Update Content - 2020-10-20
This commit is contained in:
parent
2ba3bf426e
commit
a504e2aa91
33
content/zettels/cables.md
Normal file
33
content/zettels/cables.md
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
+++
|
||||||
|
title = "Cables"
|
||||||
|
author = ["Thomas Dehaeze"]
|
||||||
|
draft = false
|
||||||
|
+++
|
||||||
|
|
||||||
|
Backlinks:
|
||||||
|
|
||||||
|
- [Connectors]({{< relref "connectors" >}})
|
||||||
|
|
||||||
|
Tags
|
||||||
|
: [Connectors]({{< relref "connectors" >}})
|
||||||
|
|
||||||
|
|
||||||
|
## Typical Cables {#typical-cables}
|
||||||
|
|
||||||
|
- Coaxial cables
|
||||||
|
- Twisted cables
|
||||||
|
- Twisted shielded cables
|
||||||
|
|
||||||
|
|
||||||
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
|
| Manufacturers | Links | Country |
|
||||||
|
|---------------|---------------------------------|-------------|
|
||||||
|
| LEMO | [link](https://www.lemo.com/en) | Switzerland |
|
||||||
|
|
||||||
|
|
||||||
|
## Software {#software}
|
||||||
|
|
||||||
|
- [WireViz](https://github.com/formatc1702/WireViz) is a nice software to easily document cables and wiring harnesses
|
||||||
|
|
||||||
|
<./biblio/references.bib>
|
@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
|
|||||||
draft = false
|
draft = false
|
||||||
+++
|
+++
|
||||||
|
|
||||||
|
Backlinks:
|
||||||
|
|
||||||
|
- [Signal Conditioner]({{< relref "signal_conditioner" >}})
|
||||||
|
|
||||||
Tags
|
Tags
|
||||||
: [Electronics]({{< relref "electronics" >}})
|
: [Electronics]({{< relref "electronics" >}})
|
||||||
|
|
||||||
@ -15,6 +19,24 @@ A charge amplifier outputs a voltage proportional to the charge generated by a s
|
|||||||
This can be typically used to interface with piezoelectric sensors.
|
This can be typically used to interface with piezoelectric sensors.
|
||||||
|
|
||||||
|
|
||||||
|
## Basic Circuit {#basic-circuit}
|
||||||
|
|
||||||
|
Two basic circuits of charge amplifiers are shown in Figure [1](#org9ffcf40) (taken from ([Fleming 2010](#orgaceef58))) and Figure [2](#org37bd87f) (taken from ([Schmidt, Schitter, and Rankers 2014](#org683b96e)))
|
||||||
|
|
||||||
|
<a id="org9ffcf40"></a>
|
||||||
|
|
||||||
|
{{< figure src="/ox-hugo/charge_amplifier_circuit.png" caption="Figure 1: Electrical model of a piezoelectric force sensor is shown in gray. The op-amp charge amplifier is shown on the right. The output voltage \\(V\_s\\) equal to \\(-q/C\_s\\)" >}}
|
||||||
|
|
||||||
|
<a id="org37bd87f"></a>
|
||||||
|
|
||||||
|
{{< figure src="/ox-hugo/charge_amplifier_circuit_bis.png" caption="Figure 2: A piezoelectric accelerometer with a charge amplifier as signal conditioning element" >}}
|
||||||
|
|
||||||
|
The input impedance of the charge amplifier is very small (unlike when using a voltage amplifier).
|
||||||
|
|
||||||
|
The gain of the charge amplified (Figure [1](#org9ffcf40)) is equal to:
|
||||||
|
\\[ \frac{V\_s}{q} = \frac{-1}{C\_s} \\]
|
||||||
|
|
||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Links | Country |
|
||||||
@ -28,4 +50,9 @@ This can be typically used to interface with piezoelectric sensors.
|
|||||||
| Sinocera | [link](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China |
|
| Sinocera | [link](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China |
|
||||||
| L-Card | [link](https://en.lcard.ru/products/accesories/le-41) | Rusia |
|
| L-Card | [link](https://en.lcard.ru/products/accesories/le-41) | Rusia |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
|
||||||
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
|
<a id="orgaceef58"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||||
|
|
||||||
|
<a id="org683b96e"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||||
|
@ -5,7 +5,7 @@ draft = false
|
|||||||
+++
|
+++
|
||||||
|
|
||||||
Tags
|
Tags
|
||||||
:
|
: [Cables]({{< relref "cables" >}})
|
||||||
|
|
||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
@ -15,4 +15,13 @@ Tags
|
|||||||
| LEMO | [link](https://www.lemo.com/en) | Switzerland |
|
| LEMO | [link](https://www.lemo.com/en) | Switzerland |
|
||||||
| Fischer | [link](https://www.fischerconnectors.com/uk/en) | Switzerland |
|
| Fischer | [link](https://www.fischerconnectors.com/uk/en) | Switzerland |
|
||||||
|
|
||||||
|
|
||||||
|
## BNC {#bnc}
|
||||||
|
|
||||||
|
BNC connectors can have an impedance of 50Ohms or 75Ohms as shown in Figure [1](#org18575cd).
|
||||||
|
|
||||||
|
<a id="org18575cd"></a>
|
||||||
|
|
||||||
|
{{< figure src="/ox-hugo/bnc_50_75_ohms.jpg" caption="Figure 1: 75Ohms and 50Ohms BNC connectors" >}}
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -6,6 +6,7 @@ draft = false
|
|||||||
|
|
||||||
Backlinks:
|
Backlinks:
|
||||||
|
|
||||||
|
- [Signal Conditioner]({{< relref "signal_conditioner" >}})
|
||||||
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
|
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
|
||||||
|
|
||||||
Tags
|
Tags
|
||||||
@ -38,9 +39,9 @@ Tags
|
|||||||
|
|
||||||
The piezoelectric stack can be represented as a capacitance.
|
The piezoelectric stack can be represented as a capacitance.
|
||||||
|
|
||||||
Let's take a capacitance driven by a voltage amplifier (Figure [1](#orgbf6bfad)).
|
Let's take a capacitance driven by a voltage amplifier (Figure [1](#org1213200)).
|
||||||
|
|
||||||
<a id="orgbf6bfad"></a>
|
<a id="org1213200"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}}
|
{{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}}
|
||||||
|
|
||||||
@ -60,7 +61,7 @@ Thus, for a specified maximum current \\(I\_\text{max}\\), the "power bandwidth"
|
|||||||
- Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency:
|
- Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency:
|
||||||
\\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\]
|
\\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\]
|
||||||
|
|
||||||
The maximum voltage as a function of frequency is shown in Figure [2](#org29f059d).
|
The maximum voltage as a function of frequency is shown in Figure [2](#org5c9f5fc).
|
||||||
|
|
||||||
```matlab
|
```matlab
|
||||||
Vpkp = 170; % [V]
|
Vpkp = 170; % [V]
|
||||||
@ -74,7 +75,7 @@ C = 1e-6; % [F]
|
|||||||
56.172
|
56.172
|
||||||
```
|
```
|
||||||
|
|
||||||
<a id="org29f059d"></a>
|
<a id="org5c9f5fc"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}}
|
{{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}}
|
||||||
|
|
||||||
@ -110,7 +111,7 @@ This can pose several problems:
|
|||||||
|
|
||||||
### Noise {#noise}
|
### Noise {#noise}
|
||||||
|
|
||||||
Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#orge9a57bd)).
|
Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#org0688a0e)).
|
||||||
|
|
||||||
Proper enclosures and cabling are necessary to protect the system from capacitive and inductive interferance.
|
Proper enclosures and cabling are necessary to protect the system from capacitive and inductive interferance.
|
||||||
|
|
||||||
@ -122,13 +123,13 @@ The **input** impedance of voltage amplifiers are generally set to \\(50 \Omega\
|
|||||||
The **output** (or internal) impedance of voltage amplifier is generally wanted small in order to have a small voltage drop when large current are drawn.
|
The **output** (or internal) impedance of voltage amplifier is generally wanted small in order to have a small voltage drop when large current are drawn.
|
||||||
However, for stability reasons and to avoid overshoot (due to the internal negative feedback loop), this impedance can be chosen quite large.
|
However, for stability reasons and to avoid overshoot (due to the internal negative feedback loop), this impedance can be chosen quite large.
|
||||||
|
|
||||||
This is discussed in ([Spengen 2017](#orge194af0)).
|
This is discussed in ([Spengen 2017](#orgfe834ca)).
|
||||||
|
|
||||||
|
|
||||||
## Bibliography {#bibliography}
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
<a id="org892a333"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
<a id="org624e57c"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
||||||
|
|
||||||
<a id="orge194af0"></a>Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems.
|
<a id="orgfe834ca"></a>Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems.
|
||||||
|
|
||||||
<a id="orge9a57bd"></a>———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems.
|
<a id="org0688a0e"></a>———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems.
|
||||||
|
BIN
static/ox-hugo/bnc_50_75_ohms.jpg
Normal file
BIN
static/ox-hugo/bnc_50_75_ohms.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 50 KiB |
BIN
static/ox-hugo/charge_amplifier_circuit.png
Normal file
BIN
static/ox-hugo/charge_amplifier_circuit.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 56 KiB |
BIN
static/ox-hugo/charge_amplifier_circuit_bis.png
Normal file
BIN
static/ox-hugo/charge_amplifier_circuit_bis.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 24 KiB |
Loading…
Reference in New Issue
Block a user