Update Content - 2024-12-17

This commit is contained in:
Thomas Dehaeze 2024-12-17 14:09:27 +01:00
parent c3f37e3f60
commit 8fe1dc567e
2 changed files with 7 additions and 4 deletions

View File

@ -7,7 +7,7 @@ draft = false
Tags Tags
: :
## References Another type of control is [Feedforward Control]({{< relref "feedforward_control.md" >}}).
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body"> <style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
</div> </div>

View File

@ -105,14 +105,14 @@ and \\(s\\) the snap, \\(j\\) the jerk, \\(a\\) the acceleration and \\(v\\) the
The same architecture shown in Figure <fig:feedforward_fourth_order_feedforward_architecture> can be used. The same architecture shown in Figure <fig:feedforward_fourth_order_feedforward_architecture> can be used.
In order to implement a fourth order trajectory, look at [this](https://www.mathworks.com/matlabcentral/fileexchange/16352-advanced-setpoints-for-motion-systems) nice implementation in Simulink of fourth-order trajectory planning (see also <&lambrechts04_trajec>). In order to implement a fourth order trajectory, look at [this](https://www.mathworks.com/matlabcentral/fileexchange/16352-advanced-setpoints-for-motion-systems) nice implementation in Simulink of fourth-order trajectory planning (see also (<a href="#citeproc_bib_item_1">Lambrechts, Boerlage, and Steinbuch 2004</a>)).
## Model Based Feedforward Control for Second Order resonance plant {#model-based-feedforward-control-for-second-order-resonance-plant} ## Model Based Feedforward Control for Second Order resonance plant {#model-based-feedforward-control-for-second-order-resonance-plant}
<span class="org-target" id="org-target--sec-model-based-feedforward"></span> <span class="org-target" id="org-target--sec-model-based-feedforward"></span>
See <&schmidt20_desig_high_perfor_mechat_third_revis_edition> (Section 4.2.1). See (<a href="#citeproc_bib_item_2">Schmidt, Schitter, and Rankers 2020</a>) (Section 4.2.1).
Suppose we have a second order plant (could typically be a piezoelectric stage): Suppose we have a second order plant (could typically be a piezoelectric stage):
\\[ G(s) = \frac{C\_f \omega\_0^2}{s^2 + 2\xi \omega\_0 s + \omega\_0^2} \\] \\[ G(s) = \frac{C\_f \omega\_0^2}{s^2 + 2\xi \omega\_0 s + \omega\_0^2} \\]
@ -227,4 +227,7 @@ This can be solved by using **snap feedforward**
## Bibliography {#bibliography} ## Bibliography {#bibliography}
<./biblio/references.bib> <style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Lambrechts, P., M. Boerlage, and M. Steinbuch. 2004. “Trajectory Planning and Feedforward Design for High Performance Motion Systems.” In <i>Proceedings of the 2004 American Control Conference</i>. doi:<a href="https://doi.org/10.23919/acc.2004.1384042">10.23919/acc.2004.1384042</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2020. <i>The Design of High Performance Mechatronics - Third Revised Edition</i>. Ios Press.</div>
</div>