diff --git a/content/zettels/cables.md b/content/zettels/cables.md new file mode 100644 index 0000000..bacb566 --- /dev/null +++ b/content/zettels/cables.md @@ -0,0 +1,33 @@ ++++ +title = "Cables" +author = ["Thomas Dehaeze"] +draft = false ++++ + +Backlinks: + +- [Connectors]({{< relref "connectors" >}}) + +Tags +: [Connectors]({{< relref "connectors" >}}) + + +## Typical Cables {#typical-cables} + +- Coaxial cables +- Twisted cables +- Twisted shielded cables + + +## Manufacturers {#manufacturers} + +| Manufacturers | Links | Country | +|---------------|---------------------------------|-------------| +| LEMO | [link](https://www.lemo.com/en) | Switzerland | + + +## Software {#software} + +- [WireViz](https://github.com/formatc1702/WireViz) is a nice software to easily document cables and wiring harnesses + +<./biblio/references.bib> diff --git a/content/zettels/charge_amplifiers.md b/content/zettels/charge_amplifiers.md index 190f9eb..b1301b5 100644 --- a/content/zettels/charge_amplifiers.md +++ b/content/zettels/charge_amplifiers.md @@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"] draft = false +++ +Backlinks: + +- [Signal Conditioner]({{< relref "signal_conditioner" >}}) + Tags : [Electronics]({{< relref "electronics" >}}) @@ -15,6 +19,24 @@ A charge amplifier outputs a voltage proportional to the charge generated by a s This can be typically used to interface with piezoelectric sensors. +## Basic Circuit {#basic-circuit} + +Two basic circuits of charge amplifiers are shown in Figure [1](#org9ffcf40) (taken from ([Fleming 2010](#orgaceef58))) and Figure [2](#org37bd87f) (taken from ([Schmidt, Schitter, and Rankers 2014](#org683b96e))) + + + +{{< figure src="/ox-hugo/charge_amplifier_circuit.png" caption="Figure 1: Electrical model of a piezoelectric force sensor is shown in gray. The op-amp charge amplifier is shown on the right. The output voltage \\(V\_s\\) equal to \\(-q/C\_s\\)" >}} + + + +{{< figure src="/ox-hugo/charge_amplifier_circuit_bis.png" caption="Figure 2: A piezoelectric accelerometer with a charge amplifier as signal conditioning element" >}} + +The input impedance of the charge amplifier is very small (unlike when using a voltage amplifier). + +The gain of the charge amplified (Figure [1](#org9ffcf40)) is equal to: +\\[ \frac{V\_s}{q} = \frac{-1}{C\_s} \\] + + ## Manufacturers {#manufacturers} | Manufacturers | Links | Country | @@ -28,4 +50,9 @@ This can be typically used to interface with piezoelectric sensors. | Sinocera | [link](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China | | L-Card | [link](https://en.lcard.ru/products/accesories/le-41) | Rusia | -<./biblio/references.bib> + +## Bibliography {#bibliography} + +Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . + +Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press. diff --git a/content/zettels/connectors.md b/content/zettels/connectors.md index 36af82f..9c4dea8 100644 --- a/content/zettels/connectors.md +++ b/content/zettels/connectors.md @@ -5,7 +5,7 @@ draft = false +++ Tags -: +: [Cables]({{< relref "cables" >}}) ## Manufacturers {#manufacturers} @@ -15,4 +15,13 @@ Tags | LEMO | [link](https://www.lemo.com/en) | Switzerland | | Fischer | [link](https://www.fischerconnectors.com/uk/en) | Switzerland | + +## BNC {#bnc} + +BNC connectors can have an impedance of 50Ohms or 75Ohms as shown in Figure [1](#org18575cd). + + + +{{< figure src="/ox-hugo/bnc_50_75_ohms.jpg" caption="Figure 1: 75Ohms and 50Ohms BNC connectors" >}} + <./biblio/references.bib> diff --git a/content/zettels/voltage_amplifier.md b/content/zettels/voltage_amplifier.md index d378e25..6c796f4 100644 --- a/content/zettels/voltage_amplifier.md +++ b/content/zettels/voltage_amplifier.md @@ -6,6 +6,7 @@ draft = false Backlinks: +- [Signal Conditioner]({{< relref "signal_conditioner" >}}) - [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}}) Tags @@ -38,9 +39,9 @@ Tags The piezoelectric stack can be represented as a capacitance. -Let's take a capacitance driven by a voltage amplifier (Figure [1](#orgbf6bfad)). +Let's take a capacitance driven by a voltage amplifier (Figure [1](#org1213200)). - + {{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}} @@ -60,7 +61,7 @@ Thus, for a specified maximum current \\(I\_\text{max}\\), the "power bandwidth" - Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency: \\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\] -The maximum voltage as a function of frequency is shown in Figure [2](#org29f059d). +The maximum voltage as a function of frequency is shown in Figure [2](#org5c9f5fc). ```matlab Vpkp = 170; % [V] @@ -74,7 +75,7 @@ C = 1e-6; % [F] 56.172 ``` - + {{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}} @@ -110,7 +111,7 @@ This can pose several problems: ### Noise {#noise} -Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#orge9a57bd)). +Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#org0688a0e)). Proper enclosures and cabling are necessary to protect the system from capacitive and inductive interferance. @@ -122,13 +123,13 @@ The **input** impedance of voltage amplifiers are generally set to \\(50 \Omega\ The **output** (or internal) impedance of voltage amplifier is generally wanted small in order to have a small voltage drop when large current are drawn. However, for stability reasons and to avoid overshoot (due to the internal negative feedback loop), this impedance can be chosen quite large. -This is discussed in ([Spengen 2017](#orge194af0)). +This is discussed in ([Spengen 2017](#orgfe834ca)). ## Bibliography {#bibliography} -Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. . +Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. . -Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems. +Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems. -———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems. +———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems. diff --git a/static/ox-hugo/bnc_50_75_ohms.jpg b/static/ox-hugo/bnc_50_75_ohms.jpg new file mode 100644 index 0000000..79ab014 Binary files /dev/null and b/static/ox-hugo/bnc_50_75_ohms.jpg differ diff --git a/static/ox-hugo/charge_amplifier_circuit.png b/static/ox-hugo/charge_amplifier_circuit.png new file mode 100644 index 0000000..8a414f7 Binary files /dev/null and b/static/ox-hugo/charge_amplifier_circuit.png differ diff --git a/static/ox-hugo/charge_amplifier_circuit_bis.png b/static/ox-hugo/charge_amplifier_circuit_bis.png new file mode 100644 index 0000000..96fdd19 Binary files /dev/null and b/static/ox-hugo/charge_amplifier_circuit_bis.png differ