diff --git a/content/zettels/acquisition_systems.md b/content/zettels/acquisition_systems.md index a5a0ec4..cd61a55 100644 --- a/content/zettels/acquisition_systems.md +++ b/content/zettels/acquisition_systems.md @@ -10,9 +10,9 @@ Tags ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|---------------|-------------------------------|----------| -| Dewesoft | [link](https://dewesoft.com/) | Slovenia | -| Oros | [link](https://www.oros.com/) | France | +| Manufacturers | Country | +|-----------------------------------|----------| +| [Dewesoft](https://dewesoft.com/) | Slovenia | +| [Oros](https://www.oros.com/) | France | <./biblio/references.bib> diff --git a/content/zettels/active_isolation_platforms.md b/content/zettels/active_isolation_platforms.md index ada6cf8..7ef0030 100644 --- a/content/zettels/active_isolation_platforms.md +++ b/content/zettels/active_isolation_platforms.md @@ -10,18 +10,18 @@ Tags ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|-------------------|----------------------------------------------------------------------------------|-------------| -| TMC | [link](https://www.techmfg.com/) | USA | -| Newport | [link](https://www.newport.com/c/optical-tables-%26-isolation-systems) | USA | -| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=42) | USA | -| IDE | [link](https://www.ideworld.com/en/active%5Fvibration%5Fisolation.html) | Germany | -| Harvard Apparatus | [link](https://www.warneronline.com/labmate-vibraplane-workstations-9100-series) | USA | -| Herzan | [link](https://www.herzan.com/products/active-vibration-control/avi-series.html) | USA | -| Standa | [link](http://www.standa.lt/products/catalog/optical%5Ftables?item=335) | Lithuania | -| Table Stable | [link](http://www.tablestable.com/en/products/list/2/) | Switzerland | -| Accurion | [link](https://www.halcyonics.com/active-vibration-isolation-products) | Germany | -| Vibiso | [link](https://vibiso.com/?page%5Fid=3433) | USA | +| Manufacturers | Country | +|-----------------------------------------------------------------------------------------------|-------------| +| [TMC](https://www.techmfg.com/) | USA | +| [Newport](https://www.newport.com/c/optical-tables-%26-isolation-systems) | USA | +| [Thorlabs](https://www.thorlabs.com/navigation.cfm?guide%5FID=42) | USA | +| [IDE](https://www.ideworld.com/en/active%5Fvibration%5Fisolation.html) | Germany | +| [Harvard Apparatus](https://www.warneronline.com/labmate-vibraplane-workstations-9100-series) | USA | +| [Herzan](https://www.herzan.com/products/active-vibration-control/avi-series.html) | USA | +| [Standa](http://www.standa.lt/products/catalog/optical%5Ftables?item=335) | Lithuania | +| [Table Stable](http://www.tablestable.com/en/products/list/2/) | Switzerland | +| [Accurion](https://www.halcyonics.com/active-vibration-isolation-products) | Germany | +| [Vibiso](https://vibiso.com/?page%5Fid=3433) | USA | ## Vibration Isolating Pads {#vibration-isolating-pads} diff --git a/content/zettels/analog_to_digital_converters.md b/content/zettels/analog_to_digital_converters.md index 5e1f247..b2f1f3a 100644 --- a/content/zettels/analog_to_digital_converters.md +++ b/content/zettels/analog_to_digital_converters.md @@ -23,9 +23,9 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati Interestingly, the noise amplitude is uniformly distributed. The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., it’s a uniform distribution). -Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#orgf547b74)). +Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org2f8924a)). - + {{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}} @@ -74,4 +74,6 @@ The quantization is: +{{< youtube b9lxtOJj3yU >}} + <./biblio/references.bib> diff --git a/content/zettels/cables.md b/content/zettels/cables.md index b6cfb28..9a3d80e 100644 --- a/content/zettels/cables.md +++ b/content/zettels/cables.md @@ -4,10 +4,6 @@ author = ["Thomas Dehaeze"] draft = false +++ -Backlinks: - -- [Connectors]({{< relref "connectors" >}}) - Tags : [Connectors]({{< relref "connectors" >}}) @@ -21,12 +17,12 @@ Tags ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|---------------|------------------------------------------------|-------------| -| LEMO | [link](https://www.lemo.com/en) | Switzerland | -| Helukabel | [link](https://www.helukabel.com/fr/home.html) | Germany | -| Belden | [link](https://www.belden.com/) | USA | -| Alphawire | [link](https://www.alphawire.com/) | USA | +| Manufacturers | Country | +|-----------------------------------------------------|-------------| +| [LEMO](https://www.lemo.com/en) | Switzerland | +| [Helukabel](https://www.helukabel.com/fr/home.html) | Germany | +| [Belden](https://www.belden.com/) | USA | +| [Alphawire](https://www.alphawire.com/) | USA | ## Software {#software} diff --git a/content/zettels/capacitive_sensors.md b/content/zettels/capacitive_sensors.md index 70fa6b5..9707411 100644 --- a/content/zettels/capacitive_sensors.md +++ b/content/zettels/capacitive_sensors.md @@ -16,17 +16,17 @@ Tags ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|----------------|----------------------------------------------------------------------------------------------------|-------------| -| Micro Sense | [link](http://www.microsense.net/products-position-sensors.htm) | USA | -| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/capacitive-sensor/) | Germany | -| PI | [link](https://www.physikinstrumente.com/en/technology/sensor-technologies/capacitive-sensors/) | Germany | -| Unipulse | [link](https://www.unipulse.com/product/ps-ia/) | Japan | -| Lion-Precision | [link](https://www.lionprecision.com/products/capacitive-sensors) | USA | -| Fogale | [link](http://www.fogale.fr/brochures.html) | USA | -| Queensgate | [link](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-sensors) | UK | -| Capacitec | [link](https://www.capacitec.com/Displacement-Sensing-Systems) | USA | -| MTIinstruments | [link](https://www.mtiinstruments.com/products/non-contact-measurement/capacitance-sensors/) | USA | -| Althen | [link](https://www.althensensors.com/sensors/linear-position-sensors/capacitive-position-sensors/) | Netherlands | +| Manufacturers | Country | +|--------------------------------------------------------------------------------------------------------|-------------| +| [Micro Sense](http://www.microsense.net/products-position-sensors.htm) | USA | +| [Micro-Epsilon](https://www.micro-epsilon.com/displacement-position-sensors/capacitive-sensor/) | Germany | +| [PI](https://www.physikinstrumente.com/en/technology/sensor-technologies/capacitive-sensors/) | Germany | +| [Unipulse](https://www.unipulse.com/product/ps-ia/) | Japan | +| [Lion-Precision](https://www.lionprecision.com/products/capacitive-sensors) | USA | +| [Fogale](http://www.fogale.fr/brochures.html) | USA | +| [Queensgate](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-sensors) | UK | +| [Capacitec](https://www.capacitec.com/Displacement-Sensing-Systems) | USA | +| [MTIinstruments](https://www.mtiinstruments.com/products/non-contact-measurement/capacitance-sensors/) | USA | +| [Althen](https://www.althensensors.com/sensors/linear-position-sensors/capacitive-position-sensors/) | Netherlands | <./biblio/references.bib> diff --git a/content/zettels/charge_amplifiers.md b/content/zettels/charge_amplifiers.md index 9e96416..351cf32 100644 --- a/content/zettels/charge_amplifiers.md +++ b/content/zettels/charge_amplifiers.md @@ -17,38 +17,38 @@ This can be typically used to interface with piezoelectric sensors. ## Basic Circuit {#basic-circuit} -Two basic circuits of charge amplifiers are shown in Figure [1](#org3aa62a6) (taken from ([Fleming 2010](#orgd8b7cb4))) and Figure [2](#org18afeb8) (taken from ([Schmidt, Schitter, and Rankers 2014](#orga9d9a6b))) +Two basic circuits of charge amplifiers are shown in Figure [1](#org4fccf5a) (taken from ([Fleming 2010](#org17ae69b))) and Figure [2](#orgad97f51) (taken from ([Schmidt, Schitter, and Rankers 2014](#orge90efed))) - + {{< figure src="/ox-hugo/charge_amplifier_circuit.png" caption="Figure 1: Electrical model of a piezoelectric force sensor is shown in gray. The op-amp charge amplifier is shown on the right. The output voltage \\(V\_s\\) equal to \\(-q/C\_s\\)" >}} - + {{< figure src="/ox-hugo/charge_amplifier_circuit_bis.png" caption="Figure 2: A piezoelectric accelerometer with a charge amplifier as signal conditioning element" >}} The input impedance of the charge amplifier is very small (unlike when using a voltage amplifier). -The gain of the charge amplified (Figure [1](#org3aa62a6)) is equal to: +The gain of the charge amplified (Figure [1](#org4fccf5a)) is equal to: \\[ \frac{V\_s}{q} = \frac{-1}{C\_s} \\] ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------| -| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA | -| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany | -| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | -| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | -| DJB | [link](https://www.djbinstruments.com/products/instrumentation/view/9-Channel-Charge-Voltage-Amplifier-IEPE-Signal-Conditioning-Rack-Mounted) | UK | -| MTI Instruments | [link](https://www.mtiinstruments.com/products/turbine-balancing-vibration-analysis/charge-amplifiers/ca1800/) | USA | -| Sinocera | [link](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China | -| L-Card | [link](https://en.lcard.ru/products/accesories/le-41) | Rusia | +| Manufacturers | Country | +|----------------------------------------------------------------------------------------------------------------------------------------------|---------| +| [PCB](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA | +| [HBM](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany | +| [Kistler](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | +| [MMF](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | +| [DJB](https://www.djbinstruments.com/products/instrumentation/view/9-Channel-Charge-Voltage-Amplifier-IEPE-Signal-Conditioning-Rack-Mounted) | UK | +| [MTI Instruments](https://www.mtiinstruments.com/products/turbine-balancing-vibration-analysis/charge-amplifiers/ca1800/) | USA | +| [Sinocera](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China | +| [L-Card](https://en.lcard.ru/products/accesories/le-41) | Rusia | ## Bibliography {#bibliography} -Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . +Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . -Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press. +Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press. diff --git a/content/zettels/connectors.md b/content/zettels/connectors.md index 850a9dd..6723338 100644 --- a/content/zettels/connectors.md +++ b/content/zettels/connectors.md @@ -10,18 +10,18 @@ Tags ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|---------------|-------------------------------------------------|-------------| -| LEMO | [link](https://www.lemo.com/en) | Switzerland | -| Fischer | [link](https://www.fischerconnectors.com/uk/en) | Switzerland | -| EDO | [link](https://www.odu-connectors.com/) | Germany | +| Manufacturers | Country | +|----------------------------------------------------|-------------| +| [LEMO](https://www.lemo.com/en) | Switzerland | +| [Fischer](https://www.fischerconnectors.com/uk/en) | Switzerland | +| [EDO](https://www.odu-connectors.com/) | Germany | ## BNC {#bnc} -BNC connectors can have an impedance of 50Ohms or 75Ohms as shown in Figure [1](#orgada3acd). +BNC connectors can have an impedance of 50Ohms or 75Ohms as shown in Figure [1](#orgfe209b2). - + {{< figure src="/ox-hugo/bnc_50_75_ohms.jpg" caption="Figure 1: 75Ohms and 50Ohms BNC connectors" >}} diff --git a/content/zettels/eddy_current_sensors.md b/content/zettels/eddy_current_sensors.md index c4ecbda..38a8278 100644 --- a/content/zettels/eddy_current_sensors.md +++ b/content/zettels/eddy_current_sensors.md @@ -10,13 +10,13 @@ Tags ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|----------------|---------------------------------------------------------------------------------------------|-------------| -| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/) | Germany | -| Lion Precision | [link](https://www.lionprecision.com/products/eddy-current-sensors) | USA | -| Cedrat | [link](https://www.cedrat-technologies.com/en/products/sensors/eddy-current-sensors.html) | France | -| Kaman | [link](https://www.kamansensors.com/product/smt-9700/) | USA | -| Keyence | [link](https://www.keyence.com/ss/products/measure/measurement%5Flibrary/type/inductive/) | USA | -| Althen | [link](https://www.althensensors.com/sensors/linear-position-sensors/eddy-current-sensors/) | Netherlands | +| Manufacturers | Country | +|---------------------------------------------------------------------------------------------------|-------------| +| [Micro-Epsilon](https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/) | Germany | +| [Lion Precision](https://www.lionprecision.com/products/eddy-current-sensors) | USA | +| [Cedrat](https://www.cedrat-technologies.com/en/products/sensors/eddy-current-sensors.html) | France | +| [Kaman](https://www.kamansensors.com/product/smt-9700/) | USA | +| [Keyence](https://www.keyence.com/ss/products/measure/measurement%5Flibrary/type/inductive/) | USA | +| [Althen](https://www.althensensors.com/sensors/linear-position-sensors/eddy-current-sensors/) | Netherlands | <./biblio/references.bib> diff --git a/content/zettels/encoders.md b/content/zettels/encoders.md index 90eed93..baf4e7a 100644 --- a/content/zettels/encoders.md +++ b/content/zettels/encoders.md @@ -12,11 +12,11 @@ There are two main types of encoders: optical encoders, and magnetic encoders. ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|----------------|-----------------------------------------------------------------------|---------| -| Heidenhain | [link](https://www.heidenhain.com/en%5FUS/products/linear-encoders/) | Germany | -| MicroE Systems | [link](https://www.celeramotion.com/microe/products/linear-encoders/) | USA | -| Renishaw | [link](https://www.renishaw.com/en/browse-encoder-range--6440) | UK | -| Celera Motion | [link](https://www.celeramotion.com/microe/) | USA | +| Manufacturers | Country | +|---------------------------------------------------------------------------------|---------| +| [Heidenhain](https://www.heidenhain.com/en%5FUS/products/linear-encoders/) | Germany | +| [MicroE Systems](https://www.celeramotion.com/microe/products/linear-encoders/) | USA | +| [Renishaw](https://www.renishaw.com/en/browse-encoder-range--6440) | UK | +| [Celera Motion](https://www.celeramotion.com/microe/) | USA | <./biblio/references.bib> diff --git a/content/zettels/force_sensors.md b/content/zettels/force_sensors.md index 6362b7a..099e3b1 100644 --- a/content/zettels/force_sensors.md +++ b/content/zettels/force_sensors.md @@ -17,9 +17,9 @@ There are two main technique for force sensors: The choice between the two is usually based on whether the measurement is static (strain gauge) or dynamics (piezoelectric). -Main differences between the two are shown in Figure [1](#org40d75e8). +Main differences between the two are shown in Figure [1](#org921c881). - + {{< figure src="/ox-hugo/force_sensor_piezo_vs_strain_gauge.png" caption="Figure 1: Piezoelectric Force sensor VS Strain Gauge Force sensor" >}} @@ -29,18 +29,18 @@ Main differences between the two are shown in Figure [1](#org40d75e8). ### Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor} -An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#orgc01e36f)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). +An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org26fffc0)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). ### Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|---------------|------------------------------------------------------------------------------------------------|---------| -| PCB | [link](https://www.pcb.com/products/productfinder.aspx?tx=17) | USA | -| HBM | [link](https://www.hbm.com/en/6107/force-sensors-with-flange-mounting/) | Germany | -| Kistler | [link](https://www.kistler.com/fr/produits/composants/capteurs-de-force/?pfv%5Fmetrics=metric) | Swiss | -| MMF | [link](https://www.mmf.de/force%5Ftransducers.htm) | Germany | -| Sinocera | [link](http://www.china-yec.net/sensors/) | China | +| Manufacturers | Country | +|---------------------------------------------------------------------------------------------------|---------| +| [PCB](https://www.pcb.com/products/productfinder.aspx?tx=17) | USA | +| [HBM](https://www.hbm.com/en/6107/force-sensors-with-flange-mounting/) | Germany | +| [Kistler](https://www.kistler.com/fr/produits/composants/capteurs-de-force/?pfv%5Fmetrics=metric) | Swiss | +| [MMF](https://www.mmf.de/force%5Ftransducers.htm) | Germany | +| [Sinocera](http://www.china-yec.net/sensors/) | China | ### Signal Conditioner {#signal-conditioner} @@ -65,16 +65,16 @@ However, if a charge conditioner is used, the signal will be doubled. ### Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|---------------|----------------------------------------------------------------------------|----------------| -| Sensel | [link](https://www.sensel-measurement.fr/en/3-load-cell) | France | -| Omega | [link](https://www.omega.com/en-us/resources/load-cells) | United Kingdom | -| Megatron | [link](https://www.megatron.de/en/category/load-cells.html) | Germany | -| PCB | [link](https://www.pcb.com/products/product-finder?tx=19) | USA | -| Interface | [link](https://quickship.interfaceforce.com/product-category/load-cells/) | USA | -| Althen | [link](https://www.althensensors.com/sensors/weighing-sensors-load-cells/) | Netherlands | +| Manufacturers | Country | +|--------------------------------------------------------------------------------|----------------| +| [Sensel](https://www.sensel-measurement.fr/en/3-load-cell) | France | +| [Omega](https://www.omega.com/en-us/resources/load-cells) | United Kingdom | +| [Megatron](https://www.megatron.de/en/category/load-cells.html) | Germany | +| [PCB](https://www.pcb.com/products/product-finder?tx=19) | USA | +| [Interface](https://quickship.interfaceforce.com/product-category/load-cells/) | USA | +| [Althen](https://www.althensensors.com/sensors/weighing-sensors-load-cells/) | Netherlands | ## Bibliography {#bibliography} -Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . +Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . diff --git a/content/zettels/granite.md b/content/zettels/granite.md index cfcf10c..5f7cfb7 100644 --- a/content/zettels/granite.md +++ b/content/zettels/granite.md @@ -7,6 +7,11 @@ draft = false Tags : - + +## Manufacturers {#manufacturers} + +| Manufacturers | Country | +|--------------------------------------------------|---------| +| [Microplan](https://www.microplan-group.com/fr/) | France | <./biblio/references.bib> diff --git a/content/zettels/inertial_sensors.md b/content/zettels/inertial_sensors.md index c6c0400..7fed4f4 100644 --- a/content/zettels/inertial_sensors.md +++ b/content/zettels/inertial_sensors.md @@ -10,55 +10,55 @@ Tags ## Review of Absolute (inertial) Position Sensors {#review-of-absolute--inertial--position-sensors} -- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#orgf3cd363)) -- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#orgf2d375a)) +- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#orgb31e055)) +- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#orgcd873cb)) - + {{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}} ## Accelerometers {#accelerometers} -| Manufacturers | Links | Country | -|--------------------|---------------------------------------------------------------------------------------------|-------------| -| Micromega Dynamics | [link](https://micromega-dynamics.com/products/) | Belgium | -| MMF | [link](https://www.mmf.de/seismic%5Faccelerometers.htm) | Germany | -| PCB | [link](https://www.pcb.com/products/productfinder.aspx?tx=14) | USA | -| Guralp | [link](https://www.guralp.com/products/surface) | UK | -| Nanometric | [link](https://www.nanometrics.ca/products/accelerometers) | Canada | -| Kistler | [link](https://www.kistler.com/fr/produits/composants/accelerometres/?pfv%5Fmetrics=metric) | Swiss | -| Beran | [link](https://www.beraninstruments.com/Products/Vibration-Transducers-and-Cabling) | UK | -| Althen | [link](https://www.althensensors.com/fr/capteurs/capteurs-d-acceleration/) | Netherlands | +| Manufacturers | Country | +|------------------------------------------------------------------------------------------------|-------------| +| [Micromega Dynamics](https://micromega-dynamics.com/products/) | Belgium | +| [MMF](https://www.mmf.de/seismic%5Faccelerometers.htm) | Germany | +| [PCB](https://www.pcb.com/products/productfinder.aspx?tx=14) | USA | +| [Guralp](https://www.guralp.com/products/surface) | UK | +| [Nanometric](https://www.nanometrics.ca/products/accelerometers) | Canada | +| [Kistler](https://www.kistler.com/fr/produits/composants/accelerometres/?pfv%5Fmetrics=metric) | Swiss | +| [Beran](https://www.beraninstruments.com/Products/Vibration-Transducers-and-Cabling) | UK | +| [Althen](https://www.althensensors.com/fr/capteurs/capteurs-d-acceleration/) | Netherlands | Wireless Accelerometers - - + {{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="Figure 2: Characteristics of commercially available accelerometers collette11_review" >}} ## Geophones and Seismometers {#geophones-and-seismometers} -| Manufacturers | Links | Country | -|-----------------------|---------------------------------------------------------------------------------------------|---------| -| Sercel | [link](http://www.sercel.com/products/Pages/seismometers.aspx) | France | -| Wilcoxon | [link](https://wilcoxon.com/) | USA | -| Geospace technologies | [link](https://www.geospace.com/sensors/#) | USA | -| Ion | [link](https://www.iongeo.com/technologies/hardware/seismic-equipment/precision-geophones/) | USA | -| Streckeisen | [link](https://streckeisen.swiss/en/products/overview/) | Swiss | -| Guralp | [link](https://www.guralp.com/products/surface) | UK | -| Nanometric | [link](https://www.nanometrics.ca/products/seismometers) | Canada | +| Manufacturers | Country | +|--------------------------------------------------------------------------------------------|---------| +| [Sercel](http://www.sercel.com/products/Pages/seismometers.aspx) | France | +| [Wilcoxon](https://wilcoxon.com/) | USA | +| [Geospace technologies](https://www.geospace.com/sensors/#) | USA | +| [Ion](https://www.iongeo.com/technologies/hardware/seismic-equipment/precision-geophones/) | USA | +| [Streckeisen](https://streckeisen.swiss/en/products/overview/) | Swiss | +| [Guralp](https://www.guralp.com/products/surface) | UK | +| [Nanometric](https://www.nanometrics.ca/products/seismometers) | Canada | - + {{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="Figure 3: Characteristics of commercially available geophones collette11_review" >}} ## Bibliography {#bibliography} -Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):1289–1300. . +Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):1289–1300. . -Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_. +Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_. diff --git a/content/zettels/instrumented_hammer.md b/content/zettels/instrumented_hammer.md index 633638d..9184f10 100644 --- a/content/zettels/instrumented_hammer.md +++ b/content/zettels/instrumented_hammer.md @@ -12,10 +12,10 @@ And instrumented hammer consist of a regular hammer with a force sensor fixed at ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|---------------|---------------------------------------------------------------------------------------------------------------|----------| -| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/impact-hammers-electrodynamic-shakers/impact-hammers) | USA | -| DJB | [link](https://www.djbinstruments.com/products/instrumentation/impact-hammers) | UK | -| Dewesoft | [link](https://dewesoft.com/fr/products/interfaces-and-sensors/accelerometers-and-modal-hammers) | Slovenia | +| Manufacturers | Country | +|--------------------------------------------------------------------------------------------------------------|----------| +| [PCB](https://www.pcb.com/sensors-for-test-measurement/impact-hammers-electrodynamic-shakers/impact-hammers) | USA | +| [DJB](https://www.djbinstruments.com/products/instrumentation/impact-hammers) | UK | +| [Dewesoft](https://dewesoft.com/fr/products/interfaces-and-sensors/accelerometers-and-modal-hammers) | Slovenia | <./biblio/references.bib> diff --git a/content/zettels/interferometers.md b/content/zettels/interferometers.md index 9a335ec..694ee9b 100644 --- a/content/zettels/interferometers.md +++ b/content/zettels/interferometers.md @@ -10,21 +10,21 @@ Tags ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|---------------|----------------------------------------------------------------------------------------------------------|-------------| -| Attocube | [link](http://www.attocube.com/) | Germany | -| Zygo | [link](https://www.zygo.com/?/met/markets/stageposition/zmi/) | USA | -| Smaract | [link](https://www.smaract.com/interferometry) | Germany | -| Qutools | [link](https://www.qutools.com/qudis/) | Germany | -| Renishaw | [link](https://www.renishaw.com/en/fibre-optic-laser-encoder-products--6594) | UK | -| Sios | [link](https://sios-de.com/products/length-measurement/laser-interferometer/) | Germany | -| Keysight | [link](https://www.keysight.com/en/pc-1000000393%3Aepsg%3Apgr/laser-heads?nid=-536900395.0&cc=FR&lc=fre) | USA | -| Optics11 | [link](https://optics11.com/) | Netherlands | +| Manufacturers | Country | +|--------------------------------------------------------------------------------------------------------------|-------------| +| [Attocube](http://www.attocube.com/) | Germany | +| [Zygo](https://www.zygo.com/?/met/markets/stageposition/zmi/) | USA | +| [Smaract](https://www.smaract.com/interferometry) | Germany | +| [Qutools](https://www.qutools.com/qudis/) | Germany | +| [Renishaw](https://www.renishaw.com/en/fibre-optic-laser-encoder-products--6594) | UK | +| [Sios](https://sios-de.com/products/length-measurement/laser-interferometer/) | Germany | +| [Keysight](https://www.keysight.com/en/pc-1000000393%3Aepsg%3Apgr/laser-heads?nid=-536900395.0&cc=FR&lc=fre) | USA | +| [Optics11](https://optics11.com/) | Netherlands | ## Effect of Refractive Index - Environmental Units {#effect-of-refractive-index-environmental-units} -The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#org7c4b7ca))). +The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#org68c8bbb))).
@@ -59,16 +59,16 @@ Typical characteristics of commercial environmental units are shown in Table [2] ## Interferometer Precision {#interferometer-precision} -Figure [1](#orgb0b437f) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#org60051d3))). +Figure [1](#org960bbd9) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#orgd724d07))). - + {{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}} ## Sources of uncertainty {#sources-of-uncertainty} -Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#orgd3162b8)). +Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#orgeacbea1)). It includes: @@ -78,18 +78,18 @@ It includes: - Pressure: \\(K\_P \approx 0.27 ppm hPa^{-1}\\) - Humidity: \\(K\_{HR} \approx 0.01 ppm \% RH^{-1}\\) - These errors can partially be compensated using an environmental unit. -- Air turbulence (Figure [2](#org74b0d34)) +- Air turbulence (Figure [2](#orgd403994)) - Non linearity - + {{< figure src="/ox-hugo/interferometers_air_turbulence.png" caption="Figure 2: Effect of air turbulences on measurement stability" >}} ## Bibliography {#bibliography} -Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” . +Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” . -Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. . +Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. . -Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:3051–63. +Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:3051–63. diff --git a/content/zettels/linear_guides.md b/content/zettels/linear_guides.md new file mode 100644 index 0000000..1c272c1 --- /dev/null +++ b/content/zettels/linear_guides.md @@ -0,0 +1,18 @@ ++++ +title = "Linear Guides" +author = ["Thomas Dehaeze"] +draft = false ++++ + +Tags +: + + +## Manufacturers {#manufacturers} + +| Manufacturers | Country | +|----------------------------------------------------------------------------------------------------------------------------|---------| +| [Bosch Rexroth](https://www.boschrexroth.com/en/xc/products/product-groups/linear-motion-technology/topics/linear-guides/) | Germany | +| [THK](https://www.thk.com/?q=eng/node/231) | Japan | + +<./biblio/references.bib> diff --git a/content/zettels/linear_variable_differential_transformers.md b/content/zettels/linear_variable_differential_transformers.md index 2fd1391..f5be7e3 100644 --- a/content/zettels/linear_variable_differential_transformers.md +++ b/content/zettels/linear_variable_differential_transformers.md @@ -10,10 +10,10 @@ Tags ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|---------------|--------------------------------------------------------------------------------------------|-------------| -| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/inductive-sensor-lvdt/) | Germany | -| Keyence | [link](https://www.keyence.eu/products/measure/contact-distance-lvdt/gt2/index.jsp) | USA | -| Althen | [link](https://www.althensensors.com/sensors/linear-position-sensors/lvdt-sensors/) | Netherlands | +| Manufacturers | Country | +|-----------------------------------------------------------------------------------------------------|-------------| +| [Micro-Epsilon](https://www.micro-epsilon.com/displacement-position-sensors/inductive-sensor-lvdt/) | Germany | +| [Keyence](https://www.keyence.eu/products/measure/contact-distance-lvdt/gt2/index.jsp) | USA | +| [Althen](https://www.althensensors.com/sensors/linear-position-sensors/lvdt-sensors/) | Netherlands | <./biblio/references.bib> diff --git a/content/zettels/piezoelectric_actuators.md b/content/zettels/piezoelectric_actuators.md index c63dd68..f63ec5f 100644 --- a/content/zettels/piezoelectric_actuators.md +++ b/content/zettels/piezoelectric_actuators.md @@ -13,26 +13,26 @@ Tags ### Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|---------------------|----------------------------------------------------------------------------------------------------------------|-----------| -| Cedrat | [link](http://www.cedrat-technologies.com/) | France | -| PI | [link](https://www.physikinstrumente.com/en/) | USA | -| Piezo System | [link](https://www.piezosystem.com/products/piezo%5Factuators/stacktypeactuators/) | Germany | -| Noliac | [link](http://www.noliac.com/products/actuators/plate-stacks/) | Denmark | -| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA | -| PiezoDrive | [link](https://www.piezodrive.com/actuators/) | Australia | -| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/10.html) | Japan | -| CoreMorrow | [link](http://www.coremorrow.com/en/pro-9-1.html) | China | -| PiezoData | [link](https://www.piezodata.com/piezo-stack-actuator-2/) | China | -| Queensgate | [link](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-actuators-translators) | UK | -| Matsusada Precision | [link](https://www.matsusada.com/product/pz/) | Japan | -| Sinocera | [link](http://www.china-yec.net/piezoelectric-ceramics/) | China | -| Fuji Ceramisc | [link](http://www.fujicera.co.jp/en/) | Japan | +| Manufacturers | Country | +|----------------------------------------------------------------------------------------------------------------------|-----------| +| [Cedrat](http://www.cedrat-technologies.com/) | France | +| [PI](https://www.physikinstrumente.com/en/) | USA | +| [Piezo System](https://www.piezosystem.com/products/piezo%5Factuators/stacktypeactuators/) | Germany | +| [Noliac](http://www.noliac.com/products/actuators/plate-stacks/) | Denmark | +| [Thorlabs](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA | +| [PiezoDrive](https://www.piezodrive.com/actuators/) | Australia | +| [Mechano Transformer](http://www.mechano-transformer.com/en/products/10.html) | Japan | +| [CoreMorrow](http://www.coremorrow.com/en/pro-9-1.html) | China | +| [PiezoData](https://www.piezodata.com/piezo-stack-actuator-2/) | China | +| [Queensgate](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-actuators-translators) | UK | +| [Matsusada Precision](https://www.matsusada.com/product/pz/) | Japan | +| [Sinocera](http://www.china-yec.net/piezoelectric-ceramics/) | China | +| [Fuji Ceramisc](http://www.fujicera.co.jp/en/) | Japan | ### Model {#model} -A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgba89e54)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). +A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#org8e467ce)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel. @@ -49,34 +49,34 @@ with: Some manufacturers propose "raw" plate actuators that can be used as actuator / sensors. -| Manufacturers | Links | Country | -|---------------|-------------------------------------------------------------------|---------| -| Noliac | [link](http://www.noliac.com/products/actuators/plate-actuators/) | Denmak | +| Manufacturers | Country | +|---------------------------------------------------------------------|---------| +| [Noliac](http://www.noliac.com/products/actuators/plate-actuators/) | Denmak | ## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators} -The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org2aa3084)): +The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org5363d27)): > The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height. > The flatter is the actuator, the higher is the amplification. -A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org2b7ba31)). +A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org6963733)). - + {{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms ling16_enhan_mathem_model_displ_amplif" >}} -| Manufacturers | Links | Country | -|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------| -| Cedrat | [link](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) | France | -| PiezoDrive | [link](https://www.piezodrive.com/actuators/ap-series-amplified-piezoelectric-actuators/) | Australia | -| Dynamic-Structures | [link](https://www.dynamic-structures.com/category/piezo-actuators-stages) | USA | -| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA | -| Noliac | [link](http://www.noliac.com/products/actuators/amplified-actuators/) | Denmark | -| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F5.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F3.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5Fmtkk.html) | Japan | -| CoreMorrow | [link](http://www.coremorrow.com/en/pro-13-1.html) | China | -| PiezoData | [link](https://www.piezodata.com/piezoelectric-actuator-amplifier/) | China | +| Manufacturers | Country | +|----------------------------------------------------------------------------------------------------|-----------| +| [Cedrat](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) | France | +| [PiezoDrive](https://www.piezodrive.com/actuators/ap-series-amplified-piezoelectric-actuators/) | Australia | +| [Dynamic-Structures](https://www.dynamic-structures.com/category/piezo-actuators-stages) | USA | +| [Thorlabs](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA | +| [Noliac](http://www.noliac.com/products/actuators/amplified-actuators/) | Denmark | +| [Mechano Transformer](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F5.html) | Japan | +| [CoreMorrow](http://www.coremorrow.com/en/pro-13-1.html) | China | +| [PiezoData](https://www.piezodata.com/piezoelectric-actuator-amplifier/) | China | ## Specifications {#specifications} @@ -155,43 +155,43 @@ For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolut ### Electrical Capacitance {#electrical-capacitance} -The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#orgb209f5d)). +The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org8857f21)). This is due to the fact that voltage amplifier has a limitation on the deliverable current. [Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used. - + {{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}} ## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load} -When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#orgff2ea88)). +When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org35eead3)). - + {{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}} ## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load} -Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgbfa1482)): +Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgf00c960)): \begin{equation} \Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e} \end{equation} - + {{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}} -For piezo actuators, force and displacement are inversely related (Figure [5](#orgbee5c88)). +For piezo actuators, force and displacement are inversely related (Figure [5](#orgb6392e0)). Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement. Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated. When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced. - + {{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}} @@ -203,8 +203,8 @@ Piezoelectric actuators can be driven either using a voltage to charge converter ## Bibliography {#bibliography} -Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. . +Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. . -Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . +Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . -Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.” +Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.” diff --git a/content/zettels/positioning_stations.md b/content/zettels/positioning_stations.md index 5831caa..8e21e7e 100644 --- a/content/zettels/positioning_stations.md +++ b/content/zettels/positioning_stations.md @@ -4,23 +4,17 @@ author = ["Thomas Dehaeze"] draft = false +++ -Backlinks: - -- [Position control in lithographic equipment]({{< relref "butler11_posit_contr_lithog_equip" >}}) -- [An instrument for 3d x-ray nano-imaging]({{< relref "holler12_instr_x_ray_nano_imagin" >}}) -- [Interferometric characterization of rotation stages for x-ray nanotomography]({{< relref "stankevic17_inter_charac_rotat_stages_x_ray_nanot" >}}) - Tags : ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|---------------|-------------------------------------------|---------| -| Kohzu | [link](https://www.kohzuprecision.com/i/) | Japan | -| PI | | | -| Attocube | | | -| Newport | | | +| Manufacturers | Country | +|------------------------------------------------------------------|---------| +| [Kohzu](https://www.kohzuprecision.com/i/) | Japan | +| [PI](https://www.physikinstrumente.com/en/) | USA | +| [Attocube](https://www.attocube.com/en/products/nanopositioners) | Germany | +| [Newport](https://www.newport.com/c/manual-positioning) | | <./biblio/references.bib> diff --git a/content/zettels/rotation_stage.md b/content/zettels/rotation_stage.md index 94c6566..c9271a4 100644 --- a/content/zettels/rotation_stage.md +++ b/content/zettels/rotation_stage.md @@ -10,9 +10,9 @@ Tags ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|-------------------|-------------------------------------------|---------| -| Huber | [link](https://www.xhuber.com/en/) | Germany | -| LAB Motion System | [link](http://www.leuvenairbearings.com/) | Belgium | +| Manufacturers | Country | +|--------------------------------------------------------|---------| +| [Huber](https://www.xhuber.com/en/) | Germany | +| [LAB Motion System](http://www.leuvenairbearings.com/) | Belgium | <./biblio/references.bib> diff --git a/content/zettels/shaker.md b/content/zettels/shaker.md index 26dd9d1..ff9777b 100644 --- a/content/zettels/shaker.md +++ b/content/zettels/shaker.md @@ -4,24 +4,20 @@ author = ["Thomas Dehaeze"] draft = false +++ -Backlinks: - -- [Modal Analysis]({{< relref "modal_analysis" >}}) - Tags : [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}}) ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|--------------------|----------------------------------------------------------------------------------|-----------| -| Labsen | [link](http://labsentec.com.au/category/products/vibrationshock/) | Australia | -| The Modal Shop | [link](http://www.modalshop.com/excitation/Electrodynamic-Exciter-Family?ID=243) | USA | -| Deweshop | [link](https://dewesoft.com/fr/products/interfaces-and-sensors/shakers) | Slovenia | -| Bruel and Kjaer | [link](https://www.bksv.com/en/products/shakers-and-exciters/LDS-shaker-systems) | Denmark | -| YMC | [link](http://www.chinaymc.com/product/showproduct.php?id=78&lang=en) | China | -| Vibration Research | [link](https://vibrationresearch.com/shakers/) | USA | -| Sentek Dynamics | [link](https://www.sentekdynamics.com/) | USA | +| Manufacturers | Country | +|---------------------------------------------------------------------------------------------|-----------| +| [Labsen](http://labsentec.com.au/category/products/vibrationshock/) | Australia | +| [The Modal Shop](http://www.modalshop.com/excitation/Electrodynamic-Exciter-Family?ID=243) | USA | +| [Deweshop](https://dewesoft.com/fr/products/interfaces-and-sensors/shakers) | Slovenia | +| [Bruel and Kjaer](https://www.bksv.com/en/products/shakers-and-exciters/LDS-shaker-systems) | Denmark | +| [YMC](http://www.chinaymc.com/product/showproduct.php?id=78&lang=en) | China | +| [Vibration Research](https://vibrationresearch.com/shakers/) | USA | +| [Sentek Dynamics](https://www.sentekdynamics.com/) | USA | <./biblio/references.bib> diff --git a/content/zettels/slip_rings.md b/content/zettels/slip_rings.md index ab81fc9..08f0a7d 100644 --- a/content/zettels/slip_rings.md +++ b/content/zettels/slip_rings.md @@ -4,18 +4,14 @@ author = ["Thomas Dehaeze"] draft = false +++ -Backlinks: - -- [Rotation Stage]({{< relref "rotation_stage" >}}) - Tags : [Rotation Stage]({{< relref "rotation_stage" >}}) ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|---------------|---------------------------------|---------| -| Moflon | [link](https://www.moflon.com/) | China | +| Manufacturers | Country | +|-----------------------------------|---------| +| [Moflon](https://www.moflon.com/) | China | <./biblio/references.bib> diff --git a/content/zettels/springs.md b/content/zettels/springs.md index 3c7b879..2516a41 100644 --- a/content/zettels/springs.md +++ b/content/zettels/springs.md @@ -10,10 +10,13 @@ Tags ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|---------------|-----------------------------------------|---------| -| Vanel | [link](https://www.vanel.com/index.php) | France | -| Axcesspring | [link](https://www.acxesspring.com/) | US | -| Raymond | [link](https://www.asraymond.com/) | US | +| Manufacturers | Country | +|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------| +| [Vanel](https://www.vanel.com/index.php) | France | +| [Axcesspring](https://www.acxesspring.com/) | US | +| [Raymond](https://www.asraymond.com/) | US | +| [Paulstra](https://www.paulstra-industry.com/en/ranges/metal-mountings/v1210) | France | +| [Norelem](https://www.norelem.com/us/en/Products/Product-overview/Systems-and-components-for-machine-and-plant-construction/26000-Compression-springs-Elastomer-springs-Rubber-buffers-Shock-absorbers-Gas-springs.html) | France | +| [VibraSystems](https://vibrasystems.com/elastomer-and-spring-hangers.html) | USA | <./biblio/references.bib> diff --git a/content/zettels/stewart_platforms.md b/content/zettels/stewart_platforms.md index 088eb66..8cdb794 100644 --- a/content/zettels/stewart_platforms.md +++ b/content/zettels/stewart_platforms.md @@ -10,16 +10,16 @@ Tags ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------| -| PI | [link](https://www.physikinstrumente.com/en/products/parallel-kinematic-hexapods/) | Germany | -| Newport | [link](https://www.newport.com/search/?q1=hexapod%3Arelevance%3Acompatibility%3AMETRIC%3AisObsolete%3Afalse%3A-excludeCountries%3AFR%3AnpCategory%3Ahexapods&ajax&text=hexapod) | USA | -| Symetrie | [link](https://symetrie.fr/en/hexapods-en/positioning-hexapods/) | France | -| CSA Engineering | [link](https://www.csaengineering.com/products-services/hexapod-positioning-systems/hexapod-models.html) | USA | -| Aerotech | [link](https://www.aerotech.com/product-catalog/hexapods.aspx) | USA | -| SmarAct | [link](https://www.smaract.com/smarpod) | Germany | -| Gridbots | [link](https://www.gridbots.com/hexamove.html) | India | -| Alio Industries | [link](https://www.alioindustries.com/) | USA | +| Manufacturers | Country | +|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------| +| [PI](https://www.physikinstrumente.com/en/products/parallel-kinematic-hexapods/) | Germany | +| [Newport](https://www.newport.com/search/?q1=hexapod%3Arelevance%3Acompatibility%3AMETRIC%3AisObsolete%3Afalse%3A-excludeCountries%3AFR%3AnpCategory%3Ahexapods&ajax&text=hexapod) | USA | +| [Symetrie](https://symetrie.fr/en/hexapods-en/positioning-hexapods/) | France | +| [CSA Engineering](https://www.csaengineering.com/products-services/hexapod-positioning-systems/hexapod-models.html) | USA | +| [Aerotech](https://www.aerotech.com/product-catalog/hexapods.aspx) | USA | +| [SmarAct](https://www.smaract.com/smarpod) | Germany | +| [Gridbots](https://www.gridbots.com/hexamove.html) | India | +| [Alio Industries](https://www.alioindustries.com/) | USA | ## Stewart Platforms at ESRF {#stewart-platforms-at-esrf} @@ -36,36 +36,36 @@ Tags Papers by J.E. McInroy: -- ([O’Brien et al. 1998](#orgb07a9df)) -- ([McInroy, O’Brien, and Neat 1999](#orgbcce212)) -- ([McInroy 1999](#org37afc8d)) -- ([McInroy and Hamann 2000](#org888db09)) -- ([Chen and McInroy 2000](#org86c277d)) -- ([McInroy 2002](#org748da49)) -- ([Li, Hamann, and McInroy 2001](#orgcdecf89)) -- ([Lin and McInroy 2003](#orgff3d7a7)) -- ([Jafari and McInroy 2003](#org701d32b)) -- ([Chen and McInroy 2004](#orgd01130a)) +- ([O’Brien et al. 1998](#org301ae65)) +- ([McInroy, O’Brien, and Neat 1999](#org43a0fe2)) +- ([McInroy 1999](#org41ba097)) +- ([McInroy and Hamann 2000](#org73060fc)) +- ([Chen and McInroy 2000](#org2b98584)) +- ([McInroy 2002](#org2d6222b)) +- ([Li, Hamann, and McInroy 2001](#org6598adc)) +- ([Lin and McInroy 2003](#orgfc1736f)) +- ([Jafari and McInroy 2003](#org72de1d8)) +- ([Chen and McInroy 2004](#org6bdfb26)) ## Bibliography {#bibliography} -Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. . +Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. . -Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. . +Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. . -Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. . +Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. . -Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. . +Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. . -Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. . +Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. . -McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. . +McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. . -———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. . +———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. . -McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. . +McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. . -McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. . +McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. . -O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. . +O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. . diff --git a/content/zettels/tip_tilt_mirrors.md b/content/zettels/tip_tilt_mirrors.md index 508e838..fe30e47 100644 --- a/content/zettels/tip_tilt_mirrors.md +++ b/content/zettels/tip_tilt_mirrors.md @@ -10,14 +10,14 @@ Tags ## MEMS Based Tip-Tilt Mirrors {#mems-based-tip-tilt-mirrors} -| Manufacturers | Links | Country | -|---------------|-------------------------------------------------------------------------------------------|-------------| -| Sercalo | [link](https://www.sercalo.com/products/mems-mirrors) | Switzerland | -| KOC | [link](http://www.koreaoptron.co.kr/default/newproduct/mems%5F01%5F02.php) | Korea | -| Mirrorcle | [link](https://www.mirrorcletech.com/wp/products/mems-mirrors/) | USA | -| Preciseley | [link](https://www.preciseley.com/mems-tilting-mirror.html) | Canada | -| Hamamatsu | [link](https://www.hamamatsu.com/eu/en/product/optical-components/mems-mirror/index.html) | Japan | -| Maradin | [link](http://www.maradin.co.il/products/mar1100-mems-2d-laser-scanning-mirror/) | Israel | -| Opus | [link](http://www.opusmicro.com/mems%5Fen.html) | Taiwan | +| Manufacturers | Country | +|------------------------------------------------------------------------------------------------|-------------| +| [Sercalo](https://www.sercalo.com/products/mems-mirrors) | Switzerland | +| [KOC](http://www.koreaoptron.co.kr/default/newproduct/mems%5F01%5F02.php) | Korea | +| [Mirrorcle](https://www.mirrorcletech.com/wp/products/mems-mirrors/) | USA | +| [Preciseley](https://www.preciseley.com/mems-tilting-mirror.html) | Canada | +| [Hamamatsu](https://www.hamamatsu.com/eu/en/product/optical-components/mems-mirror/index.html) | Japan | +| [Maradin](http://www.maradin.co.il/products/mar1100-mems-2d-laser-scanning-mirror/) | Israel | +| [Opus](http://www.opusmicro.com/mems%5Fen.html) | Taiwan | <./biblio/references.bib> diff --git a/content/zettels/transconductance_amplifiers.md b/content/zettels/transconductance_amplifiers.md index a04dffe..7f7e2d0 100644 --- a/content/zettels/transconductance_amplifiers.md +++ b/content/zettels/transconductance_amplifiers.md @@ -4,10 +4,6 @@ author = ["Thomas Dehaeze"] draft = false +++ -Backlinks: - -- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}}) - Tags : [Electronics]({{< relref "electronics" >}}), [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}}) @@ -18,11 +14,4 @@ A Transconductance Amplifier converts the control voltage into current with a cu Such a converter is called a voltage-to-current converter, also named a voltage-controlled current source or _transconductance_ amplifier. - -## Manufacturers {#manufacturers} - -| Manufacturers | Links | Country | -|---------------|-------|---------| -| | | | - <./biblio/references.bib> diff --git a/content/zettels/transimpedance_amplifiers.md b/content/zettels/transimpedance_amplifiers.md index 39b0395..ae1c250 100644 --- a/content/zettels/transimpedance_amplifiers.md +++ b/content/zettels/transimpedance_amplifiers.md @@ -17,11 +17,11 @@ It is generally used to interface a sensor which outputs a current proportional ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|---------------|------------------------------------------------------------------------------------------------------|---------| -| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | -| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | -| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) | Germany | -| FMB Oxford | [link](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK | +| Manufacturers | Country | +|------------------------------------------------------------------------------------------------------------|---------| +| [Kistler](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | +| [MMF](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | +| [Femto](https://www.femto.de/en/products/current-amplifiers.html) | Germany | +| [FMB Oxford](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK | <./biblio/references.bib> diff --git a/content/zettels/voice_coil_actuators.md b/content/zettels/voice_coil_actuators.md index 3a03fc5..31fdc38 100644 --- a/content/zettels/voice_coil_actuators.md +++ b/content/zettels/voice_coil_actuators.md @@ -4,12 +4,6 @@ author = ["Thomas Dehaeze"] draft = false +++ -Backlinks: - -- [Transconductance Amplifiers]({{< relref "transconductance_amplifiers" >}}) -- [Actuators]({{< relref "actuators" >}}) -- [Shaker]({{< relref "shaker" >}}) - Tags : [Actuators]({{< relref "actuators" >}}) @@ -22,7 +16,7 @@ Tags ## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator} -([Schmidt, Schitter, and Rankers 2014](#org6fb1bd5)) +([Schmidt, Schitter, and Rankers 2014](#org8334379)) ## Driving Electronics {#driving-electronics} @@ -32,20 +26,20 @@ As the force is proportional to the current, a [Transconductance Amplifiers]({{< ## Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|----------------------|----------------------------------------------|-------------| -| Geeplus | [link](https://www.geeplus.com/) | UK | -| Maccon | [link](https://www.maccon.de/en.html) | Germany | -| TDS PP | [link](https://www.tds-pp.com/en/) | Switzerland | -| H2tech | [link](https://www.h2wtech.com/) | USA | -| PBA Systems | [link](http://www.pbasystems.com.sg/) | Singapore | -| Celera Motion | [link](https://www.celeramotion.com/) | USA | -| Beikimco | [link](http://www.beikimco.com/) | USA | -| Electromate | [link](https://www.electromate.com/) | Canada | -| Magnetic Innovations | [link](https://www.magneticinnovations.com/) | Netherlands | -| Monticont | [link](http://www.moticont.com/) | USA | +| Manufacturers | Country | +|--------------------------------------------------------------|-------------| +| [Geeplus](https://www.geeplus.com/) | UK | +| [Maccon](https://www.maccon.de/en.html) | Germany | +| [TDS PP](https://www.tds-pp.com/en/) | Switzerland | +| [H2tech](https://www.h2wtech.com/) | USA | +| [PBA Systems](http://www.pbasystems.com.sg/) | Singapore | +| [Celera Motion](https://www.celeramotion.com/) | USA | +| [Beikimco](http://www.beikimco.com/) | USA | +| [Electromate](https://www.electromate.com/) | Canada | +| [Magnetic Innovations](https://www.magneticinnovations.com/) | Netherlands | +| [Monticont](http://www.moticont.com/) | USA | ## Bibliography {#bibliography} -Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press. +Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press. diff --git a/content/zettels/voltage_amplifier.md b/content/zettels/voltage_amplifier.md index 6c796f4..1514f55 100644 --- a/content/zettels/voltage_amplifier.md +++ b/content/zettels/voltage_amplifier.md @@ -4,11 +4,6 @@ author = ["Thomas Dehaeze"] draft = false +++ -Backlinks: - -- [Signal Conditioner]({{< relref "signal_conditioner" >}}) -- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}}) - Tags : [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}), [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}}), [Electronics]({{< relref "electronics" >}}) @@ -18,30 +13,29 @@ Tags ### Manufacturers {#manufacturers} -| Manufacturers | Links | Country | -|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------| -| Piezo Drive | [link](https://www.piezodrive.com/drivers/) | Australia | -| Falco System | [link](https://www.falco-systems.com/products.html) | Netherlands | -| PI | [link](https://www.pi-usa.us/en/products/controllers-drivers-motion-control-software/piezo-drivers-controllers-power-supplies-high-voltage-amplifiers/) | USA | -| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=2085) | USA | -| Micromega Dynamics | | Belgium | -| Lab Systems | [link](https://www.lab-systems.com/products/amplifier/amplifier.html) | Isreal | -| Piezomechanics | [link](https://www.piezomechanik.com/products/) | Germany | -| Cedrat Technologies | [link](https://www.cedrat-technologies.com/en/products/piezo-controllers/electronic-amplifier-boards.html) | France | -| Trek | [link](https://www.trekinc.com/products/HV%5FAmp.asp) | USA | -| Madcitylabs | [link](http://www.madcitylabs.com/piezoactuators.html) | USA | -| Piezosystem | [link](https://www.piezosystem.com/products/controller/) | Germany | -| Matsusada Precision | [link](https://www.matsusada.com/product/pz/) | Japan | -| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/08.html) | Japan | +| Manufacturers | Country | +|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------| +| [Piezo Drive](https://www.piezodrive.com/drivers/) | Australia | +| [Falco System](https://www.falco-systems.com/products.html) | Netherlands | +| [PI](https://www.pi-usa.us/en/products/controllers-drivers-motion-control-software/piezo-drivers-controllers-power-supplies-high-voltage-amplifiers/) | USA | +| [Thorlabs](https://www.thorlabs.com/navigation.cfm?guide%5FID=2085) | USA | +| [Lab Systems](https://www.lab-systems.com/products/amplifier/amplifier.html) | Isreal | +| [Piezomechanics](https://www.piezomechanik.com/products/) | Germany | +| [Cedrat Technologies](https://www.cedrat-technologies.com/en/products/piezo-controllers/electronic-amplifier-boards.html) | France | +| [Trek](https://www.trekinc.com/products/HV%5FAmp.asp) | USA | +| [Madcitylabs](http://www.madcitylabs.com/piezoactuators.html) | USA | +| [Piezosystem](https://www.piezosystem.com/products/controller/) | Germany | +| [Matsusada Precision](https://www.matsusada.com/product/pz/) | Japan | +| [Mechano Transformer](http://www.mechano-transformer.com/en/products/08.html) | Japan | ### Limitation in Current {#limitation-in-current} The piezoelectric stack can be represented as a capacitance. -Let's take a capacitance driven by a voltage amplifier (Figure [1](#org1213200)). +Let's take a capacitance driven by a voltage amplifier (Figure [1](#org811725e)). - + {{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}} @@ -61,21 +55,21 @@ Thus, for a specified maximum current \\(I\_\text{max}\\), the "power bandwidth" - Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency: \\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\] -The maximum voltage as a function of frequency is shown in Figure [2](#org5c9f5fc). +The maximum voltage as a function of frequency is shown in Figure [2](#org8c7858f). ```matlab -Vpkp = 170; % [V] -Imax = 30e-3; % [A] -C = 1e-6; % [F] + Vpkp = 170; % [V] + Imax = 30e-3; % [A] + C = 1e-6; % [F] -(1/(2*pi))*Imax/(C * Vpkp/2) % Fmax [Hz] + (1/(2*pi))*Imax/(C * Vpkp/2) % Fmax [Hz] ``` ```text 56.172 ``` - + {{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}} @@ -111,7 +105,7 @@ This can pose several problems: ### Noise {#noise} -Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#org0688a0e)). +Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#org2123c0f)). Proper enclosures and cabling are necessary to protect the system from capacitive and inductive interferance. @@ -123,13 +117,13 @@ The **input** impedance of voltage amplifiers are generally set to \\(50 \Omega\ The **output** (or internal) impedance of voltage amplifier is generally wanted small in order to have a small voltage drop when large current are drawn. However, for stability reasons and to avoid overshoot (due to the internal negative feedback loop), this impedance can be chosen quite large. -This is discussed in ([Spengen 2017](#orgfe834ca)). +This is discussed in ([Spengen 2017](#orgc500938)). ## Bibliography {#bibliography} -Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. . +Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. . -Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems. +Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems. -———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems. +———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems.