacitance. The piezoelectric stack can be represented as a capacitance.
Let's take a capacitance driven by a voltage amplifier (Figure [1](#org1213200)). Let's take a capacitance driven by a voltage amplifier (Figure [1](#org811725e)).
<a id="org1213200"></a> <a id="org811725e"></a>
{{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}} {{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}}
@ -61,21 +55,21 @@ Thus, for a specified maximum current \\(I\_\text{max}\\), the "power bandwidth"
- Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency: - Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency:
\\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\] \\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\]
The maximum voltage as a function of frequency is shown in Figure [2](#org5c9f5fc). The maximum voltage as a function of frequency is shown in Figure [2](#org8c7858f).
```matlab ```matlab
Vpkp = 170; % [V] Vpkp = 170; % [V]
Imax = 30e-3; % [A] Imax = 30e-3; % [A]
C = 1e-6; % [F] C = 1e-6; % [F]
(1/(2*pi))*Imax/(C * Vpkp/2) % Fmax [Hz] (1/(2*pi))*Imax/(C * Vpkp/2) % Fmax [Hz]
``` ```
```text ```text
56.172 56.172
``` ```
<a id="org5c9f5fc"></a> <a id="org8c7858f"></a>
{{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}} {{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}}
@ -111,7 +105,7 @@ This can pose several problems:
### Noise {#noise} ### Noise {#noise}
Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#org0688a0e)). Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#org2123c0f)).
Proper enclosures and cabling are necessary to protect the system from capacitive and inductive interferance. Proper enclosures and cabling are necessary to protect the system from capacitive and inductive interferance.
@ -123,13 +117,13 @@ The **input** impedance of voltage amplifiers are generally set to \\(50 \Omega\
The **output** (or internal) impedance of voltage amplifier is generally wanted small in order to have a small voltage drop when large current are drawn. The **output** (or internal) impedance of voltage amplifier is generally wanted small in order to have a small voltage drop when large current are drawn.
However, for stability reasons and to avoid overshoot (due to the internal negative feedback loop), this impedance can be chosen quite large. However, for stability reasons and to avoid overshoot (due to the internal negative feedback loop), this impedance can be chosen quite large.
This is discussed in ([Spengen 2017](#orgfe834ca)). This is discussed in ([Spengen 2017](#orgc500938)).
## Bibliography {#bibliography} ## Bibliography {#bibliography}
<a id="org624e57c"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>. <a id="org66151a2"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
<a id="orgfe834ca"></a>Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems. <a id="orgc500938"></a>Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems.
<a id="org0688a0e"></a>———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems. <a id="org2123c0f"></a>———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems.