Update Content - 2023-01-24

This commit is contained in:
Thomas Dehaeze 2023-01-24 13:28:46 +01:00
parent 72df4a9206
commit 93810a094e
15 changed files with 241 additions and 31 deletions

View File

@ -1,13 +1,12 @@
+++
title = "Element and system design for active and passive vibration isolation"
author = ["Dehaeze Thomas"]
draft = false
ref_author = "Zuo, L."
ref_year = 2004
+++
Tags
: [Vibration Isolation]({{< relref "vibration_isolation.md" >}})
: [Vibration Isolation]({{< relref "vibration_isolation.md" >}}), [Eddy Current Damping]({{< relref "eddy_current_damping.md" >}})
Reference
: (<a href="#citeproc_bib_item_1">Zuo 2004</a>)
@ -28,21 +27,47 @@ Year
> They found that coupling from flexible modes is much smaller than in soft active mounts in the load (force) feedback.
> Note that reaction force actuators can also work with soft mounts or hard mounts.
## Passive Vibration Isolation {#passive-vibration-isolation}
### The Role of damping and its practical constructions {#the-role-of-damping-and-its-practical-constructions}
#### Viscous damping {#viscous-damping}
#### Eddy-current damper {#eddy-current-damper}
<a id="figure--fig:zuo04-eddy-current-magnets"></a>
{{< figure src="/ox-hugo/zuo04_eddy_current_magnets.png" caption="<span class=\"figure-number\">Figure 1: </span>(left) Magnetic field and conductor plates assemblies, (right) magnet arrays" >}}
<a id="figure--fig:zuo04-eddy-current-setup"></a>
{{< figure src="/ox-hugo/zuo04_eddy_current_setup.png" caption="<span class=\"figure-number\">Figure 2: </span>Single DoF system damped by eddy current damper" >}}
## Elements and configurations for active vibration systems {#elements-and-configurations-for-active-vibration-systems}
### System architectures {#system-architectures}
<a id="figure--fig:zuo04-piezo-spring-series"></a>
{{< figure src="/ox-hugo/zuo04_piezo_spring_series.png" caption="<span class=\"figure-number\">Figure 1: </span>PZT actuator and spring in series" >}}
<a id="figure--fig:zuo04-voice-coil-spring-parallel"></a>
{{< figure src="/ox-hugo/zuo04_voice_coil_spring_parallel.png" caption="<span class=\"figure-number\">Figure 2: </span>Voice coil actuator and spring in parallel" >}}
{{< figure src="/ox-hugo/zuo04_voice_coil_spring_parallel.png" caption="<span class=\"figure-number\">Figure 1: </span>Voice coil actuator and spring in parallel" >}}
<a id="figure--fig:zuo04-piezo-plant"></a>
{{< figure src="/ox-hugo/zuo04_piezo_plant.png" caption="<span class=\"figure-number\">Figure 3: </span>Transmission from PZT voltage to geophone output" >}}
{{< figure src="/ox-hugo/zuo04_piezo_plant.png" caption="<span class=\"figure-number\">Figure 1: </span>Transmission from PZT voltage to geophone output" >}}
<a id="figure--fig:zuo04-voice-coil-plant"></a>
{{< figure src="/ox-hugo/zuo04_voice_coil_plant.png" caption="<span class=\"figure-number\">Figure 4: </span>Transmission from voice coil voltage to geophone output" >}}
{{< figure src="/ox-hugo/zuo04_voice_coil_plant.png" caption="<span class=\"figure-number\">Figure 1: </span>Transmission from voice coil voltage to geophone output" >}}
## Bibliography {#bibliography}

View File

@ -1,6 +1,5 @@
+++
title = "Eddy Current Damping"
author = ["Dehaeze Thomas"]
draft = false
+++
@ -15,7 +14,96 @@ Tags
<https://www.mceproducts.com/articles/magnets-in-vacuum-applications>
## Estimate the damping {#estimate-the-damping}
### Formulas {#formulas}
From (<a href="#citeproc_bib_item_1">Zuo 2004</a>):
The empirical formula for damping coefficient (Ns/m) of an eddy current damper is:
\begin{equation} \label{eq:damping\_formula}
C = C\_0 B^2 t A \sigma
\end{equation}
with:
- \\(B\\) is the magnetic flux density in [T] or in [Vs/m2]
- \\(t\\) is the thickness of the conductor plate in [m]
- \\(A\\) is the area of the conductor intersected by the magnetic field in [m2]
- \\(\sigma\\) is the electrical conductivity of the conductor material [S/m]
- \\(C\_0\\) is a dimensionless coefficient to account for the shapes and sizes of the conductor and magnetic field
\\(C\_0 = 1\\) corresponds to a conductor with conductivity \\(\sigma\\) inside a uniform magnetic field and conductivity infinite outside this field.
A typical value of \\(C\_0\\) is about 0.25-0.4 for a conductor plate with area 2 to 5 times that of the magnetic field.
From <eq:damping_formula>, we see that the damping coefficient is proportional to:
- the square of the magnetic flux density \\(B\\). Therefore it is very important to have large magnetic field strengh
- the thickness \\(t\\) of the conductor. However due to **skin depth effect**, the benefit of increasing the thickness is limited.
The apparent conductivity \\(\sigma\_e\\) is:
\begin{equation}
\sigma\_e = \frac{2\delta\_s}{t}(1 - e^{-\frac{t}{2\delta\_s}})\sigma
\end{equation}
where \\(\delta\_s\\) is the skin depth in [m] of the conductor with permeability \\(\mu\\) in [H/m] at frequency \\(f\\) in [Hz]:
\begin{equation}
\delta\_s = \sqrt{\frac{2}{2 \pi f \cdot \mu \cdot \sigma}}
\end{equation}
An eddy current damper is developed in (<a href="#citeproc_bib_item_1">Zuo 2004</a>).
The magnets have alternating poles to optimize the eddy current damping (stronger varying magnetic field).
See Figures [1](#figure--fig:zuo04-eddy-current-magnets) and [2](#figure--fig:zuo04-eddy-current-setup).
<a id="figure--fig:zuo04-eddy-current-magnets"></a>
{{< figure src="/ox-hugo/zuo04_eddy_current_magnets.png" caption="<span class=\"figure-number\">Figure 1: </span>(left) Magnetic field and conductor plates assemblies, (right) magnet arrays" >}}
<a id="figure--fig:zuo04-eddy-current-setup"></a>
{{< figure src="/ox-hugo/zuo04_eddy_current_setup.png" caption="<span class=\"figure-number\">Figure 1: </span>Single DoF system damped by eddy current damper" >}}
### Numerical Simulation {#numerical-simulation}
It is possible to estimate that with FEM simulation: <https://www.youtube.com/watch?v=_1pgyj4lD7Q>
An approximation is done bellow.
```matlab
B = 1.0; % Magnetic Flux Density [T]
t = 5e-3; % Thickness [m]
A = 50e-3*50e-3; % Area [m2]
sigma = 6e7; % Copper conductivity [S/m]
C0 = 0.5; % [-]
```
```matlab
C = C0*B^2*t*A*sigma; % Damping in [N/(m/s)]
```
```text
C = 375 [N/(m/s)]
```
```matlab
m = 10; % [kg]
k = m*(2*pi*10)^2; % [N/m]
```
```matlab
xi = 1/2*C/sqrt(k*m);
```
```text
xi = 0.298
```
## Bibliography {#bibliography}
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Zuo, Lei. 2004. “Element and System Design for Active and Passive Vibration Isolation.” Massachusetts Institute of Technology.</div>
</div>

View File

@ -22,6 +22,7 @@ There are two main types of encoders: optical encoders, and magnetic encoders.
| [RLS](https://www.rls.si/eng/products/rotary-magnetic-encoders) | Slovenia |
| [AMO](https://www.amo-gmbh.com/en/) | Australia |
| [NumerikJena](https://www.numerikjena.de/en/) | Germany |
| [RSF Elektronik](https://www.rsf.at/en/) | Austria |
## Bibliography {#bibliography}

View File

@ -7,7 +7,10 @@ Tags
:
## Actuated Mass Spring Damper System {#actuated-mass-spring-damper-system}
## One Degree of Freedom {#one-degree-of-freedom}
### Model and equation of motion {#model-and-equation-of-motion}
Let's consider Figure [1](#figure--fig:mass-spring-damper-system) where:
@ -23,57 +26,150 @@ Let's consider Figure [1](#figure--fig:mass-spring-damper-system) where:
{{< figure src="/ox-hugo/mass_spring_damper_system.png" caption="<span class=\"figure-number\">Figure 1: </span>Mass Spring Damper System" >}}
Let's write the transfer function from \\(F\\) to \\(x\\):
Transmissibility:
\begin{equation}
\frac{x}{F}(s) = \frac{1}{m s^2 + c s + k}
\frac{x}{w}(s) = \frac{c s + k}{m s^2 + c s + k} = \frac{2 \xi \frac{s}{\omega\_0} + 1}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
\end{equation}
This can be re-written as:
Compliance:
\begin{equation}
\frac{x}{F}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
\frac{x}{F}(s) = \frac{x}{F\_d}(s) = \frac{1}{m s^2 + c s + k} = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
\end{equation}
with:
- \\(\omega\_0\\) the natural frequency in [rad/s]
- \\(\xi\\) the damping ratio
- \\(\omega\_0 = \sqrt{k/m}\\) the natural frequency in [rad/s]
- \\(\xi = \frac{1}{2} \frac{c}{\sqrt{km}}\\) the damping ratio [unit-less]
## Transfer function {#transfer-function}
### Voice Coil Actuator with flexible guiding {#voice-coil-actuator-with-flexible-guiding}
### Matlab model {#matlab-model}
```matlab
%% Mechanical properties
m = 1; % Mobile mass [kg]
k = 1e6; % stiffness [N/m]
xi = 0.01; % Modal Damping
xi = 0.1; % Modal Damping
c = 2*xi*sqrt(k*m);
```
```matlab
%% Transfer function from F [N] to x [m]
G = 1/(m*s^2 + c*s + k);
%% Compliance: Transfer function from F [N] to x [m]
Gf = 1/(m*s^2 + c*s + k);
%% Transmissibility: Transfer function from w [m] to x [m]
Gw = (c*s + k)/(m*s^2 + c*s + k);
```
<a id="figure--fig:mass-spring-damper-1dof-compliance"></a>
### Transmissibility {#transmissibility}
{{< figure src="/ox-hugo/mass_spring_damper_1dof_compliance.png" caption="<span class=\"figure-number\">Figure 2: </span>1dof Mass spring damper system - Compliance" >}}
<a id="figure--fig:mass-spring-damper-1dof-transmissibility"></a>
{{< figure src="/ox-hugo/mass_spring_damper_1dof_transmissibility.png" caption="<span class=\"figure-number\">Figure 1: </span>1dof Mass spring damper system - Transmissibility" >}}
## Two Degrees of Freedom {#two-degrees-of-freedom}
### Model and equation of motion {#model-and-equation-of-motion}
Consider the two degrees of freedom mass spring damper system of Figure [1](#figure--fig:mass-spring-damper-2dof).
<a id="figure--fig:mass-spring-damper-2dof"></a>
{{< figure src="/ox-hugo/mass_spring_damper_2dof.png" caption="<span class=\"figure-number\">Figure 1: </span>2 DoF Mass Spring Damper system" >}}
We can write the Newton's second law of motion to the two masses:
\begin{align}
m\_2 s^2 x\_2 &= F\_2 + (k\_2 + c\_2 s) (x\_1 - x\_2) \\\\
m\_1 s^2 x\_1 &= F\_1 + (k\_1 + c\_1 s) (x\_0 - x\_1) + (k\_2 + c\_2 s) (x\_2 - x\_1)
\end{align}
The goal is to have \\(x\_1\\) and \\(x\_2\\) as a function of \\(F\_1\\), \\(F\_2\\) and \\(x\_0\\).
When, we have:
\begin{equation}
\frac{x}{w}(s) = \frac{1}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
\boxed{x\_1 = \frac{(m\_2 s^2 + c\_2 s + k\_2) F\_1 + (k\_1 + c\_1 s) (m\_2 s^2 + c\_2 s + k\_2) x\_0 + (k\_2 + c\_2 s) F\_2}{(m\_1 s^2 + c\_1 s + k\_1)(m\_2 s^2 + c\_2 s + k\_2) + m\_2 s^2 (c\_2 s + k\_2)}}
\end{equation}
### Compliance {#compliance}
\begin{equation}
\frac{x}{F\_d}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
\boxed{x\_2 = \frac{(c\_2s + k\_2)F\_1 + (c\_2s + k\_2)(k\_1 + c\_1 s) x\_0 + (m\_1 s^2 + c\_1 s + k\_1 + c\_2 s + k\_2) F\_2}{(m\_1 s^2 + c\_1 s + k\_1)(m\_2 s^2 + c\_2 s + k\_2) + m\_2 s^2 (c\_2 s + k\_2)}}
\end{equation}
We can see that the effects of \\(x\_0\\) and \\(F\_1\\) are related with a factor \\((c\_1 s + k\_1)\\).
If we are interested by \\(x\_2-x\_1\\):
\begin{equation}
(x\_2 - x1) = \frac{- m\_2 s^2 F\_1 - (m\_2 s^2)(k\_1 + c\_1 s) x\_0 + (m\_1 s^2 + c\_1 s + k\_1) F\_2}{(m\_1 s^2 + c\_1 s + k\_1)(m\_2 s^2 + c\_2 s + k\_2) + m\_2 s^2 (c\_2 s + k\_2)}
\end{equation}
| | x1 | x2 | x2-x1 |
|----|-----------------------------|----------------------------|--------------------|
| x0 | (c1s + k1)(m2s2 + c2s + k2) | (c1s + k1)(c2s + k2) | - m2s2\*(k1 + c1s) |
| F1 | m2s2 + c2s + k2 | c2s + k2 | - m2s2 |
| F2 | c2s + k2 | m1s2 + c1s + k1 + c2s + k2 | m1s2 + c1s + k1 |
### Matlab model {#matlab-model}
```matlab
%% Values for the 2dof Mass-Spring-Damper system
m1 = 5e2; % [kg]
k1 = 2e6; % [N/m]
c1 = 2*0.01*sqrt(m1*k1); % [N/(m/s)]
m2 = 10; % [kg]
k2 = 1e6; % [N/m]
c2 = 2*0.01*sqrt(m2*k2); % [N/(m/s)]
```
```matlab
%% Transfer functions
G_x0_to_x1 = (c1*s + k1)*(m2*s^2 + c2*s + k2)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2));
G_F1_to_x1 = (m2*s^2 + c2*s + k2)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2));
G_F2_to_x1 = (c2*s + k2)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2));
G_x0_to_x2 = (c1*s + k1)*(c2*s + k2)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2));
G_F1_to_x2 = (c2*s + k2)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2));
G_F2_to_x2 = (m1*s^2 + c1*s + k1 + c2*s + k2)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2));
G_x0_to_d2 = -m2*s^2*(c1*s + k1)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2));
G_F1_to_d2 = -m2*s^2/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2));
G_F2_to_d2 = (m1*s^2 + c1*s + k1)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2));
```
From Figure [1](#figure--fig:mass-spring-damper-2dof-x0-bode-plots), we can see that:
- the low frequency transmissibility is equal to one
- the high frequency transmissibility to the second mass is smaller than to the first mass
<a id="figure--fig:mass-spring-damper-2dof-x0-bode-plots"></a>
{{< figure src="/ox-hugo/mass_spring_damper_2dof_x0_bode_plots.png" caption="<span class=\"figure-number\">Figure 1: </span>Transfer functions from x0 to x1 and x2 (Transmissibility)" >}}
The transfer function from \\(F\_1\\) to the mass displacements (Figure [1](#figure--fig:mass-spring-damper-2dof-F1-bode-plots)) has the same shape than the transmissibility (Figure [1](#figure--fig:mass-spring-damper-2dof-x0-bode-plots)).
However, the low frequency gain is now equal to \\(1/k\_1\\).
<a id="figure--fig:mass-spring-damper-2dof-F1-bode-plots"></a>
{{< figure src="/ox-hugo/mass_spring_damper_2dof_F1_bode_plots.png" caption="<span class=\"figure-number\">Figure 1: </span>Transfer functions from F1 to x1 and x2" >}}
The transfer functions from \\(F\_2\\) to the mass displacements are shown in Figure [1](#figure--fig:mass-spring-damper-2dof-F2-bode-plots):
- the motion \\(x\_1\\) is smaller than \\(x\_2\\)
<a id="figure--fig:mass-spring-damper-2dof-F2-bode-plots"></a>
{{< figure src="/ox-hugo/mass_spring_damper_2dof_F2_bode_plots.png" caption="<span class=\"figure-number\">Figure 1: </span>Transfer functions from F2 to x1 and x2" >}}
## Bibliography {#bibliography}

View File

@ -1,11 +1,10 @@
+++
title = "Tuned Mass Damper"
author = ["Dehaeze Thomas"]
draft = false
+++
Tags
: [Passive Damping]({{< relref "passive_damping.md" >}})
: [Passive Damping]({{< relref "passive_damping.md" >}}), [Mass Spring Damper Systems]({{< relref "mass_spring_damper_systems.md" >}})
Review: (<a href="#citeproc_bib_item_1">Elias and Matsagar 2017</a>), (<a href="#citeproc_bib_item_2">Verbaan 2015</a>)
@ -48,7 +47,10 @@ The optimal parameters of the tuned mass damper can be roughly estimated as foll
## Simple TMD model {#simple-tmd-model}
Let's consider a primary system that is represented by a mass-spring-damper system with the following parameters: \\(m\_1\\), \\(k\_1\\), \\(c\_1\\).
### Model {#model}
Let's consider a primary system that is represented by a [Mass Spring Damper Systems]({{< relref "mass_spring_damper_systems.md" >}}) with the following parameters: \\(m\_1\\), \\(k\_1\\), \\(c\_1\\).
The TMD is also represented by a mass-spring-damper system with parameters \\(m\_2\\), \\(k\_2\\), \\(c\_2\\).
The system is schematically represented in Figure [1](#figure--fig:tuned-mass-damper-schematic).

View File

@ -1,6 +1,5 @@
+++
title = "Voice Coil Actuators"
author = ["Dehaeze Thomas"]
draft = false
category = "equipment"
+++
@ -37,7 +36,6 @@ As the force is proportional to the current, a [Transconductance Amplifiers]({{<
| [H2tech](https://www.h2wtech.com/) | USA |
| [Beikimco](http://www.beikimco.com/) | USA |
| [Monticont](http://www.moticont.com/) | USA |
| [Thorlabs](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=14116) | USA |
| [Celera](https://www.celeramotion.com/applimotion/products/direct-drive-frameless-linear-motors/voice-coil/juke-series-round-body/) | |

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 120 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 198 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 248 KiB