@@ -59,16 +59,16 @@ Typical characteristics of commercial environmental units are shown in Table [2]
## Interferometer Precision {#interferometer-precision}
-Figure [1](#orgb0b437f) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#org60051d3))).
+Figure [1](#org960bbd9) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#orgd724d07))).
-
+
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
## Sources of uncertainty {#sources-of-uncertainty}
-Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#orgd3162b8)).
+Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#orgeacbea1)).
It includes:
@@ -78,18 +78,18 @@ It includes:
- Pressure: \\(K\_P \approx 0.27 ppm hPa^{-1}\\)
- Humidity: \\(K\_{HR} \approx 0.01 ppm \% RH^{-1}\\)
- These errors can partially be compensated using an environmental unit.
-- Air turbulence (Figure [2](#org74b0d34))
+- Air turbulence (Figure [2](#orgd403994))
- Non linearity
-
+
{{< figure src="/ox-hugo/interferometers_air_turbulence.png" caption="Figure 2: Effect of air turbulences on measurement stability" >}}
## Bibliography {#bibliography}
-
Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.”
.
+Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” .
-Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. .
+Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. .
-Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:3051–63.
+Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:3051–63.
diff --git a/content/zettels/linear_guides.md b/content/zettels/linear_guides.md
new file mode 100644
index 0000000..1c272c1
--- /dev/null
+++ b/content/zettels/linear_guides.md
@@ -0,0 +1,18 @@
++++
+title = "Linear Guides"
+author = ["Thomas Dehaeze"]
+draft = false
++++
+
+Tags
+:
+
+
+## Manufacturers {#manufacturers}
+
+| Manufacturers | Country |
+|----------------------------------------------------------------------------------------------------------------------------|---------|
+| [Bosch Rexroth](https://www.boschrexroth.com/en/xc/products/product-groups/linear-motion-technology/topics/linear-guides/) | Germany |
+| [THK](https://www.thk.com/?q=eng/node/231) | Japan |
+
+<./biblio/references.bib>
diff --git a/content/zettels/linear_variable_differential_transformers.md b/content/zettels/linear_variable_differential_transformers.md
index 2fd1391..f5be7e3 100644
--- a/content/zettels/linear_variable_differential_transformers.md
+++ b/content/zettels/linear_variable_differential_transformers.md
@@ -10,10 +10,10 @@ Tags
## Manufacturers {#manufacturers}
-| Manufacturers | Links | Country |
-|---------------|--------------------------------------------------------------------------------------------|-------------|
-| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/inductive-sensor-lvdt/) | Germany |
-| Keyence | [link](https://www.keyence.eu/products/measure/contact-distance-lvdt/gt2/index.jsp) | USA |
-| Althen | [link](https://www.althensensors.com/sensors/linear-position-sensors/lvdt-sensors/) | Netherlands |
+| Manufacturers | Country |
+|-----------------------------------------------------------------------------------------------------|-------------|
+| [Micro-Epsilon](https://www.micro-epsilon.com/displacement-position-sensors/inductive-sensor-lvdt/) | Germany |
+| [Keyence](https://www.keyence.eu/products/measure/contact-distance-lvdt/gt2/index.jsp) | USA |
+| [Althen](https://www.althensensors.com/sensors/linear-position-sensors/lvdt-sensors/) | Netherlands |
<./biblio/references.bib>
diff --git a/content/zettels/piezoelectric_actuators.md b/content/zettels/piezoelectric_actuators.md
index c63dd68..f63ec5f 100644
--- a/content/zettels/piezoelectric_actuators.md
+++ b/content/zettels/piezoelectric_actuators.md
@@ -13,26 +13,26 @@ Tags
### Manufacturers {#manufacturers}
-| Manufacturers | Links | Country |
-|---------------------|----------------------------------------------------------------------------------------------------------------|-----------|
-| Cedrat | [link](http://www.cedrat-technologies.com/) | France |
-| PI | [link](https://www.physikinstrumente.com/en/) | USA |
-| Piezo System | [link](https://www.piezosystem.com/products/piezo%5Factuators/stacktypeactuators/) | Germany |
-| Noliac | [link](http://www.noliac.com/products/actuators/plate-stacks/) | Denmark |
-| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA |
-| PiezoDrive | [link](https://www.piezodrive.com/actuators/) | Australia |
-| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/10.html) | Japan |
-| CoreMorrow | [link](http://www.coremorrow.com/en/pro-9-1.html) | China |
-| PiezoData | [link](https://www.piezodata.com/piezo-stack-actuator-2/) | China |
-| Queensgate | [link](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-actuators-translators) | UK |
-| Matsusada Precision | [link](https://www.matsusada.com/product/pz/) | Japan |
-| Sinocera | [link](http://www.china-yec.net/piezoelectric-ceramics/) | China |
-| Fuji Ceramisc | [link](http://www.fujicera.co.jp/en/) | Japan |
+| Manufacturers | Country |
+|----------------------------------------------------------------------------------------------------------------------|-----------|
+| [Cedrat](http://www.cedrat-technologies.com/) | France |
+| [PI](https://www.physikinstrumente.com/en/) | USA |
+| [Piezo System](https://www.piezosystem.com/products/piezo%5Factuators/stacktypeactuators/) | Germany |
+| [Noliac](http://www.noliac.com/products/actuators/plate-stacks/) | Denmark |
+| [Thorlabs](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA |
+| [PiezoDrive](https://www.piezodrive.com/actuators/) | Australia |
+| [Mechano Transformer](http://www.mechano-transformer.com/en/products/10.html) | Japan |
+| [CoreMorrow](http://www.coremorrow.com/en/pro-9-1.html) | China |
+| [PiezoData](https://www.piezodata.com/piezo-stack-actuator-2/) | China |
+| [Queensgate](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-actuators-translators) | UK |
+| [Matsusada Precision](https://www.matsusada.com/product/pz/) | Japan |
+| [Sinocera](http://www.china-yec.net/piezoelectric-ceramics/) | China |
+| [Fuji Ceramisc](http://www.fujicera.co.jp/en/) | Japan |
### Model {#model}
-A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgba89e54)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
+A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#org8e467ce)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
@@ -49,34 +49,34 @@ with:
Some manufacturers propose "raw" plate actuators that can be used as actuator / sensors.
-| Manufacturers | Links | Country |
-|---------------|-------------------------------------------------------------------|---------|
-| Noliac | [link](http://www.noliac.com/products/actuators/plate-actuators/) | Denmak |
+| Manufacturers | Country |
+|---------------------------------------------------------------------|---------|
+| [Noliac](http://www.noliac.com/products/actuators/plate-actuators/) | Denmak |
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
-The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org2aa3084)):
+The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org5363d27)):
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
> The flatter is the actuator, the higher is the amplification.
-A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org2b7ba31)).
+A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org6963733)).
-
+
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms ling16_enhan_mathem_model_displ_amplif" >}}
-| Manufacturers | Links | Country |
-|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
-| Cedrat | [link](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) | France |
-| PiezoDrive | [link](https://www.piezodrive.com/actuators/ap-series-amplified-piezoelectric-actuators/) | Australia |
-| Dynamic-Structures | [link](https://www.dynamic-structures.com/category/piezo-actuators-stages) | USA |
-| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA |
-| Noliac | [link](http://www.noliac.com/products/actuators/amplified-actuators/) | Denmark |
-| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F5.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F3.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5Fmtkk.html) | Japan |
-| CoreMorrow | [link](http://www.coremorrow.com/en/pro-13-1.html) | China |
-| PiezoData | [link](https://www.piezodata.com/piezoelectric-actuator-amplifier/) | China |
+| Manufacturers | Country |
+|----------------------------------------------------------------------------------------------------|-----------|
+| [Cedrat](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) | France |
+| [PiezoDrive](https://www.piezodrive.com/actuators/ap-series-amplified-piezoelectric-actuators/) | Australia |
+| [Dynamic-Structures](https://www.dynamic-structures.com/category/piezo-actuators-stages) | USA |
+| [Thorlabs](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA |
+| [Noliac](http://www.noliac.com/products/actuators/amplified-actuators/) | Denmark |
+| [Mechano Transformer](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F5.html) | Japan |
+| [CoreMorrow](http://www.coremorrow.com/en/pro-13-1.html) | China |
+| [PiezoData](https://www.piezodata.com/piezoelectric-actuator-amplifier/) | China |
## Specifications {#specifications}
@@ -155,43 +155,43 @@ For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolut
### Electrical Capacitance {#electrical-capacitance}
-The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#orgb209f5d)).
+The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org8857f21)).
This is due to the fact that voltage amplifier has a limitation on the deliverable current.
[Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
-
+
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
-When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#orgff2ea88)).
+When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org35eead3)).
-
+
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
-Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgbfa1482)):
+Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgf00c960)):
\begin{equation}
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
\end{equation}
-
+
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
-For piezo actuators, force and displacement are inversely related (Figure [5](#orgbee5c88)).
+For piezo actuators, force and displacement are inversely related (Figure [5](#orgb6392e0)).
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
-
+
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
@@ -203,8 +203,8 @@ Piezoelectric actuators can be driven either using a voltage to charge converter
## Bibliography {#bibliography}
-Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. .
+Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. .
-Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. .
+Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. .
-Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
+Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
diff --git a/content/zettels/positioning_stations.md b/content/zettels/positioning_stations.md
index 5831caa..8e21e7e 100644
--- a/content/zettels/positioning_stations.md
+++ b/content/zettels/positioning_stations.md
@@ -4,23 +4,17 @@ author = ["Thomas Dehaeze"]
draft = false
+++
-Backlinks:
-
-- [Position control in lithographic equipment]({{< relref "butler11_posit_contr_lithog_equip" >}})
-- [An instrument for 3d x-ray nano-imaging]({{< relref "holler12_instr_x_ray_nano_imagin" >}})
-- [Interferometric characterization of rotation stages for x-ray nanotomography]({{< relref "stankevic17_inter_charac_rotat_stages_x_ray_nanot" >}})
-
Tags
:
## Manufacturers {#manufacturers}
-| Manufacturers | Links | Country |
-|---------------|-------------------------------------------|---------|
-| Kohzu | [link](https://www.kohzuprecision.com/i/) | Japan |
-| PI | | |
-| Attocube | | |
-| Newport | | |
+| Manufacturers | Country |
+|------------------------------------------------------------------|---------|
+| [Kohzu](https://www.kohzuprecision.com/i/) | Japan |
+| [PI](https://www.physikinstrumente.com/en/) | USA |
+| [Attocube](https://www.attocube.com/en/products/nanopositioners) | Germany |
+| [Newport](https://www.newport.com/c/manual-positioning) | |
<./biblio/references.bib>
diff --git a/content/zettels/rotation_stage.md b/content/zettels/rotation_stage.md
index 94c6566..c9271a4 100644
--- a/content/zettels/rotation_stage.md
+++ b/content/zettels/rotation_stage.md
@@ -10,9 +10,9 @@ Tags
## Manufacturers {#manufacturers}
-| Manufacturers | Links | Country |
-|-------------------|-------------------------------------------|---------|
-| Huber | [link](https://www.xhuber.com/en/) | Germany |
-| LAB Motion System | [link](http://www.leuvenairbearings.com/) | Belgium |
+| Manufacturers | Country |
+|--------------------------------------------------------|---------|
+| [Huber](https://www.xhuber.com/en/) | Germany |
+| [LAB Motion System](http://www.leuvenairbearings.com/) | Belgium |
<./biblio/references.bib>
diff --git a/content/zettels/shaker.md b/content/zettels/shaker.md
index 26dd9d1..ff9777b 100644
--- a/content/zettels/shaker.md
+++ b/content/zettels/shaker.md
@@ -4,24 +4,20 @@ author = ["Thomas Dehaeze"]
draft = false
+++
-Backlinks:
-
-- [Modal Analysis]({{< relref "modal_analysis" >}})
-
Tags
: [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
## Manufacturers {#manufacturers}
-| Manufacturers | Links | Country |
-|--------------------|----------------------------------------------------------------------------------|-----------|
-| Labsen | [link](http://labsentec.com.au/category/products/vibrationshock/) | Australia |
-| The Modal Shop | [link](http://www.modalshop.com/excitation/Electrodynamic-Exciter-Family?ID=243) | USA |
-| Deweshop | [link](https://dewesoft.com/fr/products/interfaces-and-sensors/shakers) | Slovenia |
-| Bruel and Kjaer | [link](https://www.bksv.com/en/products/shakers-and-exciters/LDS-shaker-systems) | Denmark |
-| YMC | [link](http://www.chinaymc.com/product/showproduct.php?id=78&lang=en) | China |
-| Vibration Research | [link](https://vibrationresearch.com/shakers/) | USA |
-| Sentek Dynamics | [link](https://www.sentekdynamics.com/) | USA |
+| Manufacturers | Country |
+|---------------------------------------------------------------------------------------------|-----------|
+| [Labsen](http://labsentec.com.au/category/products/vibrationshock/) | Australia |
+| [The Modal Shop](http://www.modalshop.com/excitation/Electrodynamic-Exciter-Family?ID=243) | USA |
+| [Deweshop](https://dewesoft.com/fr/products/interfaces-and-sensors/shakers) | Slovenia |
+| [Bruel and Kjaer](https://www.bksv.com/en/products/shakers-and-exciters/LDS-shaker-systems) | Denmark |
+| [YMC](http://www.chinaymc.com/product/showproduct.php?id=78&lang=en) | China |
+| [Vibration Research](https://vibrationresearch.com/shakers/) | USA |
+| [Sentek Dynamics](https://www.sentekdynamics.com/) | USA |
<./biblio/references.bib>
diff --git a/content/zettels/slip_rings.md b/content/zettels/slip_rings.md
index ab81fc9..08f0a7d 100644
--- a/content/zettels/slip_rings.md
+++ b/content/zettels/slip_rings.md
@@ -4,18 +4,14 @@ author = ["Thomas Dehaeze"]
draft = false
+++
-Backlinks:
-
-- [Rotation Stage]({{< relref "rotation_stage" >}})
-
Tags
: [Rotation Stage]({{< relref "rotation_stage" >}})
## Manufacturers {#manufacturers}
-| Manufacturers | Links | Country |
-|---------------|---------------------------------|---------|
-| Moflon | [link](https://www.moflon.com/) | China |
+| Manufacturers | Country |
+|-----------------------------------|---------|
+| [Moflon](https://www.moflon.com/) | China |
<./biblio/references.bib>
diff --git a/content/zettels/springs.md b/content/zettels/springs.md
index 3c7b879..2516a41 100644
--- a/content/zettels/springs.md
+++ b/content/zettels/springs.md
@@ -10,10 +10,13 @@ Tags
## Manufacturers {#manufacturers}
-| Manufacturers | Links | Country |
-|---------------|-----------------------------------------|---------|
-| Vanel | [link](https://www.vanel.com/index.php) | France |
-| Axcesspring | [link](https://www.acxesspring.com/) | US |
-| Raymond | [link](https://www.asraymond.com/) | US |
+| Manufacturers | Country |
+|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
+| [Vanel](https://www.vanel.com/index.php) | France |
+| [Axcesspring](https://www.acxesspring.com/) | US |
+| [Raymond](https://www.asraymond.com/) | US |
+| [Paulstra](https://www.paulstra-industry.com/en/ranges/metal-mountings/v1210) | France |
+| [Norelem](https://www.norelem.com/us/en/Products/Product-overview/Systems-and-components-for-machine-and-plant-construction/26000-Compression-springs-Elastomer-springs-Rubber-buffers-Shock-absorbers-Gas-springs.html) | France |
+| [VibraSystems](https://vibrasystems.com/elastomer-and-spring-hangers.html) | USA |
<./biblio/references.bib>
diff --git a/content/zettels/stewart_platforms.md b/content/zettels/stewart_platforms.md
index 088eb66..8cdb794 100644
--- a/content/zettels/stewart_platforms.md
+++ b/content/zettels/stewart_platforms.md
@@ -10,16 +10,16 @@ Tags
## Manufacturers {#manufacturers}
-| Manufacturers | Links | Country |
-|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
-| PI | [link](https://www.physikinstrumente.com/en/products/parallel-kinematic-hexapods/) | Germany |
-| Newport | [link](https://www.newport.com/search/?q1=hexapod%3Arelevance%3Acompatibility%3AMETRIC%3AisObsolete%3Afalse%3A-excludeCountries%3AFR%3AnpCategory%3Ahexapods&ajax&text=hexapod) | USA |
-| Symetrie | [link](https://symetrie.fr/en/hexapods-en/positioning-hexapods/) | France |
-| CSA Engineering | [link](https://www.csaengineering.com/products-services/hexapod-positioning-systems/hexapod-models.html) | USA |
-| Aerotech | [link](https://www.aerotech.com/product-catalog/hexapods.aspx) | USA |
-| SmarAct | [link](https://www.smaract.com/smarpod) | Germany |
-| Gridbots | [link](https://www.gridbots.com/hexamove.html) | India |
-| Alio Industries | [link](https://www.alioindustries.com/) | USA |
+| Manufacturers | Country |
+|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
+| [PI](https://www.physikinstrumente.com/en/products/parallel-kinematic-hexapods/) | Germany |
+| [Newport](https://www.newport.com/search/?q1=hexapod%3Arelevance%3Acompatibility%3AMETRIC%3AisObsolete%3Afalse%3A-excludeCountries%3AFR%3AnpCategory%3Ahexapods&ajax&text=hexapod) | USA |
+| [Symetrie](https://symetrie.fr/en/hexapods-en/positioning-hexapods/) | France |
+| [CSA Engineering](https://www.csaengineering.com/products-services/hexapod-positioning-systems/hexapod-models.html) | USA |
+| [Aerotech](https://www.aerotech.com/product-catalog/hexapods.aspx) | USA |
+| [SmarAct](https://www.smaract.com/smarpod) | Germany |
+| [Gridbots](https://www.gridbots.com/hexamove.html) | India |
+| [Alio Industries](https://www.alioindustries.com/) | USA |
## Stewart Platforms at ESRF {#stewart-platforms-at-esrf}
@@ -36,36 +36,36 @@ Tags
Papers by J.E. McInroy:
-- ([O’Brien et al. 1998](#orgb07a9df))
-- ([McInroy, O’Brien, and Neat 1999](#orgbcce212))
-- ([McInroy 1999](#org37afc8d))
-- ([McInroy and Hamann 2000](#org888db09))
-- ([Chen and McInroy 2000](#org86c277d))
-- ([McInroy 2002](#org748da49))
-- ([Li, Hamann, and McInroy 2001](#orgcdecf89))
-- ([Lin and McInroy 2003](#orgff3d7a7))
-- ([Jafari and McInroy 2003](#org701d32b))
-- ([Chen and McInroy 2004](#orgd01130a))
+- ([O’Brien et al. 1998](#org301ae65))
+- ([McInroy, O’Brien, and Neat 1999](#org43a0fe2))
+- ([McInroy 1999](#org41ba097))
+- ([McInroy and Hamann 2000](#org73060fc))
+- ([Chen and McInroy 2000](#org2b98584))
+- ([McInroy 2002](#org2d6222b))
+- ([Li, Hamann, and McInroy 2001](#org6598adc))
+- ([Lin and McInroy 2003](#orgfc1736f))
+- ([Jafari and McInroy 2003](#org72de1d8))
+- ([Chen and McInroy 2004](#org6bdfb26))
## Bibliography {#bibliography}
-Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. .
+Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. .
-Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. .
+Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. .
-Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. .
+Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. .
-Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. .
+Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. .
-Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. .
+Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. .
-McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. .
+McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. .
-———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. .
+———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. .
-McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. .
+McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. .
-McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. .
+McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. .
-O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. .
+O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. .
diff --git a/content/zettels/tip_tilt_mirrors.md b/content/zettels/tip_tilt_mirrors.md
index 508e838..fe30e47 100644
--- a/content/zettels/tip_tilt_mirrors.md
+++ b/content/zettels/tip_tilt_mirrors.md
@@ -10,14 +10,14 @@ Tags
## MEMS Based Tip-Tilt Mirrors {#mems-based-tip-tilt-mirrors}
-| Manufacturers | Links | Country |
-|---------------|-------------------------------------------------------------------------------------------|-------------|
-| Sercalo | [link](https://www.sercalo.com/products/mems-mirrors) | Switzerland |
-| KOC | [link](http://www.koreaoptron.co.kr/default/newproduct/mems%5F01%5F02.php) | Korea |
-| Mirrorcle | [link](https://www.mirrorcletech.com/wp/products/mems-mirrors/) | USA |
-| Preciseley | [link](https://www.preciseley.com/mems-tilting-mirror.html) | Canada |
-| Hamamatsu | [link](https://www.hamamatsu.com/eu/en/product/optical-components/mems-mirror/index.html) | Japan |
-| Maradin | [link](http://www.maradin.co.il/products/mar1100-mems-2d-laser-scanning-mirror/) | Israel |
-| Opus | [link](http://www.opusmicro.com/mems%5Fen.html) | Taiwan |
+| Manufacturers | Country |
+|------------------------------------------------------------------------------------------------|-------------|
+| [Sercalo](https://www.sercalo.com/products/mems-mirrors) | Switzerland |
+| [KOC](http://www.koreaoptron.co.kr/default/newproduct/mems%5F01%5F02.php) | Korea |
+| [Mirrorcle](https://www.mirrorcletech.com/wp/products/mems-mirrors/) | USA |
+| [Preciseley](https://www.preciseley.com/mems-tilting-mirror.html) | Canada |
+| [Hamamatsu](https://www.hamamatsu.com/eu/en/product/optical-components/mems-mirror/index.html) | Japan |
+| [Maradin](http://www.maradin.co.il/products/mar1100-mems-2d-laser-scanning-mirror/) | Israel |
+| [Opus](http://www.opusmicro.com/mems%5Fen.html) | Taiwan |
<./biblio/references.bib>
diff --git a/content/zettels/transconductance_amplifiers.md b/content/zettels/transconductance_amplifiers.md
index a04dffe..7f7e2d0 100644
--- a/content/zettels/transconductance_amplifiers.md
+++ b/content/zettels/transconductance_amplifiers.md
@@ -4,10 +4,6 @@ author = ["Thomas Dehaeze"]
draft = false
+++
-Backlinks:
-
-- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
-
Tags
: [Electronics]({{< relref "electronics" >}}), [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
@@ -18,11 +14,4 @@ A Transconductance Amplifier converts the control voltage into current with a cu
Such a converter is called a voltage-to-current converter, also named a voltage-controlled current source or _transconductance_ amplifier.
-
-## Manufacturers {#manufacturers}
-
-| Manufacturers | Links | Country |
-|---------------|-------|---------|
-| | | |
-
<./biblio/references.bib>
diff --git a/content/zettels/transimpedance_amplifiers.md b/content/zettels/transimpedance_amplifiers.md
index 39b0395..ae1c250 100644
--- a/content/zettels/transimpedance_amplifiers.md
+++ b/content/zettels/transimpedance_amplifiers.md
@@ -17,11 +17,11 @@ It is generally used to interface a sensor which outputs a current proportional
## Manufacturers {#manufacturers}
-| Manufacturers | Links | Country |
-|---------------|------------------------------------------------------------------------------------------------------|---------|
-| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
-| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
-| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) | Germany |
-| FMB Oxford | [link](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK |
+| Manufacturers | Country |
+|------------------------------------------------------------------------------------------------------------|---------|
+| [Kistler](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
+| [MMF](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
+| [Femto](https://www.femto.de/en/products/current-amplifiers.html) | Germany |
+| [FMB Oxford](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK |
<./biblio/references.bib>
diff --git a/content/zettels/voice_coil_actuators.md b/content/zettels/voice_coil_actuators.md
index 3a03fc5..31fdc38 100644
--- a/content/zettels/voice_coil_actuators.md
+++ b/content/zettels/voice_coil_actuators.md
@@ -4,12 +4,6 @@ author = ["Thomas Dehaeze"]
draft = false
+++
-Backlinks:
-
-- [Transconductance Amplifiers]({{< relref "transconductance_amplifiers" >}})
-- [Actuators]({{< relref "actuators" >}})
-- [Shaker]({{< relref "shaker" >}})
-
Tags
: [Actuators]({{< relref "actuators" >}})
@@ -22,7 +16,7 @@ Tags
## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator}
-([Schmidt, Schitter, and Rankers 2014](#org6fb1bd5))
+([Schmidt, Schitter, and Rankers 2014](#org8334379))
## Driving Electronics {#driving-electronics}
@@ -32,20 +26,20 @@ As the force is proportional to the current, a [Transconductance Amplifiers]({{<
## Manufacturers {#manufacturers}
-| Manufacturers | Links | Country |
-|----------------------|----------------------------------------------|-------------|
-| Geeplus | [link](https://www.geeplus.com/) | UK |
-| Maccon | [link](https://www.maccon.de/en.html) | Germany |
-| TDS PP | [link](https://www.tds-pp.com/en/) | Switzerland |
-| H2tech | [link](https://www.h2wtech.com/) | USA |
-| PBA Systems | [link](http://www.pbasystems.com.sg/) | Singapore |
-| Celera Motion | [link](https://www.celeramotion.com/) | USA |
-| Beikimco | [link](http://www.beikimco.com/) | USA |
-| Electromate | [link](https://www.electromate.com/) | Canada |
-| Magnetic Innovations | [link](https://www.magneticinnovations.com/) | Netherlands |
-| Monticont | [link](http://www.moticont.com/) | USA |
+| Manufacturers | Country |
+|--------------------------------------------------------------|-------------|
+| [Geeplus](https://www.geeplus.com/) | UK |
+| [Maccon](https://www.maccon.de/en.html) | Germany |
+| [TDS PP](https://www.tds-pp.com/en/) | Switzerland |
+| [H2tech](https://www.h2wtech.com/) | USA |
+| [PBA Systems](http://www.pbasystems.com.sg/) | Singapore |
+| [Celera Motion](https://www.celeramotion.com/) | USA |
+| [Beikimco](http://www.beikimco.com/) | USA |
+| [Electromate](https://www.electromate.com/) | Canada |
+| [Magnetic Innovations](https://www.magneticinnovations.com/) | Netherlands |
+| [Monticont](http://www.moticont.com/) | USA |
## Bibliography {#bibliography}
-Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
+Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
diff --git a/content/zettels/voltage_amplifier.md b/content/zettels/voltage_amplifier.md
index 6c796f4..1514f55 100644
--- a/content/zettels/voltage_amplifier.md
+++ b/content/zettels/voltage_amplifier.md
@@ -4,11 +4,6 @@ author = ["Thomas Dehaeze"]
draft = false
+++
-Backlinks:
-
-- [Signal Conditioner]({{< relref "signal_conditioner" >}})
-- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
-
Tags
: [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}), [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}}), [Electronics]({{< relref "electronics" >}})
@@ -18,30 +13,29 @@ Tags
### Manufacturers {#manufacturers}
-| Manufacturers | Links | Country |
-|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
-| Piezo Drive | [link](https://www.piezodrive.com/drivers/) | Australia |
-| Falco System | [link](https://www.falco-systems.com/products.html) | Netherlands |
-| PI | [link](https://www.pi-usa.us/en/products/controllers-drivers-motion-control-software/piezo-drivers-controllers-power-supplies-high-voltage-amplifiers/) | USA |
-| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=2085) | USA |
-| Micromega Dynamics | | Belgium |
-| Lab Systems | [link](https://www.lab-systems.com/products/amplifier/amplifier.html) | Isreal |
-| Piezomechanics | [link](https://www.piezomechanik.com/products/) | Germany |
-| Cedrat Technologies | [link](https://www.cedrat-technologies.com/en/products/piezo-controllers/electronic-amplifier-boards.html) | France |
-| Trek | [link](https://www.trekinc.com/products/HV%5FAmp.asp) | USA |
-| Madcitylabs | [link](http://www.madcitylabs.com/piezoactuators.html) | USA |
-| Piezosystem | [link](https://www.piezosystem.com/products/controller/) | Germany |
-| Matsusada Precision | [link](https://www.matsusada.com/product/pz/) | Japan |
-| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/08.html) | Japan |
+| Manufacturers | Country |
+|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
+| [Piezo Drive](https://www.piezodrive.com/drivers/) | Australia |
+| [Falco System](https://www.falco-systems.com/products.html) | Netherlands |
+| [PI](https://www.pi-usa.us/en/products/controllers-drivers-motion-control-software/piezo-drivers-controllers-power-supplies-high-voltage-amplifiers/) | USA |
+| [Thorlabs](https://www.thorlabs.com/navigation.cfm?guide%5FID=2085) | USA |
+| [Lab Systems](https://www.lab-systems.com/products/amplifier/amplifier.html) | Isreal |
+| [Piezomechanics](https://www.piezomechanik.com/products/) | Germany |
+| [Cedrat Technologies](https://www.cedrat-technologies.com/en/products/piezo-controllers/electronic-amplifier-boards.html) | France |
+| [Trek](https://www.trekinc.com/products/HV%5FAmp.asp) | USA |
+| [Madcitylabs](http://www.madcitylabs.com/piezoactuators.html) | USA |
+| [Piezosystem](https://www.piezosystem.com/products/controller/) | Germany |
+| [Matsusada Precision](https://www.matsusada.com/product/pz/) | Japan |
+| [Mechano Transformer](http://www.mechano-transformer.com/en/products/08.html) | Japan |
### Limitation in Current {#limitation-in-current}
The piezoelectric stack can be represented as a capacitance.
-Let's take a capacitance driven by a voltage amplifier (Figure [1](#org1213200)).
+Let's take a capacitance driven by a voltage amplifier (Figure [1](#org811725e)).
-
+
{{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}}
@@ -61,21 +55,21 @@ Thus, for a specified maximum current \\(I\_\text{max}\\), the "power bandwidth"
- Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency:
\\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\]
-The maximum voltage as a function of frequency is shown in Figure [2](#org5c9f5fc).
+The maximum voltage as a function of frequency is shown in Figure [2](#org8c7858f).
```matlab
-Vpkp = 170; % [V]
-Imax = 30e-3; % [A]
-C = 1e-6; % [F]
+ Vpkp = 170; % [V]
+ Imax = 30e-3; % [A]
+ C = 1e-6; % [F]
-(1/(2*pi))*Imax/(C * Vpkp/2) % Fmax [Hz]
+ (1/(2*pi))*Imax/(C * Vpkp/2) % Fmax [Hz]
```
```text
56.172
```
-
+
{{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}}
@@ -111,7 +105,7 @@ This can pose several problems:
### Noise {#noise}
-Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#org0688a0e)).
+Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#org2123c0f)).
Proper enclosures and cabling are necessary to protect the system from capacitive and inductive interferance.
@@ -123,13 +117,13 @@ The **input** impedance of voltage amplifiers are generally set to \\(50 \Omega\
The **output** (or internal) impedance of voltage amplifier is generally wanted small in order to have a small voltage drop when large current are drawn.
However, for stability reasons and to avoid overshoot (due to the internal negative feedback loop), this impedance can be chosen quite large.
-This is discussed in ([Spengen 2017](#orgfe834ca)).
+This is discussed in ([Spengen 2017](#orgc500938)).
## Bibliography {#bibliography}
-Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. .
+Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. .
-Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems.
+Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems.
-———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems.
+———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems.