Update Content - 2021-03-14
This commit is contained in:
parent
bc7e4c11cd
commit
ad6093b3ff
@ -10,9 +10,9 @@ Tags
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------|-------------------------------|----------|
|
|-----------------------------------|----------|
|
||||||
| Dewesoft | [link](https://dewesoft.com/) | Slovenia |
|
| [Dewesoft](https://dewesoft.com/) | Slovenia |
|
||||||
| Oros | [link](https://www.oros.com/) | France |
|
| [Oros](https://www.oros.com/) | France |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -10,18 +10,18 @@ Tags
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|-------------------|----------------------------------------------------------------------------------|-------------|
|
|-----------------------------------------------------------------------------------------------|-------------|
|
||||||
| TMC | [link](https://www.techmfg.com/) | USA |
|
| [TMC](https://www.techmfg.com/) | USA |
|
||||||
| Newport | [link](https://www.newport.com/c/optical-tables-%26-isolation-systems) | USA |
|
| [Newport](https://www.newport.com/c/optical-tables-%26-isolation-systems) | USA |
|
||||||
| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=42) | USA |
|
| [Thorlabs](https://www.thorlabs.com/navigation.cfm?guide%5FID=42) | USA |
|
||||||
| IDE | [link](https://www.ideworld.com/en/active%5Fvibration%5Fisolation.html) | Germany |
|
| [IDE](https://www.ideworld.com/en/active%5Fvibration%5Fisolation.html) | Germany |
|
||||||
| Harvard Apparatus | [link](https://www.warneronline.com/labmate-vibraplane-workstations-9100-series) | USA |
|
| [Harvard Apparatus](https://www.warneronline.com/labmate-vibraplane-workstations-9100-series) | USA |
|
||||||
| Herzan | [link](https://www.herzan.com/products/active-vibration-control/avi-series.html) | USA |
|
| [Herzan](https://www.herzan.com/products/active-vibration-control/avi-series.html) | USA |
|
||||||
| Standa | [link](http://www.standa.lt/products/catalog/optical%5Ftables?item=335) | Lithuania |
|
| [Standa](http://www.standa.lt/products/catalog/optical%5Ftables?item=335) | Lithuania |
|
||||||
| Table Stable | [link](http://www.tablestable.com/en/products/list/2/) | Switzerland |
|
| [Table Stable](http://www.tablestable.com/en/products/list/2/) | Switzerland |
|
||||||
| Accurion | [link](https://www.halcyonics.com/active-vibration-isolation-products) | Germany |
|
| [Accurion](https://www.halcyonics.com/active-vibration-isolation-products) | Germany |
|
||||||
| Vibiso | [link](https://vibiso.com/?page%5Fid=3433) | USA |
|
| [Vibiso](https://vibiso.com/?page%5Fid=3433) | USA |
|
||||||
|
|
||||||
|
|
||||||
## Vibration Isolating Pads {#vibration-isolating-pads}
|
## Vibration Isolating Pads {#vibration-isolating-pads}
|
||||||
|
@ -23,9 +23,9 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati
|
|||||||
Interestingly, the noise amplitude is uniformly distributed.
|
Interestingly, the noise amplitude is uniformly distributed.
|
||||||
|
|
||||||
The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., it’s a uniform distribution).
|
The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., it’s a uniform distribution).
|
||||||
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#orgf547b74)).
|
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org2f8924a)).
|
||||||
|
|
||||||
<a id="orgf547b74"></a>
|
<a id="org2f8924a"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}}
|
{{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}}
|
||||||
|
|
||||||
@ -74,4 +74,6 @@ The quantization is:
|
|||||||
|
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
{{< youtube b9lxtOJj3yU >}}
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -4,10 +4,6 @@ author = ["Thomas Dehaeze"]
|
|||||||
draft = false
|
draft = false
|
||||||
+++
|
+++
|
||||||
|
|
||||||
Backlinks:
|
|
||||||
|
|
||||||
- [Connectors]({{< relref "connectors" >}})
|
|
||||||
|
|
||||||
Tags
|
Tags
|
||||||
: [Connectors]({{< relref "connectors" >}})
|
: [Connectors]({{< relref "connectors" >}})
|
||||||
|
|
||||||
@ -21,12 +17,12 @@ Tags
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------|------------------------------------------------|-------------|
|
|-----------------------------------------------------|-------------|
|
||||||
| LEMO | [link](https://www.lemo.com/en) | Switzerland |
|
| [LEMO](https://www.lemo.com/en) | Switzerland |
|
||||||
| Helukabel | [link](https://www.helukabel.com/fr/home.html) | Germany |
|
| [Helukabel](https://www.helukabel.com/fr/home.html) | Germany |
|
||||||
| Belden | [link](https://www.belden.com/) | USA |
|
| [Belden](https://www.belden.com/) | USA |
|
||||||
| Alphawire | [link](https://www.alphawire.com/) | USA |
|
| [Alphawire](https://www.alphawire.com/) | USA |
|
||||||
|
|
||||||
|
|
||||||
## Software {#software}
|
## Software {#software}
|
||||||
|
@ -16,17 +16,17 @@ Tags
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|----------------|----------------------------------------------------------------------------------------------------|-------------|
|
|--------------------------------------------------------------------------------------------------------|-------------|
|
||||||
| Micro Sense | [link](http://www.microsense.net/products-position-sensors.htm) | USA |
|
| [Micro Sense](http://www.microsense.net/products-position-sensors.htm) | USA |
|
||||||
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/capacitive-sensor/) | Germany |
|
| [Micro-Epsilon](https://www.micro-epsilon.com/displacement-position-sensors/capacitive-sensor/) | Germany |
|
||||||
| PI | [link](https://www.physikinstrumente.com/en/technology/sensor-technologies/capacitive-sensors/) | Germany |
|
| [PI](https://www.physikinstrumente.com/en/technology/sensor-technologies/capacitive-sensors/) | Germany |
|
||||||
| Unipulse | [link](https://www.unipulse.com/product/ps-ia/) | Japan |
|
| [Unipulse](https://www.unipulse.com/product/ps-ia/) | Japan |
|
||||||
| Lion-Precision | [link](https://www.lionprecision.com/products/capacitive-sensors) | USA |
|
| [Lion-Precision](https://www.lionprecision.com/products/capacitive-sensors) | USA |
|
||||||
| Fogale | [link](http://www.fogale.fr/brochures.html) | USA |
|
| [Fogale](http://www.fogale.fr/brochures.html) | USA |
|
||||||
| Queensgate | [link](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-sensors) | UK |
|
| [Queensgate](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-sensors) | UK |
|
||||||
| Capacitec | [link](https://www.capacitec.com/Displacement-Sensing-Systems) | USA |
|
| [Capacitec](https://www.capacitec.com/Displacement-Sensing-Systems) | USA |
|
||||||
| MTIinstruments | [link](https://www.mtiinstruments.com/products/non-contact-measurement/capacitance-sensors/) | USA |
|
| [MTIinstruments](https://www.mtiinstruments.com/products/non-contact-measurement/capacitance-sensors/) | USA |
|
||||||
| Althen | [link](https://www.althensensors.com/sensors/linear-position-sensors/capacitive-position-sensors/) | Netherlands |
|
| [Althen](https://www.althensensors.com/sensors/linear-position-sensors/capacitive-position-sensors/) | Netherlands |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -17,38 +17,38 @@ This can be typically used to interface with piezoelectric sensors.
|
|||||||
|
|
||||||
## Basic Circuit {#basic-circuit}
|
## Basic Circuit {#basic-circuit}
|
||||||
|
|
||||||
Two basic circuits of charge amplifiers are shown in Figure [1](#org3aa62a6) (taken from ([Fleming 2010](#orgd8b7cb4))) and Figure [2](#org18afeb8) (taken from ([Schmidt, Schitter, and Rankers 2014](#orga9d9a6b)))
|
Two basic circuits of charge amplifiers are shown in Figure [1](#org4fccf5a) (taken from ([Fleming 2010](#org17ae69b))) and Figure [2](#orgad97f51) (taken from ([Schmidt, Schitter, and Rankers 2014](#orge90efed)))
|
||||||
|
|
||||||
<a id="org3aa62a6"></a>
|
<a id="org4fccf5a"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/charge_amplifier_circuit.png" caption="Figure 1: Electrical model of a piezoelectric force sensor is shown in gray. The op-amp charge amplifier is shown on the right. The output voltage \\(V\_s\\) equal to \\(-q/C\_s\\)" >}}
|
{{< figure src="/ox-hugo/charge_amplifier_circuit.png" caption="Figure 1: Electrical model of a piezoelectric force sensor is shown in gray. The op-amp charge amplifier is shown on the right. The output voltage \\(V\_s\\) equal to \\(-q/C\_s\\)" >}}
|
||||||
|
|
||||||
<a id="org18afeb8"></a>
|
<a id="orgad97f51"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/charge_amplifier_circuit_bis.png" caption="Figure 2: A piezoelectric accelerometer with a charge amplifier as signal conditioning element" >}}
|
{{< figure src="/ox-hugo/charge_amplifier_circuit_bis.png" caption="Figure 2: A piezoelectric accelerometer with a charge amplifier as signal conditioning element" >}}
|
||||||
|
|
||||||
The input impedance of the charge amplifier is very small (unlike when using a voltage amplifier).
|
The input impedance of the charge amplifier is very small (unlike when using a voltage amplifier).
|
||||||
|
|
||||||
The gain of the charge amplified (Figure [1](#org3aa62a6)) is equal to:
|
The gain of the charge amplified (Figure [1](#org4fccf5a)) is equal to:
|
||||||
\\[ \frac{V\_s}{q} = \frac{-1}{C\_s} \\]
|
\\[ \frac{V\_s}{q} = \frac{-1}{C\_s} \\]
|
||||||
|
|
||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|
|
|----------------------------------------------------------------------------------------------------------------------------------------------|---------|
|
||||||
| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA |
|
| [PCB](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA |
|
||||||
| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany |
|
| [HBM](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany |
|
||||||
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
|
| [Kistler](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
|
||||||
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
|
| [MMF](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
|
||||||
| DJB | [link](https://www.djbinstruments.com/products/instrumentation/view/9-Channel-Charge-Voltage-Amplifier-IEPE-Signal-Conditioning-Rack-Mounted) | UK |
|
| [DJB](https://www.djbinstruments.com/products/instrumentation/view/9-Channel-Charge-Voltage-Amplifier-IEPE-Signal-Conditioning-Rack-Mounted) | UK |
|
||||||
| MTI Instruments | [link](https://www.mtiinstruments.com/products/turbine-balancing-vibration-analysis/charge-amplifiers/ca1800/) | USA |
|
| [MTI Instruments](https://www.mtiinstruments.com/products/turbine-balancing-vibration-analysis/charge-amplifiers/ca1800/) | USA |
|
||||||
| Sinocera | [link](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China |
|
| [Sinocera](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China |
|
||||||
| L-Card | [link](https://en.lcard.ru/products/accesories/le-41) | Rusia |
|
| [L-Card](https://en.lcard.ru/products/accesories/le-41) | Rusia |
|
||||||
|
|
||||||
|
|
||||||
## Bibliography {#bibliography}
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
<a id="orgd8b7cb4"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
<a id="org17ae69b"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||||
|
|
||||||
<a id="orga9d9a6b"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
<a id="orge90efed"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||||
|
@ -10,18 +10,18 @@ Tags
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------|-------------------------------------------------|-------------|
|
|----------------------------------------------------|-------------|
|
||||||
| LEMO | [link](https://www.lemo.com/en) | Switzerland |
|
| [LEMO](https://www.lemo.com/en) | Switzerland |
|
||||||
| Fischer | [link](https://www.fischerconnectors.com/uk/en) | Switzerland |
|
| [Fischer](https://www.fischerconnectors.com/uk/en) | Switzerland |
|
||||||
| EDO | [link](https://www.odu-connectors.com/) | Germany |
|
| [EDO](https://www.odu-connectors.com/) | Germany |
|
||||||
|
|
||||||
|
|
||||||
## BNC {#bnc}
|
## BNC {#bnc}
|
||||||
|
|
||||||
BNC connectors can have an impedance of 50Ohms or 75Ohms as shown in Figure [1](#orgada3acd).
|
BNC connectors can have an impedance of 50Ohms or 75Ohms as shown in Figure [1](#orgfe209b2).
|
||||||
|
|
||||||
<a id="orgada3acd"></a>
|
<a id="orgfe209b2"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/bnc_50_75_ohms.jpg" caption="Figure 1: 75Ohms and 50Ohms BNC connectors" >}}
|
{{< figure src="/ox-hugo/bnc_50_75_ohms.jpg" caption="Figure 1: 75Ohms and 50Ohms BNC connectors" >}}
|
||||||
|
|
||||||
|
@ -10,13 +10,13 @@ Tags
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|----------------|---------------------------------------------------------------------------------------------|-------------|
|
|---------------------------------------------------------------------------------------------------|-------------|
|
||||||
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/) | Germany |
|
| [Micro-Epsilon](https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/) | Germany |
|
||||||
| Lion Precision | [link](https://www.lionprecision.com/products/eddy-current-sensors) | USA |
|
| [Lion Precision](https://www.lionprecision.com/products/eddy-current-sensors) | USA |
|
||||||
| Cedrat | [link](https://www.cedrat-technologies.com/en/products/sensors/eddy-current-sensors.html) | France |
|
| [Cedrat](https://www.cedrat-technologies.com/en/products/sensors/eddy-current-sensors.html) | France |
|
||||||
| Kaman | [link](https://www.kamansensors.com/product/smt-9700/) | USA |
|
| [Kaman](https://www.kamansensors.com/product/smt-9700/) | USA |
|
||||||
| Keyence | [link](https://www.keyence.com/ss/products/measure/measurement%5Flibrary/type/inductive/) | USA |
|
| [Keyence](https://www.keyence.com/ss/products/measure/measurement%5Flibrary/type/inductive/) | USA |
|
||||||
| Althen | [link](https://www.althensensors.com/sensors/linear-position-sensors/eddy-current-sensors/) | Netherlands |
|
| [Althen](https://www.althensensors.com/sensors/linear-position-sensors/eddy-current-sensors/) | Netherlands |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -12,11 +12,11 @@ There are two main types of encoders: optical encoders, and magnetic encoders.
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|----------------|-----------------------------------------------------------------------|---------|
|
|---------------------------------------------------------------------------------|---------|
|
||||||
| Heidenhain | [link](https://www.heidenhain.com/en%5FUS/products/linear-encoders/) | Germany |
|
| [Heidenhain](https://www.heidenhain.com/en%5FUS/products/linear-encoders/) | Germany |
|
||||||
| MicroE Systems | [link](https://www.celeramotion.com/microe/products/linear-encoders/) | USA |
|
| [MicroE Systems](https://www.celeramotion.com/microe/products/linear-encoders/) | USA |
|
||||||
| Renishaw | [link](https://www.renishaw.com/en/browse-encoder-range--6440) | UK |
|
| [Renishaw](https://www.renishaw.com/en/browse-encoder-range--6440) | UK |
|
||||||
| Celera Motion | [link](https://www.celeramotion.com/microe/) | USA |
|
| [Celera Motion](https://www.celeramotion.com/microe/) | USA |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -17,9 +17,9 @@ There are two main technique for force sensors:
|
|||||||
|
|
||||||
The choice between the two is usually based on whether the measurement is static (strain gauge) or dynamics (piezoelectric).
|
The choice between the two is usually based on whether the measurement is static (strain gauge) or dynamics (piezoelectric).
|
||||||
|
|
||||||
Main differences between the two are shown in Figure [1](#org40d75e8).
|
Main differences between the two are shown in Figure [1](#org921c881).
|
||||||
|
|
||||||
<a id="org40d75e8"></a>
|
<a id="org921c881"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/force_sensor_piezo_vs_strain_gauge.png" caption="Figure 1: Piezoelectric Force sensor VS Strain Gauge Force sensor" >}}
|
{{< figure src="/ox-hugo/force_sensor_piezo_vs_strain_gauge.png" caption="Figure 1: Piezoelectric Force sensor VS Strain Gauge Force sensor" >}}
|
||||||
|
|
||||||
@ -29,18 +29,18 @@ Main differences between the two are shown in Figure [1](#org40d75e8).
|
|||||||
|
|
||||||
### Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor}
|
### Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor}
|
||||||
|
|
||||||
An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#orgc01e36f)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org26fffc0)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||||
|
|
||||||
|
|
||||||
### Manufacturers {#manufacturers}
|
### Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------|------------------------------------------------------------------------------------------------|---------|
|
|---------------------------------------------------------------------------------------------------|---------|
|
||||||
| PCB | [link](https://www.pcb.com/products/productfinder.aspx?tx=17) | USA |
|
| [PCB](https://www.pcb.com/products/productfinder.aspx?tx=17) | USA |
|
||||||
| HBM | [link](https://www.hbm.com/en/6107/force-sensors-with-flange-mounting/) | Germany |
|
| [HBM](https://www.hbm.com/en/6107/force-sensors-with-flange-mounting/) | Germany |
|
||||||
| Kistler | [link](https://www.kistler.com/fr/produits/composants/capteurs-de-force/?pfv%5Fmetrics=metric) | Swiss |
|
| [Kistler](https://www.kistler.com/fr/produits/composants/capteurs-de-force/?pfv%5Fmetrics=metric) | Swiss |
|
||||||
| MMF | [link](https://www.mmf.de/force%5Ftransducers.htm) | Germany |
|
| [MMF](https://www.mmf.de/force%5Ftransducers.htm) | Germany |
|
||||||
| Sinocera | [link](http://www.china-yec.net/sensors/) | China |
|
| [Sinocera](http://www.china-yec.net/sensors/) | China |
|
||||||
|
|
||||||
|
|
||||||
### Signal Conditioner {#signal-conditioner}
|
### Signal Conditioner {#signal-conditioner}
|
||||||
@ -65,16 +65,16 @@ However, if a charge conditioner is used, the signal will be doubled.
|
|||||||
|
|
||||||
### Manufacturers {#manufacturers}
|
### Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------|----------------------------------------------------------------------------|----------------|
|
|--------------------------------------------------------------------------------|----------------|
|
||||||
| Sensel | [link](https://www.sensel-measurement.fr/en/3-load-cell) | France |
|
| [Sensel](https://www.sensel-measurement.fr/en/3-load-cell) | France |
|
||||||
| Omega | [link](https://www.omega.com/en-us/resources/load-cells) | United Kingdom |
|
| [Omega](https://www.omega.com/en-us/resources/load-cells) | United Kingdom |
|
||||||
| Megatron | [link](https://www.megatron.de/en/category/load-cells.html) | Germany |
|
| [Megatron](https://www.megatron.de/en/category/load-cells.html) | Germany |
|
||||||
| PCB | [link](https://www.pcb.com/products/product-finder?tx=19) | USA |
|
| [PCB](https://www.pcb.com/products/product-finder?tx=19) | USA |
|
||||||
| Interface | [link](https://quickship.interfaceforce.com/product-category/load-cells/) | USA |
|
| [Interface](https://quickship.interfaceforce.com/product-category/load-cells/) | USA |
|
||||||
| Althen | [link](https://www.althensensors.com/sensors/weighing-sensors-load-cells/) | Netherlands |
|
| [Althen](https://www.althensensors.com/sensors/weighing-sensors-load-cells/) | Netherlands |
|
||||||
|
|
||||||
|
|
||||||
## Bibliography {#bibliography}
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
<a id="orgc01e36f"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
<a id="org26fffc0"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||||
|
@ -7,6 +7,11 @@ draft = false
|
|||||||
Tags
|
Tags
|
||||||
:
|
:
|
||||||
|
|
||||||
<https://www.microplan-group.com/fr/>
|
|
||||||
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
|
| Manufacturers | Country |
|
||||||
|
|--------------------------------------------------|---------|
|
||||||
|
| [Microplan](https://www.microplan-group.com/fr/) | France |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -10,55 +10,55 @@ Tags
|
|||||||
|
|
||||||
## Review of Absolute (inertial) Position Sensors {#review-of-absolute--inertial--position-sensors}
|
## Review of Absolute (inertial) Position Sensors {#review-of-absolute--inertial--position-sensors}
|
||||||
|
|
||||||
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#orgf3cd363))
|
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#orgb31e055))
|
||||||
- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#orgf2d375a))
|
- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#orgcd873cb))
|
||||||
|
|
||||||
<a id="org62aabc7"></a>
|
<a id="org392ac3e"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}}
|
{{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}}
|
||||||
|
|
||||||
|
|
||||||
## Accelerometers {#accelerometers}
|
## Accelerometers {#accelerometers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|--------------------|---------------------------------------------------------------------------------------------|-------------|
|
|------------------------------------------------------------------------------------------------|-------------|
|
||||||
| Micromega Dynamics | [link](https://micromega-dynamics.com/products/) | Belgium |
|
| [Micromega Dynamics](https://micromega-dynamics.com/products/) | Belgium |
|
||||||
| MMF | [link](https://www.mmf.de/seismic%5Faccelerometers.htm) | Germany |
|
| [MMF](https://www.mmf.de/seismic%5Faccelerometers.htm) | Germany |
|
||||||
| PCB | [link](https://www.pcb.com/products/productfinder.aspx?tx=14) | USA |
|
| [PCB](https://www.pcb.com/products/productfinder.aspx?tx=14) | USA |
|
||||||
| Guralp | [link](https://www.guralp.com/products/surface) | UK |
|
| [Guralp](https://www.guralp.com/products/surface) | UK |
|
||||||
| Nanometric | [link](https://www.nanometrics.ca/products/accelerometers) | Canada |
|
| [Nanometric](https://www.nanometrics.ca/products/accelerometers) | Canada |
|
||||||
| Kistler | [link](https://www.kistler.com/fr/produits/composants/accelerometres/?pfv%5Fmetrics=metric) | Swiss |
|
| [Kistler](https://www.kistler.com/fr/produits/composants/accelerometres/?pfv%5Fmetrics=metric) | Swiss |
|
||||||
| Beran | [link](https://www.beraninstruments.com/Products/Vibration-Transducers-and-Cabling) | UK |
|
| [Beran](https://www.beraninstruments.com/Products/Vibration-Transducers-and-Cabling) | UK |
|
||||||
| Althen | [link](https://www.althensensors.com/fr/capteurs/capteurs-d-acceleration/) | Netherlands |
|
| [Althen](https://www.althensensors.com/fr/capteurs/capteurs-d-acceleration/) | Netherlands |
|
||||||
|
|
||||||
Wireless Accelerometers
|
Wireless Accelerometers
|
||||||
|
|
||||||
- <https://micromega-dynamics.com/products/recovib/miniature-vibration-recorder/>
|
- <https://micromega-dynamics.com/products/recovib/miniature-vibration-recorder/>
|
||||||
|
|
||||||
<a id="org3ec0b63"></a>
|
<a id="org4561c6d"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="Figure 2: Characteristics of commercially available accelerometers <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">collette11_review</a></sup>" >}}
|
{{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="Figure 2: Characteristics of commercially available accelerometers <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">collette11_review</a></sup>" >}}
|
||||||
|
|
||||||
|
|
||||||
## Geophones and Seismometers {#geophones-and-seismometers}
|
## Geophones and Seismometers {#geophones-and-seismometers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|-----------------------|---------------------------------------------------------------------------------------------|---------|
|
|--------------------------------------------------------------------------------------------|---------|
|
||||||
| Sercel | [link](http://www.sercel.com/products/Pages/seismometers.aspx) | France |
|
| [Sercel](http://www.sercel.com/products/Pages/seismometers.aspx) | France |
|
||||||
| Wilcoxon | [link](https://wilcoxon.com/) | USA |
|
| [Wilcoxon](https://wilcoxon.com/) | USA |
|
||||||
| Geospace technologies | [link](https://www.geospace.com/sensors/#) | USA |
|
| [Geospace technologies](https://www.geospace.com/sensors/#) | USA |
|
||||||
| Ion | [link](https://www.iongeo.com/technologies/hardware/seismic-equipment/precision-geophones/) | USA |
|
| [Ion](https://www.iongeo.com/technologies/hardware/seismic-equipment/precision-geophones/) | USA |
|
||||||
| Streckeisen | [link](https://streckeisen.swiss/en/products/overview/) | Swiss |
|
| [Streckeisen](https://streckeisen.swiss/en/products/overview/) | Swiss |
|
||||||
| Guralp | [link](https://www.guralp.com/products/surface) | UK |
|
| [Guralp](https://www.guralp.com/products/surface) | UK |
|
||||||
| Nanometric | [link](https://www.nanometrics.ca/products/seismometers) | Canada |
|
| [Nanometric](https://www.nanometrics.ca/products/seismometers) | Canada |
|
||||||
|
|
||||||
<a id="orgbe921a0"></a>
|
<a id="orgd74071e"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="Figure 3: Characteristics of commercially available geophones <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">collette11_review</a></sup>" >}}
|
{{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="Figure 3: Characteristics of commercially available geophones <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">collette11_review</a></sup>" >}}
|
||||||
|
|
||||||
|
|
||||||
## Bibliography {#bibliography}
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
<a id="orgf3cd363"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):1289–1300. <https://doi.org/10.1785/0120110223>.
