Update Content - 2020-12-11
This commit is contained in:
@@ -10,7 +10,7 @@ Tags
|
||||
|
||||
## SNR to Noise PSD {#snr-to-noise-psd}
|
||||
|
||||
From ([Jabben 2007](#org4650879)) (Section 3.3.2):
|
||||
From ([Jabben 2007](#orgf2f4e47)) (Section 3.3.2):
|
||||
|
||||
> Electronic equipment does most often not come with detailed electric schemes, in which case the PSD should be determined from measurements.
|
||||
> In the design phase however, one has to rely on information provided by specification sheets from the manufacturer.
|
||||
@@ -22,7 +22,7 @@ From ([Jabben 2007](#org4650879)) (Section 3.3.2):
|
||||
> \\[ S\_{snr} = \frac{x\_{fr}^2}{8 f\_c C\_{snr}^2} \\]
|
||||
> with \\(x\_{fr}\\) the full range of \\(x\\), and \\(C\_{snr}\\) the SNR.
|
||||
|
||||
<div class="bgreen">
|
||||
<div class="exampl">
|
||||
<div></div>
|
||||
|
||||
Let's take an example.
|
||||
@@ -49,7 +49,7 @@ where \\(S\_{snr}\\) is the SNR in dB and \\(S\_\text{rms}\\) is the RMS value o
|
||||
If the full range is \\(\Delta V\\), then:
|
||||
\\[ S\_\text{rms} = \frac{\Delta V/2}{\sqrt{2}} \\]
|
||||
|
||||
<div class="bgreen">
|
||||
<div class="exampl">
|
||||
<div></div>
|
||||
|
||||
As an example, let's take a voltage amplifier with a full range of \\(\Delta V = 20V\\) and a SNR of 85dB.
|
||||
@@ -66,7 +66,7 @@ The RMS value of the noise is then:
|
||||
If the wanted full range and RMS value of the noise are defined, the required SNR can be computed from:
|
||||
\\[ S\_{snr} = 20 \log \frac{\text{Signal, rms}}{\text{Noise, rms}} \\]
|
||||
|
||||
<div class="bgreen">
|
||||
<div class="exampl">
|
||||
<div></div>
|
||||
|
||||
Let's say the wanted noise is \\(1 mV, \text{rms}\\) for a full range of \\(20 V\\), the corresponding SNR is:
|
||||
@@ -78,13 +78,13 @@ Let's say the wanted noise is \\(1 mV, \text{rms}\\) for a full range of \\(20 V
|
||||
|
||||
## Noise Density to RMS noise {#noise-density-to-rms-noise}
|
||||
|
||||
From ([Fleming 2010](#orgf1518db)):
|
||||
From ([Fleming 2010](#orgf17a758)):
|
||||
\\[ \text{RMS noise} = \sqrt{2 \times \text{bandwidth}} \times \text{noise density} \\]
|
||||
|
||||
If the noise is normally distributed, the RMS value is also the standard deviation \\(\sigma\\).
|
||||
The peak to peak amplitude is then approximately \\(6 \sigma\\).
|
||||
|
||||
<div class="bgreen">
|
||||
<div class="exampl">
|
||||
<div></div>
|
||||
|
||||
- noise density = \\(20 pm/\sqrt{Hz}\\)
|
||||
@@ -98,6 +98,6 @@ The peak-to-peak noise will be approximately \\(6 \sigma = 1.7 nm\\)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgf1518db"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="orgf17a758"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
||||
<a id="org4650879"></a>Jabben, Leon. 2007. “Mechatronic Design of a Magnetically Suspended Rotating Platform.” Delft University.
|
||||
<a id="orgf2f4e47"></a>Jabben, Leon. 2007. “Mechatronic Design of a Magnetically Suspended Rotating Platform.” Delft University.
|
||||
|
Reference in New Issue
Block a user