diff --git a/content/zettels/feedback_control.md b/content/zettels/feedback_control.md index d552db6..1a7877a 100644 --- a/content/zettels/feedback_control.md +++ b/content/zettels/feedback_control.md @@ -7,7 +7,7 @@ draft = false Tags : -## References +Another type of control is [Feedforward Control]({{< relref "feedforward_control.md" >}}).
diff --git a/content/zettels/feedforward_control.md b/content/zettels/feedforward_control.md index 8d03bfc..affb278 100644 --- a/content/zettels/feedforward_control.md +++ b/content/zettels/feedforward_control.md @@ -105,14 +105,14 @@ and \\(s\\) the snap, \\(j\\) the jerk, \\(a\\) the acceleration and \\(v\\) the The same architecture shown in Figure can be used. -In order to implement a fourth order trajectory, look at [this](https://www.mathworks.com/matlabcentral/fileexchange/16352-advanced-setpoints-for-motion-systems) nice implementation in Simulink of fourth-order trajectory planning (see also <&lambrechts04_trajec>). +In order to implement a fourth order trajectory, look at [this](https://www.mathworks.com/matlabcentral/fileexchange/16352-advanced-setpoints-for-motion-systems) nice implementation in Simulink of fourth-order trajectory planning (see also (Lambrechts, Boerlage, and Steinbuch 2004)). ## Model Based Feedforward Control for Second Order resonance plant {#model-based-feedforward-control-for-second-order-resonance-plant} -See <&schmidt20_desig_high_perfor_mechat_third_revis_edition> (Section 4.2.1). +See (Schmidt, Schitter, and Rankers 2020) (Section 4.2.1). Suppose we have a second order plant (could typically be a piezoelectric stage): \\[ G(s) = \frac{C\_f \omega\_0^2}{s^2 + 2\xi \omega\_0 s + \omega\_0^2} \\] @@ -227,4 +227,7 @@ This can be solved by using **snap feedforward** ## Bibliography {#bibliography} -<./biblio/references.bib> +
+
Lambrechts, P., M. Boerlage, and M. Steinbuch. 2004. “Trajectory Planning and Feedforward Design for High Performance Motion Systems.” In Proceedings of the 2004 American Control Conference. doi:10.23919/acc.2004.1384042.
+
Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2020. The Design of High Performance Mechatronics - Third Revised Edition. Ios Press.
+