|
<a id="orgb31e055"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):1289–1300. <https://doi.org/10.1785/0120110223>.
|
||||||
|
|
||||||
<a id="orgf2d375a"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_.
|
<a id="orgcd873cb"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_.
|
||||||
|
@ -12,10 +12,10 @@ And instrumented hammer consist of a regular hammer with a force sensor fixed at
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------|---------------------------------------------------------------------------------------------------------------|----------|
|
|--------------------------------------------------------------------------------------------------------------|----------|
|
||||||
| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/impact-hammers-electrodynamic-shakers/impact-hammers) | USA |
|
| [PCB](https://www.pcb.com/sensors-for-test-measurement/impact-hammers-electrodynamic-shakers/impact-hammers) | USA |
|
||||||
| DJB | [link](https://www.djbinstruments.com/products/instrumentation/impact-hammers) | UK |
|
| [DJB](https://www.djbinstruments.com/products/instrumentation/impact-hammers) | UK |
|
||||||
| Dewesoft | [link](https://dewesoft.com/fr/products/interfaces-and-sensors/accelerometers-and-modal-hammers) | Slovenia |
|
| [Dewesoft](https://dewesoft.com/fr/products/interfaces-and-sensors/accelerometers-and-modal-hammers) | Slovenia |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -10,21 +10,21 @@ Tags
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------|----------------------------------------------------------------------------------------------------------|-------------|
|
|--------------------------------------------------------------------------------------------------------------|-------------|
|
||||||
| Attocube | [link](http://www.attocube.com/) | Germany |
|
| [Attocube](http://www.attocube.com/) | Germany |
|
||||||
| Zygo | [link](https://www.zygo.com/?/met/markets/stageposition/zmi/) | USA |
|
| [Zygo](https://www.zygo.com/?/met/markets/stageposition/zmi/) | USA |
|
||||||
| Smaract | [link](https://www.smaract.com/interferometry) | Germany |
|
| [Smaract](https://www.smaract.com/interferometry) | Germany |
|
||||||
| Qutools | [link](https://www.qutools.com/qudis/) | Germany |
|
| [Qutools](https://www.qutools.com/qudis/) | Germany |
|
||||||
| Renishaw | [link](https://www.renishaw.com/en/fibre-optic-laser-encoder-products--6594) | UK |
|
| [Renishaw](https://www.renishaw.com/en/fibre-optic-laser-encoder-products--6594) | UK |
|
||||||
| Sios | [link](https://sios-de.com/products/length-measurement/laser-interferometer/) | Germany |
|
| [Sios](https://sios-de.com/products/length-measurement/laser-interferometer/) | Germany |
|
||||||
| Keysight | [link](https://www.keysight.com/en/pc-1000000393%3Aepsg%3Apgr/laser-heads?nid=-536900395.0&cc=FR&lc=fre) | USA |
|
| [Keysight](https://www.keysight.com/en/pc-1000000393%3Aepsg%3Apgr/laser-heads?nid=-536900395.0&cc=FR&lc=fre) | USA |
|
||||||
| Optics11 | [link](https://optics11.com/) | Netherlands |
|
| [Optics11](https://optics11.com/) | Netherlands |
|
||||||
|
|
||||||
|
|
||||||
## Effect of Refractive Index - Environmental Units {#effect-of-refractive-index-environmental-units}
|
## Effect of Refractive Index - Environmental Units {#effect-of-refractive-index-environmental-units}
|
||||||
|
|
||||||
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#org7c4b7ca))).
|
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#org68c8bbb))).
|
||||||
|
|
||||||
<a id="table--tab:index-air"></a>
|
<a id="table--tab:index-air"></a>
|
||||||
<div class="table-caption">
|
<div class="table-caption">
|
||||||
@ -59,16 +59,16 @@ Typical characteristics of commercial environmental units are shown in Table [2]
|
|||||||
|
|
||||||
## Interferometer Precision {#interferometer-precision}
|
## Interferometer Precision {#interferometer-precision}
|
||||||
|
|
||||||
Figure [1](#orgb0b437f) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#org60051d3))).
|
Figure [1](#org960bbd9) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#orgd724d07))).
|
||||||
|
|
||||||
<a id="orgb0b437f"></a>
|
<a id="org960bbd9"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
|
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
|
||||||
|
|
||||||
|
|
||||||
## Sources of uncertainty {#sources-of-uncertainty}
|
## Sources of uncertainty {#sources-of-uncertainty}
|
||||||
|
|
||||||
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#orgd3162b8)).
|
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#orgeacbea1)).
|
||||||
|
|
||||||
It includes:
|
It includes:
|
||||||
|
|
||||||
@ -78,18 +78,18 @@ It includes:
|
|||||||
- Pressure: \\(K\_P \approx 0.27 ppm hPa^{-1}\\)
|
- Pressure: \\(K\_P \approx 0.27 ppm hPa^{-1}\\)
|
||||||
- Humidity: \\(K\_{HR} \approx 0.01 ppm \% RH^{-1}\\)
|
- Humidity: \\(K\_{HR} \approx 0.01 ppm \% RH^{-1}\\)
|
||||||
- These errors can partially be compensated using an environmental unit.
|
- These errors can partially be compensated using an environmental unit.
|
||||||
- Air turbulence (Figure [2](#org74b0d34))
|
- Air turbulence (Figure [2](#orgd403994))
|
||||||
- Non linearity
|
- Non linearity
|
||||||
|
|
||||||
<a id="org74b0d34"></a>
|
<a id="orgd403994"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/interferometers_air_turbulence.png" caption="Figure 2: Effect of air turbulences on measurement stability" >}}
|
{{< figure src="/ox-hugo/interferometers_air_turbulence.png" caption="Figure 2: Effect of air turbulences on measurement stability" >}}
|
||||||
|
|
||||||
|
|
||||||
## Bibliography {#bibliography}
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
<a id="orgd3162b8"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
|
<a id="orgeacbea1"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
|
||||||
|
|
||||||
<a id="org60051d3"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
<a id="orgd724d07"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
||||||
|
|
||||||
<a id="org7c4b7ca"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:3051–63.
|
<a id="org68c8bbb"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:3051–63.
|
||||||
|
18
content/zettels/linear_guides.md
Normal file
18
content/zettels/linear_guides.md
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
+++
|
||||||
|
title = "Linear Guides"
|
||||||
|
author = ["Thomas Dehaeze"]
|
||||||
|
draft = false
|
||||||
|
+++
|
||||||
|
|
||||||
|
Tags
|
||||||
|
:
|
||||||
|
|
||||||
|
|
||||||
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
|
| Manufacturers | Country |
|
||||||
|
|----------------------------------------------------------------------------------------------------------------------------|---------|
|
||||||
|
| [Bosch Rexroth](https://www.boschrexroth.com/en/xc/products/product-groups/linear-motion-technology/topics/linear-guides/) | Germany |
|
||||||
|
| [THK](https://www.thk.com/?q=eng/node/231) | Japan |
|
||||||
|
|
||||||
|
<./biblio/references.bib>
|
@ -10,10 +10,10 @@ Tags
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------|--------------------------------------------------------------------------------------------|-------------|
|
|-----------------------------------------------------------------------------------------------------|-------------|
|
||||||
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/inductive-sensor-lvdt/) | Germany |
|
| [Micro-Epsilon](https://www.micro-epsilon.com/displacement-position-sensors/inductive-sensor-lvdt/) | Germany |
|
||||||
| Keyence | [link](https://www.keyence.eu/products/measure/contact-distance-lvdt/gt2/index.jsp) | USA |
|
| [Keyence](https://www.keyence.eu/products/measure/contact-distance-lvdt/gt2/index.jsp) | USA |
|
||||||
| Althen | [link](https://www.althensensors.com/sensors/linear-position-sensors/lvdt-sensors/) | Netherlands |
|
| [Althen](https://www.althensensors.com/sensors/linear-position-sensors/lvdt-sensors/) | Netherlands |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -13,26 +13,26 @@ Tags
|
|||||||
|
|
||||||
### Manufacturers {#manufacturers}
|
### Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------------|----------------------------------------------------------------------------------------------------------------|-----------|
|
|----------------------------------------------------------------------------------------------------------------------|-----------|
|
||||||
| Cedrat | [link](http://www.cedrat-technologies.com/) | France |
|
| [Cedrat](http://www.cedrat-technologies.com/) | France |
|
||||||
| PI | [link](https://www.physikinstrumente.com/en/) | USA |
|
| [PI](https://www.physikinstrumente.com/en/) | USA |
|
||||||
| Piezo System | [link](https://www.piezosystem.com/products/piezo%5Factuators/stacktypeactuators/) | Germany |
|
| [Piezo System](https://www.piezosystem.com/products/piezo%5Factuators/stacktypeactuators/) | Germany |
|
||||||
| Noliac | [link](http://www.noliac.com/products/actuators/plate-stacks/) | Denmark |
|
| [Noliac](http://www.noliac.com/products/actuators/plate-stacks/) | Denmark |
|
||||||
| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA |
|
| [Thorlabs](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA |
|
||||||
| PiezoDrive | [link](https://www.piezodrive.com/actuators/) | Australia |
|
| [PiezoDrive](https://www.piezodrive.com/actuators/) | Australia |
|
||||||
| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/10.html) | Japan |
|
| [Mechano Transformer](http://www.mechano-transformer.com/en/products/10.html) | Japan |
|
||||||
| CoreMorrow | [link](http://www.coremorrow.com/en/pro-9-1.html) | China |
|
| [CoreMorrow](http://www.coremorrow.com/en/pro-9-1.html) | China |
|
||||||
| PiezoData | [link](https://www.piezodata.com/piezo-stack-actuator-2/) | China |
|
| [PiezoData](https://www.piezodata.com/piezo-stack-actuator-2/) | China |
|
||||||
| Queensgate | [link](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-actuators-translators) | UK |
|
| [Queensgate](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-actuators-translators) | UK |
|
||||||
| Matsusada Precision | [link](https://www.matsusada.com/product/pz/) | Japan |
|
| [Matsusada Precision](https://www.matsusada.com/product/pz/) | Japan |
|
||||||
| Sinocera | [link](http://www.china-yec.net/piezoelectric-ceramics/) | China |
|
| [Sinocera](http://www.china-yec.net/piezoelectric-ceramics/) | China |
|
||||||
| Fuji Ceramisc | [link](http://www.fujicera.co.jp/en/) | Japan |
|
| [Fuji Ceramisc](http://www.fujicera.co.jp/en/) | Japan |
|
||||||
|
|
||||||
|
|
||||||
### Model {#model}
|
### Model {#model}
|
||||||
|
|
||||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgba89e54)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#org8e467ce)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||||
|
|
||||||
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
|
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
|
||||||
|
|
||||||
@ -49,34 +49,34 @@ with:
|
|||||||
|
|
||||||
Some manufacturers propose "raw" plate actuators that can be used as actuator / sensors.
|
Some manufacturers propose "raw" plate actuators that can be used as actuator / sensors.
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------|-------------------------------------------------------------------|---------|
|
|---------------------------------------------------------------------|---------|
|
||||||
| Noliac | [link](http://www.noliac.com/products/actuators/plate-actuators/) | Denmak |
|
| [Noliac](http://www.noliac.com/products/actuators/plate-actuators/) | Denmak |
|
||||||
|
|
||||||
|
|
||||||
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
|
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
|
||||||
|
|
||||||
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org2aa3084)):
|
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org5363d27)):
|
||||||
|
|
||||||
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
|
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
|
||||||
> The flatter is the actuator, the higher is the amplification.
|
> The flatter is the actuator, the higher is the amplification.
|
||||||
|
|
||||||
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org2b7ba31)).
|
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org6963733)).
|
||||||
|
|
||||||
<a id="org0387c40"></a>
|
<a id="org050f47d"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \& Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">ling16_enhan_mathem_model_displ_amplif</a></sup>" >}}
|
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \& Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">ling16_enhan_mathem_model_displ_amplif</a></sup>" >}}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|
|----------------------------------------------------------------------------------------------------|-----------|
|
||||||
| Cedrat | [link](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) | France |
|
| [Cedrat](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) | France |
|
||||||
| PiezoDrive | [link](https://www.piezodrive.com/actuators/ap-series-amplified-piezoelectric-actuators/) | Australia |
|
| [PiezoDrive](https://www.piezodrive.com/actuators/ap-series-amplified-piezoelectric-actuators/) | Australia |
|
||||||
| Dynamic-Structures | [link](https://www.dynamic-structures.com/category/piezo-actuators-stages) | USA |
|
| [Dynamic-Structures](https://www.dynamic-structures.com/category/piezo-actuators-stages) | USA |
|
||||||
| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA |
|
| [Thorlabs](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA |
|
||||||
| Noliac | [link](http://www.noliac.com/products/actuators/amplified-actuators/) | Denmark |
|
| [Noliac](http://www.noliac.com/products/actuators/amplified-actuators/) | Denmark |
|
||||||
| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F5.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F3.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5Fmtkk.html) | Japan |
|
| [Mechano Transformer](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F5.html) | Japan |
|
||||||
| CoreMorrow | [link](http://www.coremorrow.com/en/pro-13-1.html) | China |
|
| [CoreMorrow](http://www.coremorrow.com/en/pro-13-1.html) | China |
|
||||||
| PiezoData | [link](https://www.piezodata.com/piezoelectric-actuator-amplifier/) | China |
|
| [PiezoData](https://www.piezodata.com/piezoelectric-actuator-amplifier/) | China |
|
||||||
|
|
||||||
|
|
||||||
## Specifications {#specifications}
|
## Specifications {#specifications}
|
||||||
@ -155,43 +155,43 @@ For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolut
|
|||||||
|
|
||||||
### Electrical Capacitance {#electrical-capacitance}
|
### Electrical Capacitance {#electrical-capacitance}
|
||||||
|
|
||||||
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#orgb209f5d)).
|
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org8857f21)).
|
||||||
This is due to the fact that voltage amplifier has a limitation on the deliverable current.
|
This is due to the fact that voltage amplifier has a limitation on the deliverable current.
|
||||||
|
|
||||||
[Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
|
[Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
|
||||||
|
|
||||||
<a id="orgb209f5d"></a>
|
<a id="org8857f21"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
|
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
|
||||||
|
|
||||||
|
|
||||||
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
|
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
|
||||||
|
|
||||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#orgff2ea88)).
|
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org35eead3)).
|
||||||
|
|
||||||
<a id="orgff2ea88"></a>
|
<a id="org35eead3"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
|
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
|
||||||
|
|
||||||
|
|
||||||
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
|
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
|
||||||
|
|
||||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgbfa1482)):
|
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgf00c960)):
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
|
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
<a id="orgbfa1482"></a>
|
<a id="orgf00c960"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
|
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
|
||||||
|
|
||||||
For piezo actuators, force and displacement are inversely related (Figure [5](#orgbee5c88)).
|
For piezo actuators, force and displacement are inversely related (Figure [5](#orgb6392e0)).
|
||||||
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
|
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
|
||||||
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
|
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
|
||||||
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
|
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
|
||||||
|
|
||||||
<a id="orgbee5c88"></a>
|
<a id="orgb6392e0"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
|
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
|
||||||
|
|
||||||
@ -203,8 +203,8 @@ Piezoelectric actuators can be driven either using a voltage to charge converter
|
|||||||
|
|
||||||
## Bibliography {#bibliography}
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
<a id="org2aa3084"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
<a id="org5363d27"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
||||||
|
|
||||||
<a id="orgba89e54"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
<a id="org8e467ce"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||||
|
|
||||||
<a id="org2b7ba31"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
<a id="org6963733"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
||||||
|
@ -4,23 +4,17 @@ author = ["Thomas Dehaeze"]
|
|||||||
draft = false
|
draft = false
|
||||||
+++
|
+++
|
||||||
|
|
||||||
Backlinks:
|
|
||||||
|
|
||||||
- [Position control in lithographic equipment]({{< relref "butler11_posit_contr_lithog_equip" >}})
|
|
||||||
- [An instrument for 3d x-ray nano-imaging]({{< relref "holler12_instr_x_ray_nano_imagin" >}})
|
|
||||||
- [Interferometric characterization of rotation stages for x-ray nanotomography]({{< relref "stankevic17_inter_charac_rotat_stages_x_ray_nanot" >}})
|
|
||||||
|
|
||||||
Tags
|
Tags
|
||||||
:
|
:
|
||||||
|
|
||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------|-------------------------------------------|---------|
|
|------------------------------------------------------------------|---------|
|
||||||
| Kohzu | [link](https://www.kohzuprecision.com/i/) | Japan |
|
| [Kohzu](https://www.kohzuprecision.com/i/) | Japan |
|
||||||
| PI | | |
|
| [PI](https://www.physikinstrumente.com/en/) | USA |
|
||||||
| Attocube | | |
|
| [Attocube](https://www.attocube.com/en/products/nanopositioners) | Germany |
|
||||||
| Newport | | |
|
| [Newport](https://www.newport.com/c/manual-positioning) | |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -10,9 +10,9 @@ Tags
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|-------------------|-------------------------------------------|---------|
|
|--------------------------------------------------------|---------|
|
||||||
| Huber | [link](https://www.xhuber.com/en/) | Germany |
|
| [Huber](https://www.xhuber.com/en/) | Germany |
|
||||||
| LAB Motion System | [link](http://www.leuvenairbearings.com/) | Belgium |
|
| [LAB Motion System](http://www.leuvenairbearings.com/) | Belgium |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -4,24 +4,20 @@ author = ["Thomas Dehaeze"]
|
|||||||
draft = false
|
draft = false
|
||||||
+++
|
+++
|
||||||
|
|
||||||
Backlinks:
|
|
||||||
|
|
||||||
- [Modal Analysis]({{< relref "modal_analysis" >}})
|
|
||||||
|
|
||||||
Tags
|
Tags
|
||||||
: [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
: [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
||||||
|
|
||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|--------------------|----------------------------------------------------------------------------------|-----------|
|
|---------------------------------------------------------------------------------------------|-----------|
|
||||||
| Labsen | [link](http://labsentec.com.au/category/products/vibrationshock/) | Australia |
|
| [Labsen](http://labsentec.com.au/category/products/vibrationshock/) | Australia |
|
||||||
| The Modal Shop | [link](http://www.modalshop.com/excitation/Electrodynamic-Exciter-Family?ID=243) | USA |
|
| [The Modal Shop](http://www.modalshop.com/excitation/Electrodynamic-Exciter-Family?ID=243) | USA |
|
||||||
| Deweshop | [link](https://dewesoft.com/fr/products/interfaces-and-sensors/shakers) | Slovenia |
|
| [Deweshop](https://dewesoft.com/fr/products/interfaces-and-sensors/shakers) | Slovenia |
|
||||||
| Bruel and Kjaer | [link](https://www.bksv.com/en/products/shakers-and-exciters/LDS-shaker-systems) | Denmark |
|
| [Bruel and Kjaer](https://www.bksv.com/en/products/shakers-and-exciters/LDS-shaker-systems) | Denmark |
|
||||||
| YMC | [link](http://www.chinaymc.com/product/showproduct.php?id=78&lang=en) | China |
|
| [YMC](http://www.chinaymc.com/product/showproduct.php?id=78&lang=en) | China |
|
||||||
| Vibration Research | [link](https://vibrationresearch.com/shakers/) | USA |
|
| [Vibration Research](https://vibrationresearch.com/shakers/) | USA |
|
||||||
| Sentek Dynamics | [link](https://www.sentekdynamics.com/) | USA |
|
| [Sentek Dynamics](https://www.sentekdynamics.com/) | USA |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -4,18 +4,14 @@ author = ["Thomas Dehaeze"]
|
|||||||
draft = false
|
draft = false
|
||||||
+++
|
+++
|
||||||
|
|
||||||
Backlinks:
|
|
||||||
|
|
||||||
- [Rotation Stage]({{< relref "rotation_stage" >}})
|
|
||||||
|
|
||||||
Tags
|
Tags
|
||||||
: [Rotation Stage]({{< relref "rotation_stage" >}})
|
: [Rotation Stage]({{< relref "rotation_stage" >}})
|
||||||
|
|
||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------|---------------------------------|---------|
|
|-----------------------------------|---------|
|
||||||
| Moflon | [link](https://www.moflon.com/) | China |
|
| [Moflon](https://www.moflon.com/) | China |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -10,10 +10,13 @@ Tags
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------|-----------------------------------------|---------|
|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|
||||||
| Vanel | [link](https://www.vanel.com/index.php) | France |
|
| [Vanel](https://www.vanel.com/index.php) | France |
|
||||||
| Axcesspring | [link](https://www.acxesspring.com/) | US |
|
| [Axcesspring](https://www.acxesspring.com/) | US |
|
||||||
| Raymond | [link](https://www.asraymond.com/) | US |
|
| [Raymond](https://www.asraymond.com/) | US |
|
||||||
|
| [Paulstra](https://www.paulstra-industry.com/en/ranges/metal-mountings/v1210) | France |
|
||||||
|
| [Norelem](https://www.norelem.com/us/en/Products/Product-overview/Systems-and-components-for-machine-and-plant-construction/26000-Compression-springs-Elastomer-springs-Rubber-buffers-Shock-absorbers-Gas-springs.html) | France |
|
||||||
|
| [VibraSystems](https://vibrasystems.com/elastomer-and-spring-hangers.html) | USA |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -10,16 +10,16 @@ Tags
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|
||||||
| PI | [link](https://www.physikinstrumente.com/en/products/parallel-kinematic-hexapods/) | Germany |
|
| [PI](https://www.physikinstrumente.com/en/products/parallel-kinematic-hexapods/) | Germany |
|
||||||
| Newport | [link](https://www.newport.com/search/?q1=hexapod%3Arelevance%3Acompatibility%3AMETRIC%3AisObsolete%3Afalse%3A-excludeCountries%3AFR%3AnpCategory%3Ahexapods&ajax&text=hexapod) | USA |
|
| [Newport](https://www.newport.com/search/?q1=hexapod%3Arelevance%3Acompatibility%3AMETRIC%3AisObsolete%3Afalse%3A-excludeCountries%3AFR%3AnpCategory%3Ahexapods&ajax&text=hexapod) | USA |
|
||||||
| Symetrie | [link](https://symetrie.fr/en/hexapods-en/positioning-hexapods/) | France |
|
| [Symetrie](https://symetrie.fr/en/hexapods-en/positioning-hexapods/) | France |
|
||||||
| CSA Engineering | [link](https://www.csaengineering.com/products-services/hexapod-positioning-systems/hexapod-models.html) | USA |
|
| [CSA Engineering](https://www.csaengineering.com/products-services/hexapod-positioning-systems/hexapod-models.html) | USA |
|
||||||
| Aerotech | [link](https://www.aerotech.com/product-catalog/hexapods.aspx) | USA |
|
| [Aerotech](https://www.aerotech.com/product-catalog/hexapods.aspx) | USA |
|
||||||
| SmarAct | [link](https://www.smaract.com/smarpod) | Germany |
|
| [SmarAct](https://www.smaract.com/smarpod) | Germany |
|
||||||
| Gridbots | [link](https://www.gridbots.com/hexamove.html) | India |
|
| [Gridbots](https://www.gridbots.com/hexamove.html) | India |
|
||||||
| Alio Industries | [link](https://www.alioindustries.com/) | USA |
|
| [Alio Industries](https://www.alioindustries.com/) | USA |
|
||||||
|
|
||||||
|
|
||||||
## Stewart Platforms at ESRF {#stewart-platforms-at-esrf}
|
## Stewart Platforms at ESRF {#stewart-platforms-at-esrf}
|
||||||
@ -36,36 +36,36 @@ Tags
|
|||||||
|
|
||||||
Papers by J.E. McInroy:
|
Papers by J.E. McInroy:
|
||||||
|
|
||||||
- ([O’Brien et al. 1998](#orgb07a9df))
|
- ([O’Brien et al. 1998](#org301ae65))
|
||||||
- ([McInroy, O’Brien, and Neat 1999](#orgbcce212))
|
- ([McInroy, O’Brien, and Neat 1999](#org43a0fe2))
|
||||||
- ([McInroy 1999](#org37afc8d))
|
- ([McInroy 1999](#org41ba097))
|
||||||
- ([McInroy and Hamann 2000](#org888db09))
|
- ([McInroy and Hamann 2000](#org73060fc))
|
||||||
- ([Chen and McInroy 2000](#org86c277d))
|
- ([Chen and McInroy 2000](#org2b98584))
|
||||||
- ([McInroy 2002](#org748da49))
|
- ([McInroy 2002](#org2d6222b))
|
||||||
- ([Li, Hamann, and McInroy 2001](#orgcdecf89))
|
- ([Li, Hamann, and McInroy 2001](#org6598adc))
|
||||||
- ([Lin and McInroy 2003](#orgff3d7a7))
|
- ([Lin and McInroy 2003](#orgfc1736f))
|
||||||
- ([Jafari and McInroy 2003](#org701d32b))
|
- ([Jafari and McInroy 2003](#org72de1d8))
|
||||||
- ([Chen and McInroy 2004](#orgd01130a))
|
- ([Chen and McInroy 2004](#org6bdfb26))
|
||||||
|
|
||||||
|
|
||||||
## Bibliography {#bibliography}
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
<a id="orgd01130a"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. <https://doi.org/10.1109/tcst.2004.824339>.
|
<a id="org6bdfb26"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. <https://doi.org/10.1109/tcst.2004.824339>.
|
||||||
|
|
||||||
<a id="org86c277d"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
<a id="org2b98584"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||||
|
|
||||||
<a id="org701d32b"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. <https://doi.org/10.1109/tra.2003.814506>.
|
<a id="org72de1d8"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. <https://doi.org/10.1109/tra.2003.814506>.
|
||||||
|
|
||||||
<a id="orgff3d7a7"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. <https://doi.org/10.1109/tcst.2003.809248>.
|
<a id="orgfc1736f"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. <https://doi.org/10.1109/tcst.2003.809248>.
|
||||||
|
|
||||||
<a id="orgcdecf89"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
|
<a id="org6598adc"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
|
||||||
|
|
||||||
<a id="org37afc8d"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
|
<a id="org41ba097"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
|
||||||
|
|
||||||
<a id="org748da49"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. <https://doi.org/10.1109/3516.990892>.
|
<a id="org2d6222b"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. <https://doi.org/10.1109/3516.990892>.
|
||||||
|
|
||||||
<a id="org888db09"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. <https://doi.org/10.1109/70.864229>.
|
<a id="org73060fc"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. <https://doi.org/10.1109/70.864229>.
|
||||||
|
|
||||||
<a id="orgbcce212"></a>McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. <https://doi.org/10.1109/3516.752089>.
|
<a id="org43a0fe2"></a>McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. <https://doi.org/10.1109/3516.752089>.
|
||||||
|
|
||||||
<a id="orgb07a9df"></a>O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.
|
<a id="org301ae65"></a>O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.
|
||||||
|
@ -10,14 +10,14 @@ Tags
|
|||||||
|
|
||||||
## MEMS Based Tip-Tilt Mirrors {#mems-based-tip-tilt-mirrors}
|
## MEMS Based Tip-Tilt Mirrors {#mems-based-tip-tilt-mirrors}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------|-------------------------------------------------------------------------------------------|-------------|
|
|------------------------------------------------------------------------------------------------|-------------|
|
||||||
| Sercalo | [link](https://www.sercalo.com/products/mems-mirrors) | Switzerland |
|
| [Sercalo](https://www.sercalo.com/products/mems-mirrors) | Switzerland |
|
||||||
| KOC | [link](http://www.koreaoptron.co.kr/default/newproduct/mems%5F01%5F02.php) | Korea |
|
| [KOC](http://www.koreaoptron.co.kr/default/newproduct/mems%5F01%5F02.php) | Korea |
|
||||||
| Mirrorcle | [link](https://www.mirrorcletech.com/wp/products/mems-mirrors/) | USA |
|
| [Mirrorcle](https://www.mirrorcletech.com/wp/products/mems-mirrors/) | USA |
|
||||||
| Preciseley | [link](https://www.preciseley.com/mems-tilting-mirror.html) | Canada |
|
| [Preciseley](https://www.preciseley.com/mems-tilting-mirror.html) | Canada |
|
||||||
| Hamamatsu | [link](https://www.hamamatsu.com/eu/en/product/optical-components/mems-mirror/index.html) | Japan |
|
| [Hamamatsu](https://www.hamamatsu.com/eu/en/product/optical-components/mems-mirror/index.html) | Japan |
|
||||||
| Maradin | [link](http://www.maradin.co.il/products/mar1100-mems-2d-laser-scanning-mirror/) | Israel |
|
| [Maradin](http://www.maradin.co.il/products/mar1100-mems-2d-laser-scanning-mirror/) | Israel |
|
||||||
| Opus | [link](http://www.opusmicro.com/mems%5Fen.html) | Taiwan |
|
| [Opus](http://www.opusmicro.com/mems%5Fen.html) | Taiwan |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -4,10 +4,6 @@ author = ["Thomas Dehaeze"]
|
|||||||
draft = false
|
draft = false
|
||||||
+++
|
+++
|
||||||
|
|
||||||
Backlinks:
|
|
||||||
|
|
||||||
- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
|
||||||
|
|
||||||
Tags
|
Tags
|
||||||
: [Electronics]({{< relref "electronics" >}}), [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
: [Electronics]({{< relref "electronics" >}}), [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
||||||
|
|
||||||
@ -18,11 +14,4 @@ A Transconductance Amplifier converts the control voltage into current with a cu
|
|||||||
|
|
||||||
Such a converter is called a voltage-to-current converter, also named a voltage-controlled current source or _transconductance_ amplifier.
|
Such a converter is called a voltage-to-current converter, also named a voltage-controlled current source or _transconductance_ amplifier.
