Thus, if \\(\bm{F}\\) is aligned with \\(\bm{z}\_{ni}\\) (the i'th normalized eigenvector), then \\(\bm{F}\_p\\) will be null except for its i'th term and only the i'th mode will be excited.
@@ -871,7 +867,7 @@ Thus, if \\(\bm{F}\\) is aligned with \\(\bm{z}\_{ni}\\) (the i'th normalized ei
Any transfer function derived from the modal analysis is an additive combination of sdof systems.
-
+
Each single degree of freedom system has a gain determined by the appropriate eigenvector entries and a resonant frequency given by the appropriate eigenvalue.
@@ -892,9 +888,9 @@ Equations \eqref{eq:general_add_tf} and \eqref{eq:general_add_tf_damp} shows tha
-Figure [10](#org235691b) shows the separate contributions of each mode to the total response \\(z\_1/F\_1\\).
+Figure [10](#org36b2696) shows the separate contributions of each mode to the total response \\(z\_1/F\_1\\).
-
+
{{< figure src="/ox-hugo/hatch00_z11_tf.png" caption="Figure 10: Mode contributions to the transfer function from \\(F\_1\\) to \\(z\_1\\)" >}}
@@ -903,16 +899,16 @@ The zeros for SISO transfer functions are the roots of the numerator, however, f
## SISO State Space Matlab Model from ANSYS Model {#siso-state-space-matlab-model-from-ansys-model}
-
+
### Introduction {#introduction}
-In this section is developed a SISO state space Matlab model from an ANSYS cantilever beam model as shown in Figure [11](#org670dac0).
+In this section is developed a SISO state space Matlab model from an ANSYS cantilever beam model as shown in Figure [11](#org332d1e7).
A z direction force is applied at the midpoint of the beam and z displacement at the tip is the output.
The objective is to provide the smallest Matlab state space model that accurately represents the pertinent dynamics.
-
+
{{< figure src="/ox-hugo/hatch00_cantilever_beam.png" caption="Figure 11: Cantilever beam with forcing function at midpoint" >}}
@@ -991,7 +987,7 @@ If sorting of DC gain values is performed prior to the `truncate` operation, the
## Ground Acceleration Matlab Model From ANSYS Model {#ground-acceleration-matlab-model-from-ansys-model}
-
+
### Model Description {#model-description}
@@ -1005,25 +1001,25 @@ If sorting of DC gain values is performed prior to the `truncate` operation, the
## SISO Disk Drive Actuator Model {#siso-disk-drive-actuator-model}
-
+
-In this section we wish to extract a SISO state space model from a Finite Element model representing a Disk Drive Actuator (Figure [12](#orge365d89)).
+In this section we wish to extract a SISO state space model from a Finite Element model representing a Disk Drive Actuator (Figure [12](#org6d55a33)).
### Actuator Description {#actuator-description}
-
+
{{< figure src="/ox-hugo/hatch00_disk_drive_siso_model.png" caption="Figure 12: Drawing of Actuator/Suspension system" >}}
-The primary motion of the actuator is rotation about the pivot bearing, therefore the final model has the coordinate system transformed from a Cartesian x,y,z coordinate system to a Cylindrical \\(r\\), \\(\theta\\) and \\(z\\) system, with the two origins coincident (Figure [13](#org117f7e6)).
+The primary motion of the actuator is rotation about the pivot bearing, therefore the final model has the coordinate system transformed from a Cartesian x,y,z coordinate system to a Cylindrical \\(r\\), \\(\theta\\) and \\(z\\) system, with the two origins coincident (Figure [13](#org482c35b)).
-
+
{{< figure src="/ox-hugo/hatch00_disk_drive_nodes_reduced_model.png" caption="Figure 13: Nodes used for reduced Matlab model. Shown with partial finite element mesh at coil" >}}
For reduced models, we only require eigenvector information for dof where forces are applied and where displacements are required.
-Figure [13](#org117f7e6) shows the nodes used for the reduced Matlab model.
+Figure [13](#org482c35b) shows the nodes used for the reduced Matlab model.
The four nodes 24061, 24066, 24082 and 24087 are located in the center of the coil in the z direction and are used for simulating the VCM force.
The arrows at the nodes indicate the direction of forces.
@@ -1046,7 +1042,7 @@ A recommended sequence for analyzing dynamic finite element models is:
A small section of the exported `.eig` file from ANSYS is shown bellow..
-
+
LOAD STEP= 1 SUBSTEP= 1
@@ -1086,7 +1082,7 @@ From Ansys, we have the eigenvalues \\(\omega\_i\\) and eigenvectors \\(\bm{z}\\
## Balanced Reduction {#balanced-reduction}
-
+
In this chapter another method of reducing models, “balanced reduction”, will be introduced and compared with the DC and peak gain ranking methods.
@@ -1201,14 +1197,14 @@ The **states to be kept are the states with the largest diagonal terms**.
## MIMO Two Stage Actuator Model {#mimo-two-stage-actuator-model}
-
+
-In this section, a MIMO two-stage actuator model is derived from a finite element model (Figure [14](#org265cca4)).
+In this section, a MIMO two-stage actuator model is derived from a finite element model (Figure [14](#orgdc24ed7)).
### Actuator Description {#actuator-description}
-
+
{{< figure src="/ox-hugo/hatch00_disk_drive_mimo_schematic.png" caption="Figure 14: Drawing of actuator/suspension system" >}}
@@ -1217,7 +1213,7 @@ The piezo actuator consists of a ceramic element that changes size when a voltag
Then the fine positioning motion of the piezo is used in conjunction with VCM's coarse positioning motion, higher servo bandwidth is possible.
-
+
Instead of applying voltage as the input into the piezo elements, we will assume that we have calculated an equivalent set of forces which can be applied at the ends of the element that will replicate the voltage force function.
@@ -1230,9 +1226,9 @@ Since the same forces are being applied to both piezo elements, they represent t
### Ansys Model Description {#ansys-model-description}
-In Figure [15](#orge18f970) are shown the principal nodes used for the model.
+In Figure [15](#org40d5587) are shown the principal nodes used for the model.
-
+
{{< figure src="/ox-hugo/hatch00_disk_drive_mimo_ansys.png" caption="Figure 15: Nodes used for reduced Matlab model, shown with partial mesh at coil and piezo element" >}}
@@ -1351,11 +1347,11 @@ And we note:
G = zn * Gp;
```
-
+
{{< figure src="/ox-hugo/hatch00_z13_tf.png" caption="Figure 16: Mode contributions to the transfer function from \\(F\_1\\) to \\(z\_3\\)" >}}
-
+
{{< figure src="/ox-hugo/hatch00_z11_tf.png" caption="Figure 17: Mode contributions to the transfer function from \\(F\_1\\) to \\(z\_1\\)" >}}
@@ -1453,13 +1449,13 @@ G_f = ss(A, B, C, D);
### Simple mode truncation {#simple-mode-truncation}
-Let's plot the frequency of the modes (Figure [18](#orge6429ee)).
+Let's plot the frequency of the modes (Figure [18](#org152bcb2)).
-
+
{{< figure src="/ox-hugo/hatch00_cant_beam_modes_freq.png" caption="Figure 18: Frequency of the modes" >}}
-
+
{{< figure src="/ox-hugo/hatch00_cant_beam_unsorted_dc_gains.png" caption="Figure 19: Unsorted DC Gains" >}}
@@ -1528,7 +1524,7 @@ dc_gain = abs(xn(i_input, :).*xn(i_output, :))./(2*pi*f0).^2;
[dc_gain_sort, index_sort] = sort(dc_gain, 'descend');
```
-
+
{{< figure src="/ox-hugo/hatch00_cant_beam_sorted_dc_gains.png" caption="Figure 20: Sorted DC Gains" >}}
@@ -1872,7 +1868,7 @@ wo = gram(G_m, 'o');
And we plot the diagonal terms
-
+
{{< figure src="/ox-hugo/hatch00_gramians.png" caption="Figure 21: Observability and Controllability Gramians" >}}
@@ -1890,7 +1886,7 @@ We use `balreal` to rank oscillatory states.
[G_b, G, T, Ti] = balreal(G_m);
```
-
+
{{< figure src="/ox-hugo/hatch00_cant_beam_gramian_balanced.png" caption="Figure 22: Sorted values of the Gramian of the balanced realization" >}}
@@ -2135,6 +2131,6 @@ pos_frames = pos([1, i_input, i_output], :);
## Bibliography {#bibliography}
-
Hatch, Michael R. 2000. _Vibration Simulation Using MATLAB and ANSYS_. CRC Press.
+
Hatch, Michael R. 2000. _Vibration Simulation Using MATLAB and ANSYS_. CRC Press.
-
Miu, Denny K. 1993. _Mechatronics: Electromechanics and Contromechanics_. 1st ed. Mechanical Engineering Series. Springer-Verlag New York.
+
Miu, Denny K. 1993. _Mechatronics: Electromechanics and Contromechanics_. 1st ed. Mechanical Engineering Series. Springer-Verlag New York.
diff --git a/content/book/skogestad07_multiv_feedb_contr.md b/content/book/skogestad07_multiv_feedb_contr.md
index fbfb2e5..4aff6d2 100644
--- a/content/book/skogestad07_multiv_feedb_contr.md
+++ b/content/book/skogestad07_multiv_feedb_contr.md
@@ -8,7 +8,7 @@ Tags
: [Reference Books]({{< relref "reference_books" >}}), [Multivariable Control]({{< relref "multivariable_control" >}})
Reference
-: ([Skogestad and Postlethwaite 2007](#org81e2975))
+: ([Skogestad and Postlethwaite 2007](#org57bef6b))
Author(s)
: Skogestad, S., & Postlethwaite, I.
@@ -19,7 +19,7 @@ Year
## Introduction {#introduction}
-
+
### The Process of Control System Design {#the-process-of-control-system-design}
@@ -190,7 +190,7 @@ Notations used throughout this note are summarized in tables [table:notatio
## Classical Feedback Control {#classical-feedback-control}
-
+
### Frequency Response {#frequency-response}
@@ -239,7 +239,7 @@ Thus, the input to the plant is \\(u = K(s) (r-y-n)\\).
The objective of control is to manipulate \\(u\\) (design \\(K\\)) such that the control error \\(e\\) remains small in spite of disturbances \\(d\\).
The control error is defined as \\(e = y-r\\).
-
+
{{< figure src="/ox-hugo/skogestad07_classical_feedback_alt.png" caption="Figure 1: Configuration for one degree-of-freedom control" >}}
@@ -551,7 +551,7 @@ We cannot achieve both of these simultaneously with a single feedback controller
The solution is to use a **two degrees of freedom controller** where the reference signal \\(r\\) and output measurement \\(y\_m\\) are independently treated by the controller (Fig. [fig:classical_feedback_2dof_alt](#fig:classical_feedback_2dof_alt)), rather than operating on their difference \\(r - y\_m\\).
-
+
{{< figure src="/ox-hugo/skogestad07_classical_feedback_2dof_alt.png" caption="Figure 2: 2 degrees-of-freedom control architecture" >}}
@@ -560,7 +560,7 @@ The controller can be slit into two separate blocks (Fig. [fig:classical_fe
- the **feedback controller** \\(K\_y\\) that is used to **reduce the effect of uncertainty** (disturbances and model errors)
- the **prefilter** \\(K\_r\\) that **shapes the commands** \\(r\\) to improve tracking performance
-
+
{{< figure src="/ox-hugo/skogestad07_classical_feedback_sep.png" caption="Figure 3: 2 degrees-of-freedom control architecture with two separate blocs" >}}
@@ -629,7 +629,7 @@ With (see Fig. [fig:performance_weigth](#fig:performance_weigth)):
-
+
{{< figure src="/ox-hugo/skogestad07_weight_first_order.png" caption="Figure 4: Inverse of performance weight" >}}
@@ -653,7 +653,7 @@ After selecting the form of \\(N\\) and the weights, the \\(\hinf\\) optimal con
## Introduction to Multivariable Control {#introduction-to-multivariable-control}
-
+
### Introduction {#introduction}
@@ -696,7 +696,7 @@ For negative feedback system (Fig. [fig:classical_feedback_bis](#fig:classi
- \\(S \triangleq (I + L)^{-1}\\) is the transfer function from \\(d\_1\\) to \\(y\\)
- \\(T \triangleq L(I + L)^{-1}\\) is the transfer function from \\(r\\) to \\(y\\)
-
+
{{< figure src="/ox-hugo/skogestad07_classical_feedback_bis.png" caption="Figure 5: Conventional negative feedback control system" >}}
@@ -1011,7 +1011,7 @@ The **structured singular value** \\(\mu\\) is a tool for analyzing the effects
The general control problem formulation is represented in Fig. [fig:general_control_names](#fig:general_control_names).
-
+
{{< figure src="/ox-hugo/skogestad07_general_control_names.png" caption="Figure 6: General control configuration" >}}
@@ -1041,7 +1041,7 @@ We consider:
- The weighted or normalized exogenous inputs \\(w\\) (where \\(\tilde{w} = W\_w w\\) consists of the "physical" signals entering the system)
- The weighted or normalized controlled outputs \\(z = W\_z \tilde{z}\\) (where \\(\tilde{z}\\) often consists of the control error \\(y-r\\) and the manipulated input \\(u\\))
-
+
{{< figure src="/ox-hugo/skogestad07_general_plant_weights.png" caption="Figure 7: General Weighted Plant" >}}
@@ -1084,7 +1084,7 @@ where \\(F\_l(P, K)\\) denotes a **lower linear fractional transformation** (LFT
The general control configuration may be extended to include model uncertainty as shown in Fig. [fig:general_config_model_uncertainty](#fig:general_config_model_uncertainty).
-
+
{{< figure src="/ox-hugo/skogestad07_general_control_Mdelta.png" caption="Figure 8: General control configuration for the case with model uncertainty" >}}
@@ -1112,7 +1112,7 @@ MIMO systems are often **more sensitive to uncertainty** than SISO systems.
## Elements of Linear System Theory {#elements-of-linear-system-theory}
-
+
### System Descriptions {#system-descriptions}
@@ -1398,7 +1398,7 @@ RHP-zeros therefore imply high gain instability.
### Internal Stability of Feedback Systems {#internal-stability-of-feedback-systems}
-
+
{{< figure src="/ox-hugo/skogestad07_classical_feedback_stability.png" caption="Figure 9: Block diagram used to check internal stability" >}}
@@ -1545,7 +1545,7 @@ It may be shown that the Hankel norm is equal to \\(\left\\|G(s)\right\\|\_H = \
## Limitations on Performance in SISO Systems {#limitations-on-performance-in-siso-systems}
-
+
### Input-Output Controllability {#input-output-controllability}
@@ -1937,7 +1937,7 @@ Uncertainty in the crossover frequency region can result in poor performance and
### Summary: Controllability Analysis with Feedback Control {#summary-controllability-analysis-with-feedback-control}
-
+
{{< figure src="/ox-hugo/skogestad07_classical_feedback_meas.png" caption="Figure 10: Feedback control system" >}}
@@ -1966,7 +1966,7 @@ In summary:
Sometimes, the disturbances are so large that we hit input saturation or the required bandwidth is not achievable. To avoid the latter problem, we must at least require that the effect of the disturbance is less than \\(1\\) at frequencies beyond the bandwidth:
\\[ \abs{G\_d(j\w)} < 1 \quad \forall \w \geq \w\_c \\]
-
+
{{< figure src="/ox-hugo/skogestad07_margin_requirements.png" caption="Figure 11: Illustration of controllability requirements" >}}
@@ -1988,7 +1988,7 @@ The rules may be used to **determine whether or not a given plant is controllabl
## Limitations on Performance in MIMO Systems {#limitations-on-performance-in-mimo-systems}
-
+
### Introduction {#introduction}
@@ -2299,7 +2299,7 @@ We here focus on input and output uncertainty.
In multiplicative form, the input and output uncertainties are given by (see Fig. [fig:input_output_uncertainty](#fig:input_output_uncertainty)):
\\[ G^\prime = (I + E\_O) G (I + E\_I) \\]
-
+
{{< figure src="/ox-hugo/skogestad07_input_output_uncertainty.png" caption="Figure 12: Plant with multiplicative input and output uncertainty" >}}
@@ -2435,7 +2435,7 @@ However, the situation is usually the opposite with model uncertainty because fo
## Uncertainty and Robustness for SISO Systems {#uncertainty-and-robustness-for-siso-systems}
-
+
### Introduction to Robustness {#introduction-to-robustness}
@@ -2509,7 +2509,7 @@ which may be represented by the diagram in Fig. [fig:input_uncertainty_set]
-
+
{{< figure src="/ox-hugo/skogestad07_input_uncertainty_set.png" caption="Figure 13: Plant with multiplicative uncertainty" >}}
@@ -2563,7 +2563,7 @@ To illustrate how parametric uncertainty translate into frequency domain uncerta
In general, these uncertain regions have complicated shapes and complex mathematical descriptions
- **Step 2**. We therefore approximate such complex regions as discs, resulting in a **complex additive uncertainty description**
-
+
{{< figure src="/ox-hugo/skogestad07_uncertainty_region.png" caption="Figure 14: Uncertainty regions of the Nyquist plot at given frequencies" >}}
@@ -2586,7 +2586,7 @@ At each frequency, all possible \\(\Delta(j\w)\\) "generates" a disc-shaped regi
-
+
{{< figure src="/ox-hugo/skogestad07_uncertainty_disc_generated.png" caption="Figure 15: Disc-shaped uncertainty regions generated by complex additive uncertainty" >}}
@@ -2643,7 +2643,7 @@ To derive \\(w\_I(s)\\), we then try to find a simple weight so that \\(\abs{w\_
-
+
{{< figure src="/ox-hugo/skogestad07_uncertainty_weight.png" caption="Figure 16: Relative error for 27 combinations of \\(k,\ \tau\\) and \\(\theta\\). Solid and dashed lines: two weights \\(\abs{w\_I}\\)" >}}
@@ -2682,7 +2682,7 @@ The magnitude of the relative uncertainty caused by neglecting the dynamics in \
Let \\(f(s) = e^{-\theta\_p s}\\), where \\(0 \le \theta\_p \le \theta\_{\text{max}}\\). We want to represent \\(G\_p(s) = G\_0(s)e^{-\theta\_p s}\\) by a delay-free plant \\(G\_0(s)\\) and multiplicative uncertainty. Let first consider the maximum delay, for which the relative error \\(\abs{1 - e^{-j \w \theta\_{\text{max}}}}\\) is shown as a function of frequency (Fig. [fig:neglected_time_delay](#fig:neglected_time_delay)). If we consider all \\(\theta \in [0, \theta\_{\text{max}}]\\) then:
\\[ l\_I(\w) = \begin{cases} \abs{1 - e^{-j\w\theta\_{\text{max}}}} & \w < \pi/\theta\_{\text{max}} \\ 2 & \w \ge \pi/\theta\_{\text{max}} \end{cases} \\]
-
+
{{< figure src="/ox-hugo/skogestad07_neglected_time_delay.png" caption="Figure 17: Neglected time delay" >}}
@@ -2692,7 +2692,7 @@ Let \\(f(s) = e^{-\theta\_p s}\\), where \\(0 \le \theta\_p \le \theta\_{\text{m
Let \\(f(s) = 1/(\tau\_p s + 1)\\), where \\(0 \le \tau\_p \le \tau\_{\text{max}}\\). In this case the resulting \\(l\_I(\w)\\) (Fig. [fig:neglected_first_order_lag](#fig:neglected_first_order_lag)) can be represented by a rational transfer function with \\(\abs{w\_I(j\w)} = l\_I(\w)\\) where
\\[ w\_I(s) = \frac{\tau\_{\text{max}} s}{\tau\_{\text{max}} s + 1} \\]
-
+
{{< figure src="/ox-hugo/skogestad07_neglected_first_order_lag.png" caption="Figure 18: Neglected first-order lag uncertainty" >}}
@@ -2709,7 +2709,7 @@ However, as shown in Fig. [fig:lag_delay_uncertainty](#fig:lag_delay_uncert
It is suggested to start with the simple weight and then if needed, to try the higher order weight.
-
+
{{< figure src="/ox-hugo/skogestad07_lag_delay_uncertainty.png" caption="Figure 19: Multiplicative weight for gain and delay uncertainty" >}}
@@ -2749,7 +2749,7 @@ We use the Nyquist stability condition to test for robust stability of the close
&\Longleftrightarrow \quad L\_p \ \text{should not encircle -1}, \ \forall L\_p
\end{align\*}
-
+
{{< figure src="/ox-hugo/skogestad07_input_uncertainty_set_feedback.png" caption="Figure 20: Feedback system with multiplicative uncertainty" >}}
@@ -2765,7 +2765,7 @@ Encirclements are avoided if none of the discs cover \\(-1\\), and we get:
&\Leftrightarrow \quad \abs{w\_I T} < 1, \ \forall\w \\\\\\
\end{align\*}
-
+
{{< figure src="/ox-hugo/skogestad07_nyquist_uncertainty.png" caption="Figure 21: Nyquist plot of \\(L\_p\\) for robust stability" >}}
@@ -2803,7 +2803,7 @@ And we obtain the same condition as before.
We will derive a corresponding RS-condition for feedback system with inverse multiplicative uncertainty (Fig. [fig:inverse_uncertainty_set](#fig:inverse_uncertainty_set)) in which
\\[ G\_p = G(1 + w\_{iI}(s) \Delta\_{iI})^{-1} \\]
-
+
{{< figure src="/ox-hugo/skogestad07_inverse_uncertainty_set.png" caption="Figure 22: Feedback system with inverse multiplicative uncertainty" >}}
@@ -2855,7 +2855,7 @@ The condition for nominal performance when considering performance in terms of t
Now \\(\abs{1 + L}\\) represents at each frequency the distance of \\(L(j\omega)\\) from the point \\(-1\\) in the Nyquist plot, so \\(L(j\omega)\\) must be at least a distance of \\(\abs{w\_P(j\omega)}\\) from \\(-1\\).
This is illustrated graphically in Fig. [fig:nyquist_performance_condition](#fig:nyquist_performance_condition).
-
+
{{< figure src="/ox-hugo/skogestad07_nyquist_performance_condition.png" caption="Figure 23: Nyquist plot illustration of the nominal performance condition \\(\abs{w\_P} < \abs{1 + L}\\)" >}}
@@ -2880,7 +2880,7 @@ Let's consider the case of multiplicative uncertainty as shown on Fig. [fig
The robust performance corresponds to requiring \\(\abs{\hat{y}/d}<1\ \forall \Delta\_I\\) and the set of possible loop transfer functions is
\\[ L\_p = G\_p K = L (1 + w\_I \Delta\_I) = L + w\_I L \Delta\_I \\]
-
+
{{< figure src="/ox-hugo/skogestad07_input_uncertainty_set_feedback_weight_bis.png" caption="Figure 24: Diagram for robust performance with multiplicative uncertainty" >}}
@@ -3046,7 +3046,7 @@ with \\(\Phi(s) \triangleq (sI - A)^{-1}\\).
This is illustrated in the block diagram of Fig. [fig:uncertainty_state_a_matrix](#fig:uncertainty_state_a_matrix), which is in the form of an inverse additive perturbation.
-
+
{{< figure src="/ox-hugo/skogestad07_uncertainty_state_a_matrix.png" caption="Figure 25: Uncertainty in state space A-matrix" >}}
@@ -3064,7 +3064,7 @@ We also derived a condition for robust performance with multiplicative uncertain
## Robust Stability and Performance Analysis {#robust-stability-and-performance-analysis}
-
+
### General Control Configuration with Uncertainty {#general-control-configuration-with-uncertainty}
@@ -3075,13 +3075,13 @@ where each \\(\Delta\_i\\) represents a **specific source of uncertainty**, e.g.
If we also pull out the controller \\(K\\), we get the generalized plant \\(P\\) as shown in Fig. [fig:general_control_delta](#fig:general_control_delta). This form is useful for controller synthesis.
-
+
{{< figure src="/ox-hugo/skogestad07_general_control_delta.png" caption="Figure 26: General control configuration used for controller synthesis" >}}
If the controller is given and we want to analyze the uncertain system, we use the \\(N\Delta\text{-structure}\\) in Fig. [fig:general_control_Ndelta](#fig:general_control_Ndelta).
-
+
{{< figure src="/ox-hugo/skogestad07_general_control_Ndelta.png" caption="Figure 27: \\(N\Delta\text{-structure}\\) for robust performance analysis" >}}
@@ -3101,7 +3101,7 @@ Similarly, the uncertain closed-loop transfer function from \\(w\\) to \\(z\\),
To analyze robust stability of \\(F\\), we can rearrange the system into the \\(M\Delta\text{-structure}\\) shown in Fig. [fig:general_control_Mdelta_bis](#fig:general_control_Mdelta_bis) where \\(M = N\_{11}\\) is the transfer function from the output to the input of the perturbations.
-
+
{{< figure src="/ox-hugo/skogestad07_general_control_Mdelta_bis.png" caption="Figure 28: \\(M\Delta\text{-structure}\\) for robust stability analysis" >}}
@@ -3153,7 +3153,7 @@ Three common forms of **feedforward unstructured uncertainty** are shown Fig.&nb
| ![](/ox-hugo/skogestad07_additive_uncertainty.png) | ![](/ox-hugo/skogestad07_input_uncertainty.png) | ![](/ox-hugo/skogestad07_output_uncertainty.png) |
|----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|
-|
Additive uncertainty |
Multiplicative input uncertainty |
Multiplicative output uncertainty |
+|
Additive uncertainty |
Multiplicative input uncertainty |
Multiplicative output uncertainty |
In Fig. [fig:feedback_uncertainty](#fig:feedback_uncertainty), three **feedback or inverse unstructured uncertainty** forms are shown: inverse additive uncertainty, inverse multiplicative input uncertainty and inverse multiplicative output uncertainty.
@@ -3176,7 +3176,7 @@ In Fig. [fig:feedback_uncertainty](#fig:feedback_uncertainty), three **feed
| ![](/ox-hugo/skogestad07_inv_additive_uncertainty.png) | ![](/ox-hugo/skogestad07_inv_input_uncertainty.png) | ![](/ox-hugo/skogestad07_inv_output_uncertainty.png) |
|--------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|
-|
Inverse additive uncertainty |
Inverse multiplicative input uncertainty |
Inverse multiplicative output uncertainty |
+|
Inverse additive uncertainty |
Inverse multiplicative input uncertainty |
Inverse multiplicative output uncertainty |
##### Lumping uncertainty into a single perturbation {#lumping-uncertainty-into-a-single-perturbation}
@@ -3246,7 +3246,7 @@ where \\(r\_0\\) is the relative uncertainty at steady-state, \\(1/\tau\\) is th
Let's consider the feedback system with multiplicative input uncertainty \\(\Delta\_I\\) shown Fig. [fig:input_uncertainty_set_feedback_weight](#fig:input_uncertainty_set_feedback_weight).
\\(W\_I\\) is a normalization weight for the uncertainty and \\(W\_P\\) is a performance weight.
-
+
{{< figure src="/ox-hugo/skogestad07_input_uncertainty_set_feedback_weight.png" caption="Figure 29: System with multiplicative input uncertainty and performance measured at the output" >}}
@@ -3406,7 +3406,7 @@ Where \\(G = M\_l^{-1} N\_l\\) is a left coprime factorization of the nominal pl
This uncertainty description is surprisingly **general**, it allows both zeros and poles to cross into the right-half plane, and has proven to be very useful in applications.
-
+
{{< figure src="/ox-hugo/skogestad07_coprime_uncertainty.png" caption="Figure 30: Coprime Uncertainty" >}}
@@ -3438,7 +3438,7 @@ where \\(d\_i\\) is a scalar and \\(I\_i\\) is an identity matrix of the same di
Now rescale the inputs and outputs of \\(M\\) and \\(\Delta\\) by inserting the matrices \\(D\\) and \\(D^{-1}\\) on both sides as shown in Fig. [fig:block_diagonal_scalings](#fig:block_diagonal_scalings).
This clearly has no effect on stability.
-
+
{{< figure src="/ox-hugo/skogestad07_block_diagonal_scalings.png" caption="Figure 31: Use of block-diagonal scalings, \\(\Delta D = D \Delta\\)" >}}
@@ -3754,7 +3754,7 @@ with the decoupling controller we have:
\\[ \bar{\sigma}(N\_{22}) = \bar{\sigma}(w\_P S) = \left|\frac{s/2 + 0.05}{s + 0.7}\right| \\]
and we see from Fig. [fig:mu_plots_distillation](#fig:mu_plots_distillation) that the NP-condition is satisfied.
-
+
{{< figure src="/ox-hugo/skogestad07_mu_plots_distillation.png" caption="Figure 32: \\(\mu\text{-plots}\\) for distillation process with decoupling controller" >}}
@@ -3877,7 +3877,7 @@ The latter is an attempt to "flatten out" \\(\mu\\).
For simplicity, we will consider again the case of multiplicative uncertainty and performance defined in terms of weighted sensitivity.
The uncertainty weight \\(w\_I I\\) and performance weight \\(w\_P I\\) are shown graphically in Fig. [fig:weights_distillation](#fig:weights_distillation).
-
+
{{< figure src="/ox-hugo/skogestad07_weights_distillation.png" caption="Figure 33: Uncertainty and performance weights" >}}
@@ -3900,11 +3900,11 @@ The scaling matrix \\(D\\) for \\(DND^{-1}\\) then has the structure \\(D = \tex
- Iteration No. 3.
Step 1: The \\(\mathcal{H}\_\infty\\) norm is only slightly reduced. We thus decide the stop the iterations.
-
+
{{< figure src="/ox-hugo/skogestad07_dk_iter_mu.png" caption="Figure 34: Change in \\(\mu\\) during DK-iteration" >}}
-
+
{{< figure src="/ox-hugo/skogestad07_dk_iter_d_scale.png" caption="Figure 35: Change in D-scale \\(d\_1\\) during DK-iteration" >}}
@@ -3912,13 +3912,13 @@ The final \\(\mu\text{-curves}\\) for NP, RS and RP with the controller \\(K\_3\
The objectives of RS and NP are easily satisfied.
The peak value of \\(\mu\\) is just slightly over 1, so the performance specification \\(\bar{\sigma}(w\_P S\_p) < 1\\) is almost satisfied for all possible plants.
-
+
{{< figure src="/ox-hugo/skogestad07_mu_plot_optimal_k3.png" caption="Figure 36: \\(mu\text{-plots}\\) with \\(\mu\\) \"optimal\" controller \\(K\_3\\)" >}}
To confirm that, 6 perturbed plants are used to compute the perturbed sensitivity functions shown in Fig. [fig:perturb_s_k3](#fig:perturb_s_k3).
-
+
{{< figure src="/ox-hugo/skogestad07_perturb_s_k3.png" caption="Figure 37: Perturbed sensitivity functions \\(\bar{\sigma}(S^\prime)\\) using \\(\mu\\) \"optimal\" controller \\(K\_3\\). Lower solid line: nominal plant. Upper solid line: worst-case plant" >}}
@@ -3973,7 +3973,7 @@ If resulting control performance is not satisfactory, one may switch to the seco
## Controller Design {#controller-design}
-
+
### Trade-offs in MIMO Feedback Design {#trade-offs-in-mimo-feedback-design}
@@ -3993,7 +3993,7 @@ We have the following important relationships:
\end{align}
\end{subequations}
-
+
{{< figure src="/ox-hugo/skogestad07_classical_feedback_small.png" caption="Figure 38: One degree-of-freedom feedback configuration" >}}
@@ -4035,7 +4035,7 @@ Thus, over specified frequency ranges, it is relatively easy to approximate the
Typically, the open-loop requirements 1 and 3 are valid and important at low frequencies \\(0 \le \omega \le \omega\_l \le \omega\_B\\), while conditions 2, 4, 5 and 6 are conditions which are valid and important at high frequencies \\(\omega\_B \le \omega\_h \le \omega \le \infty\\), as illustrated in Fig. [fig:design_trade_off_mimo_gk](#fig:design_trade_off_mimo_gk).
-
+
{{< figure src="/ox-hugo/skogestad07_design_trade_off_mimo_gk.png" caption="Figure 39: Design trade-offs for the multivariable loop transfer function \\(GK\\)" >}}
@@ -4092,7 +4092,7 @@ The solution to the LQG problem is then found by replacing \\(x\\) by \\(\hat{x}
We therefore see that the LQG problem and its solution can be separated into two distinct parts as illustrated in Fig. [fig:lqg_separation](#fig:lqg_separation): the optimal state feedback and the optimal state estimator (the Kalman filter).
-
+
{{< figure src="/ox-hugo/skogestad07_lqg_separation.png" caption="Figure 40: The separation theorem" >}}
@@ -4142,7 +4142,7 @@ Where \\(Y\\) is the unique positive-semi definite solution of the algebraic Ric
-
+
{{< figure src="/ox-hugo/skogestad07_lqg_kalman_filter.png" caption="Figure 41: The LQG controller and noisy plant" >}}
@@ -4163,7 +4163,7 @@ It has the same degree (number of poles) as the plant.
For the LQG-controller, as shown on Fig. [fig:lqg_kalman_filter](#fig:lqg_kalman_filter), it is not easy to see where to position the reference input \\(r\\) and how integral action may be included, if desired. Indeed, the standard LQG design procedure does not give a controller with integral action. One strategy is illustrated in Fig. [fig:lqg_integral](#fig:lqg_integral). Here, the control error \\(r-y\\) is integrated and the regulator \\(K\_r\\) is designed for the plant augmented with these integral states.
-
+
{{< figure src="/ox-hugo/skogestad07_lqg_integral.png" caption="Figure 42: LQG controller with integral action and reference input" >}}
@@ -4176,18 +4176,18 @@ Their main limitation is that they can only be applied to minimum phase plants.
### \\(\htwo\\) and \\(\hinf\\) Control {#htwo--and--hinf--control}
-
+
#### General Control Problem Formulation {#general-control-problem-formulation}
-
+
There are many ways in which feedback design problems can be cast as \\(\htwo\\) and \\(\hinf\\) optimization problems.
It is very useful therefore to have a **standard problem formulation** into which any particular problem may be manipulated.
Such a general formulation is afforded by the general configuration shown in Fig. [fig:general_control](#fig:general_control).
-
+
{{< figure src="/ox-hugo/skogestad07_general_control.png" caption="Figure 43: General control configuration" >}}
@@ -4438,7 +4438,7 @@ The elements of the generalized plant are
\end{array}
\end{equation\*}
-
+
{{< figure src="/ox-hugo/skogestad07_mixed_sensitivity_dist_rejection.png" caption="Figure 44: \\(S/KS\\) mixed-sensitivity optimization in standard form (regulation)" >}}
@@ -4447,7 +4447,7 @@ Here we consider a tracking problem.
The exogenous input is a reference command \\(r\\), and the error signals are \\(z\_1 = -W\_1 e = W\_1 (r-y)\\) and \\(z\_2 = W\_2 u\\).
As the regulation problem of Fig. [fig:mixed_sensitivity_dist_rejection](#fig:mixed_sensitivity_dist_rejection), we have that \\(z\_1 = W\_1 S w\\) and \\(z\_2 = W\_2 KS w\\).
-
+
{{< figure src="/ox-hugo/skogestad07_mixed_sensitivity_ref_tracking.png" caption="Figure 45: \\(S/KS\\) mixed-sensitivity optimization in standard form (tracking)" >}}
@@ -4471,7 +4471,7 @@ The elements of the generalized plant are
\end{array}
\end{equation\*}
-
+
{{< figure src="/ox-hugo/skogestad07_mixed_sensitivity_s_t.png" caption="Figure 46: \\(S/T\\) mixed-sensitivity optimization in standard form" >}}
@@ -4499,7 +4499,7 @@ The focus of attention has moved to the size of signals and away from the size a
Weights are used to describe the expected or known frequency content of exogenous signals and the desired frequency content of error signals.
Weights are also used if a perturbation is used to model uncertainty, as in Fig. [fig:input_uncertainty_hinf](#fig:input_uncertainty_hinf), where \\(G\\) represents the nominal model, \\(W\\) is a weighting function that captures the relative model fidelity over frequency, and \\(\Delta\\) represents unmodelled dynamics usually normalized such that \\(\hnorm{\Delta} < 1\\).
-
+
{{< figure src="/ox-hugo/skogestad07_input_uncertainty_hinf.png" caption="Figure 47: Multiplicative dynamic uncertainty model" >}}
@@ -4521,7 +4521,7 @@ The problem can be cast as a standard \\(\hinf\\) optimization in the general co
w = \begin{bmatrix}d\\r\\n\end{bmatrix},\ z = \begin{bmatrix}z\_1\\z\_2\end{bmatrix}, \ v = \begin{bmatrix}r\_s\\y\_m\end{bmatrix},\ u = u
\end{equation\*}
-
+
{{< figure src="/ox-hugo/skogestad07_hinf_signal_based.png" caption="Figure 48: A signal-based \\(\hinf\\) control problem" >}}
@@ -4532,7 +4532,7 @@ This problem is a non-standard \\(\hinf\\) optimization.
It is a robust performance problem for which the \\(\mu\text{-synthesis}\\) procedure can be applied where we require the structured singular value:
\\[ \mu(M(j\omega)) < 1, \quad \forall\omega \\]
-
+
{{< figure src="/ox-hugo/skogestad07_hinf_signal_based_uncertainty.png" caption="Figure 49: A signal-based \\(\hinf\\) control problem with input multiplicative uncertainty" >}}
@@ -4590,7 +4590,7 @@ For the perturbed feedback system of Fig. [fig:coprime_uncertainty_bis](#fi
Notice that \\(\gamma\\) is the \\(\hinf\\) norm from \\(\phi\\) to \\(\begin{bmatrix}u\\y\end{bmatrix}\\) and \\((I-GK)^{-1}\\) is the sensitivity function for this positive feedback arrangement.
-
+
{{< figure src="/ox-hugo/skogestad07_coprime_uncertainty_bis.png" caption="Figure 50: \\(\hinf\\) robust stabilization problem" >}}
@@ -4637,7 +4637,7 @@ It is important to emphasize that since we can compute \\(\gamma\_\text{min}\\)
#### A Systematic \\(\hinf\\) Loop-Shaping Design Procedure {#a-systematic--hinf--loop-shaping-design-procedure}
-
+
Robust stabilization alone is not much used in practice because the designer is not able to specify any performance requirements.
To do so, **pre and post compensators** are used to **shape the open-loop singular values** prior to robust stabilization of the "shaped" plant.
@@ -4650,7 +4650,7 @@ If \\(W\_1\\) and \\(W\_2\\) are the pre and post compensators respectively, the
as shown in Fig. [fig:shaped_plant](#fig:shaped_plant).
-
+
{{< figure src="/ox-hugo/skogestad07_shaped_plant.png" caption="Figure 51: The shaped plant and controller" >}}
@@ -4687,7 +4687,7 @@ Systematic procedure for \\(\hinf\\) loop-shaping design:
This is because the references do not directly excite the dynamics of \\(K\_s\\), which can result in large amounts of overshoot.
The constant prefilter ensure a steady-state gain of \\(1\\) between \\(r\\) and \\(y\\), assuming integral action in \\(W\_1\\) or \\(G\\)
-
+
{{< figure src="/ox-hugo/skogestad07_shapping_practical_implementation.png" caption="Figure 52: A practical implementation of the loop-shaping controller" >}}
@@ -4713,7 +4713,7 @@ But in cases where stringent time-domain specifications are set on the output re
A general two degrees-of-freedom feedback control scheme is depicted in Fig. [fig:classical_feedback_2dof_simple](#fig:classical_feedback_2dof_simple).
The commands and feedbacks enter the controller separately and are independently processed.
-
+
{{< figure src="/ox-hugo/skogestad07_classical_feedback_2dof_simple.png" caption="Figure 53: General two degrees-of-freedom feedback control scheme" >}}
@@ -4724,7 +4724,7 @@ The design problem is illustrated in Fig. [fig:coprime_uncertainty_hinf](#f
The feedback part of the controller \\(K\_2\\) is designed to meet robust stability and disturbance rejection requirements.
A prefilter is introduced to force the response of the closed-loop system to follow that of a specified model \\(T\_{\text{ref}}\\), often called the **reference model**.
-
+
{{< figure src="/ox-hugo/skogestad07_coprime_uncertainty_hinf.png" caption="Figure 54: Two degrees-of-freedom \\(\mathcal{H}\_\infty\\) loop-shaping design problem" >}}
@@ -4749,7 +4749,7 @@ The main steps required to synthesize a two degrees-of-freedom \\(\mathcal{H}\_\
The final two degrees-of-freedom \\(\mathcal{H}\_\infty\\) loop-shaping controller is illustrated in Fig. [fig:hinf_synthesis_2dof](#fig:hinf_synthesis_2dof).
-
+
{{< figure src="/ox-hugo/skogestad07_hinf_synthesis_2dof.png" caption="Figure 55: Two degrees-of-freedom \\(\mathcal{H}\_\infty\\) loop-shaping controller" >}}
@@ -4821,7 +4821,7 @@ where \\(u\_a\\) is the **actual plant input**, that is the measurement at the *
The situation is illustrated in Fig. [fig:weight_anti_windup](#fig:weight_anti_windup), where the actuators are each modeled by a unit gain and a saturation.
-
+
{{< figure src="/ox-hugo/skogestad07_weight_anti_windup.png" caption="Figure 56: Self-conditioned weight \\(W\_1\\)" >}}
@@ -4869,14 +4869,14 @@ Moreover, one should be careful about combining controller synthesis and analysi
## Controller Structure Design {#controller-structure-design}
-
+
### Introduction {#introduction}
In previous sections, we considered the general problem formulation in Fig. [fig:general_control_names_bis](#fig:general_control_names_bis) and stated that the controller design problem is to find a controller \\(K\\) which based on the information in \\(v\\), generates a control signal \\(u\\) which counteracts the influence of \\(w\\) on \\(z\\), thereby minimizing the closed loop norm from \\(w\\) to \\(z\\).
-
+
{{< figure src="/ox-hugo/skogestad07_general_control_names_bis.png" caption="Figure 57: General Control Configuration" >}}
@@ -4911,7 +4911,7 @@ The reference value \\(r\\) is usually set at some higher layer in the control h
Additional layers are possible, as is illustrated in Fig. [fig:control_system_hierarchy](#fig:control_system_hierarchy) which shows a typical control hierarchy for a chemical plant.
-
+
{{< figure src="/ox-hugo/skogestad07_system_hierarchy.png" caption="Figure 58: Typical control system hierarchy in a chemical plant" >}}
@@ -4933,7 +4933,7 @@ However, this solution is normally not used for a number a reasons, included the
| ![](/ox-hugo/skogestad07_optimize_control_a.png) | ![](/ox-hugo/skogestad07_optimize_control_b.png) | ![](/ox-hugo/skogestad07_optimize_control_c.png) |
|--------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------|
-|
Open loop optimization |
Closed-loop implementation with separate control layer |
Integrated optimization and control |
+|
Open loop optimization |
Closed-loop implementation with separate control layer |
Integrated optimization and control |
### Selection of Controlled Outputs {#selection-of-controlled-outputs}
@@ -5140,7 +5140,7 @@ A cascade control structure results when either of the following two situations
| ![](/ox-hugo/skogestad07_cascade_extra_meas.png) | ![](/ox-hugo/skogestad07_cascade_extra_input.png) |
|-------------------------------------------------------|---------------------------------------------------|
-|
Extra measurements \\(y\_2\\) |
Extra inputs \\(u\_2\\) |
+|
Extra measurements \\(y\_2\\) |
Extra inputs \\(u\_2\\) |
#### Cascade Control: Extra Measurements {#cascade-control-extra-measurements}
@@ -5189,7 +5189,7 @@ With reference to the special (but common) case of cascade control shown in Fig.
{{< figure src="/ox-hugo/skogestad07_cascade_control.png" caption="Figure 59: Common case of cascade control where the primary output \\(y\_1\\) depends directly on the extra measurement \\(y\_2\\)" >}}
@@ -5239,7 +5239,7 @@ We would probably tune the three controllers in the order \\(K\_2\\), \\(K\_3\\)