|
||||||
|
|
||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
|
||||||
|---------------|-------|---------|
|
|
||||||
| | | |
|
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -17,11 +17,11 @@ It is generally used to interface a sensor which outputs a current proportional
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------|------------------------------------------------------------------------------------------------------|---------|
|
|------------------------------------------------------------------------------------------------------------|---------|
|
||||||
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
|
| [Kistler](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
|
||||||
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
|
| [MMF](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
|
||||||
| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) | Germany |
|
| [Femto](https://www.femto.de/en/products/current-amplifiers.html) | Germany |
|
||||||
| FMB Oxford | [link](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK |
|
| [FMB Oxford](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -4,12 +4,6 @@ author = ["Thomas Dehaeze"]
|
|||||||
draft = false
|
draft = false
|
||||||
+++
|
+++
|
||||||
|
|
||||||
Backlinks:
|
|
||||||
|
|
||||||
- [Transconductance Amplifiers]({{< relref "transconductance_amplifiers" >}})
|
|
||||||
- [Actuators]({{< relref "actuators" >}})
|
|
||||||
- [Shaker]({{< relref "shaker" >}})
|
|
||||||
|
|
||||||
Tags
|
Tags
|
||||||
: [Actuators]({{< relref "actuators" >}})
|
: [Actuators]({{< relref "actuators" >}})
|
||||||
|
|
||||||
@ -22,7 +16,7 @@ Tags
|
|||||||
|
|
||||||
## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator}
|
## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator}
|
||||||
|
|
||||||
([Schmidt, Schitter, and Rankers 2014](#org6fb1bd5))
|
([Schmidt, Schitter, and Rankers 2014](#org8334379))
|
||||||
|
|
||||||
|
|
||||||
## Driving Electronics {#driving-electronics}
|
## Driving Electronics {#driving-electronics}
|
||||||
@ -32,20 +26,20 @@ As the force is proportional to the current, a [Transconductance Amplifiers]({{<
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|----------------------|----------------------------------------------|-------------|
|
|--------------------------------------------------------------|-------------|
|
||||||
| Geeplus | [link](https://www.geeplus.com/) | UK |
|
| [Geeplus](https://www.geeplus.com/) | UK |
|
||||||
| Maccon | [link](https://www.maccon.de/en.html) | Germany |
|
| [Maccon](https://www.maccon.de/en.html) | Germany |
|
||||||
| TDS PP | [link](https://www.tds-pp.com/en/) | Switzerland |
|
| [TDS PP](https://www.tds-pp.com/en/) | Switzerland |
|
||||||
| H2tech | [link](https://www.h2wtech.com/) | USA |
|
| [H2tech](https://www.h2wtech.com/) | USA |
|
||||||
| PBA Systems | [link](http://www.pbasystems.com.sg/) | Singapore |
|
| [PBA Systems](http://www.pbasystems.com.sg/) | Singapore |
|
||||||
| Celera Motion | [link](https://www.celeramotion.com/) | USA |
|
| [Celera Motion](https://www.celeramotion.com/) | USA |
|
||||||
| Beikimco | [link](http://www.beikimco.com/) | USA |
|
| [Beikimco](http://www.beikimco.com/) | USA |
|
||||||
| Electromate | [link](https://www.electromate.com/) | Canada |
|
| [Electromate](https://www.electromate.com/) | Canada |
|
||||||
| Magnetic Innovations | [link](https://www.magneticinnovations.com/) | Netherlands |
|
| [Magnetic Innovations](https://www.magneticinnovations.com/) | Netherlands |
|
||||||
| Monticont | [link](http://www.moticont.com/) | USA |
|
| [Monticont](http://www.moticont.com/) | USA |
|
||||||
|
|
||||||
|
|
||||||
## Bibliography {#bibliography}
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
<a id="org6fb1bd5"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
<a id="org8334379"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||||
|
@ -4,11 +4,6 @@ author = ["Thomas Dehaeze"]
|
|||||||
draft = false
|
draft = false
|
||||||
+++
|
+++
|
||||||
|
|
||||||
Backlinks:
|
|
||||||
|
|
||||||
- [Signal Conditioner]({{< relref "signal_conditioner" >}})
|
|
||||||
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
|
|
||||||
|
|
||||||
Tags
|
Tags
|
||||||
: [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}), [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}}), [Electronics]({{< relref "electronics" >}})
|
: [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}), [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}}), [Electronics]({{< relref "electronics" >}})
|
||||||
|
|
||||||
@ -18,30 +13,29 @@ Tags
|
|||||||
|
|
||||||
### Manufacturers {#manufacturers}
|
### Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Country |
|
||||||
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|
||||||
| Piezo Drive | [link](https://www.piezodrive.com/drivers/) | Australia |
|
| [Piezo Drive](https://www.piezodrive.com/drivers/) | Australia |
|
||||||
| Falco System | [link](https://www.falco-systems.com/products.html) | Netherlands |
|
| [Falco System](https://www.falco-systems.com/products.html) | Netherlands |
|
||||||
| PI | [link](https://www.pi-usa.us/en/products/controllers-drivers-motion-control-software/piezo-drivers-controllers-power-supplies-high-voltage-amplifiers/) | USA |
|
| [PI](https://www.pi-usa.us/en/products/controllers-drivers-motion-control-software/piezo-drivers-controllers-power-supplies-high-voltage-amplifiers/) | USA |
|
||||||
| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=2085) | USA |
|
| [Thorlabs](https://www.thorlabs.com/navigation.cfm?guide%5FID=2085) | USA |
|
||||||
| Micromega Dynamics | | Belgium |
|
| [Lab Systems](https://www.lab-systems.com/products/amplifier/amplifier.html) | Isreal |
|
||||||
| Lab Systems | [link](https://www.lab-systems.com/products/amplifier/amplifier.html) | Isreal |
|
| [Piezomechanics](https://www.piezomechanik.com/products/) | Germany |
|
||||||
| Piezomechanics | [link](https://www.piezomechanik.com/products/) | Germany |
|
| [Cedrat Technologies](https://www.cedrat-technologies.com/en/products/piezo-controllers/electronic-amplifier-boards.html) | France |
|
||||||
| Cedrat Technologies | [link](https://www.cedrat-technologies.com/en/products/piezo-controllers/electronic-amplifier-boards.html) | France |
|
| [Trek](https://www.trekinc.com/products/HV%5FAmp.asp) | USA |
|
||||||
| Trek | [link](https://www.trekinc.com/products/HV%5FAmp.asp) | USA |
|
| [Madcitylabs](http://www.madcitylabs.com/piezoactuators.html) | USA |
|
||||||
| Madcitylabs | [link](http://www.madcitylabs.com/piezoactuators.html) | USA |
|
| [Piezosystem](https://www.piezosystem.com/products/controller/) | Germany |
|
||||||
| Piezosystem | [link](https://www.piezosystem.com/products/controller/) | Germany |
|
| [Matsusada Precision](https://www.matsusada.com/product/pz/) | Japan |
|
||||||
| Matsusada Precision | [link](https://www.matsusada.com/product/pz/) | Japan |
|
| [Mechano Transformer](http://www.mechano-transformer.com/en/products/08.html) | Japan |
|
||||||
| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/08.html) | Japan |
|
|
||||||
|
|
||||||
|
|
||||||
### Limitation in Current {#limitation-in-current}
|
### Limitation in Current {#limitation-in-current}
|
||||||
|
|
||||||
The piezoelectric stack can be represented as a capacitance.
|
The piezoelectric stack can be represented as a capacitance.
|
||||||
|
|
||||||
Let's take a capacitance driven by a voltage amplifier (Figure [1](#org1213200)).
|
Let's take a capacitance driven by a voltage amplifier (Figure [1](#org811725e)).
|
||||||
|
|
||||||
<a id="org1213200"></a>
|
<a id="org811725e"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}}
|
{{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}}
|
||||||
|
|
||||||
@ -61,7 +55,7 @@ Thus, for a specified maximum current \\(I\_\text{max}\\), the "power bandwidth"
|
|||||||
- Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency:
|
- Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency:
|
||||||
\\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\]
|
\\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\]
|
||||||
|
|
||||||
The maximum voltage as a function of frequency is shown in Figure [2](#org5c9f5fc).
|
The maximum voltage as a function of frequency is shown in Figure [2](#org8c7858f).
|
||||||
|
|
||||||
```matlab
|
```matlab
|
||||||
Vpkp = 170; % [V]
|
Vpkp = 170; % [V]
|
||||||
@ -75,7 +69,7 @@ C = 1e-6; % [F]
|
|||||||
56.172
|
56.172
|
||||||
```
|
```
|
||||||
|
|
||||||
<a id="org5c9f5fc"></a>
|
<a id="org8c7858f"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}}
|
{{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}}
|
||||||
|
|
||||||
@ -111,7 +105,7 @@ This can pose several problems:
|
|||||||
|
|
||||||
### Noise {#noise}
|
### Noise {#noise}
|
||||||
|
|
||||||
Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#org0688a0e)).
|
Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#org2123c0f)).
|
||||||
|
|
||||||
Proper enclosures and cabling are necessary to protect the system from capacitive and inductive interferance.
|
Proper enclosures and cabling are necessary to protect the system from capacitive and inductive interferance.
|
||||||
|
|
||||||
@ -123,13 +117,13 @@ The **input** impedance of voltage amplifiers are generally set to \\(50 \Omega\
|
|||||||
The **output** (or internal) impedance of voltage amplifier is generally wanted small in order to have a small voltage drop when large current are drawn.
|
The **output** (or internal) impedance of voltage amplifier is generally wanted small in order to have a small voltage drop when large current are drawn.
|
||||||
However, for stability reasons and to avoid overshoot (due to the internal negative feedback loop), this impedance can be chosen quite large.
|
However, for stability reasons and to avoid overshoot (due to the internal negative feedback loop), this impedance can be chosen quite large.
|
||||||
|
|
||||||
This is discussed in ([Spengen 2017](#orgfe834ca)).
|
This is discussed in ([Spengen 2017](#orgc500938)).
|
||||||
|
|
||||||
|
|
||||||
## Bibliography {#bibliography}
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
<a id="org624e57c"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
<a id="org66151a2"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
||||||
|
|
||||||
<a id="orgfe834ca"></a>Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems.
|
<a id="orgc500938"></a>Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems.
|
||||||
|
|
||||||
<a id="org0688a0e"></a>———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems.
|
<a id="org2123c0f"></a>———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems.
|
||||||
|
Loading…
Reference in New Issue
Block a user