Update Content - 2020-10-26
@ -4,13 +4,15 @@ author = ["Thomas Dehaeze"]
|
|||||||
draft = false
|
draft = false
|
||||||
+++
|
+++
|
||||||
|
|
||||||
Backlinks:
|
|
||||||
|
|
||||||
- [Advances in internal model control technique: a review and future prospects]({{< relref "saxena12_advan_inter_model_contr_techn" >}})
|
|
||||||
- [Actuator Fusion]({{< relref "actuator_fusion" >}})
|
|
||||||
- [Sensor Fusion]({{< relref "sensor_fusion" >}})
|
|
||||||
|
|
||||||
Tags
|
Tags
|
||||||
:
|
:
|
||||||
|
|
||||||
<./biblio/references.bib>
|
|
||||||
|
## Complementary Filters Synthesis {#complementary-filters-synthesis}
|
||||||
|
|
||||||
|
The shaping of complementary filters can be done using the \\(\mathcal{H}\_\infty\\) synthesis ([Dehaeze, Vermat, and Christophe 2019](#orgc79060a)).
|
||||||
|
|
||||||
|
|
||||||
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
|
<a id="orgc79060a"></a>Dehaeze, Thomas, Mohit Vermat, and Collette Christophe. 2019. “Complementary Filters Shaping Using \\(mathcalH\_Infty\\) Synthesis.” In _7th International Conference on Control, Mechatronics and Automation (ICCMA)_, 459–64. <https://doi.org/10.1109/ICCMA46720.2019.8988642>.
|
||||||
|
50
content/zettels/electronic_active_filters.md
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
+++
|
||||||
|
title = "Electronic Active Filters"
|
||||||
|
author = ["Thomas Dehaeze"]
|
||||||
|
draft = false
|
||||||
|
+++
|
||||||
|
|
||||||
|
Tags
|
||||||
|
: [Operational Amplifiers]({{< relref "operational_amplifiers" >}})
|
||||||
|
|
||||||
|
TODOS:
|
||||||
|
|
||||||
|
- [X] Electronics circuits containing input voltage, output voltage, Op-amp, RLC components
|
||||||
|
- [ ] Bode plots of the filters
|
||||||
|
- [ ] Inputs and output impedance
|
||||||
|
|
||||||
|
|
||||||
|
## Low Pass Filter {#low-pass-filter}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\frac{V\_o}{V\_i}(s) = \frac{1}{R^2 C\_1 C\_2 s^2 + 2 R C\_2 s + 1}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\frac{V\_o}{V\_i}(s) = \frac{1}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
With:
|
||||||
|
|
||||||
|
- \\(\omega\_0 = \frac{1}{R\sqrt{C\_1 C\_2}}\\)
|
||||||
|
- \\(\xi = \frac{C\_2}{C\_1}\\)
|
||||||
|
|
||||||
|
<a id="org21a1d35"></a>
|
||||||
|
|
||||||
|
{{< figure src="/ox-hugo/elec_active_second_order_low_pass_filter.png" caption="Figure 1: Second Order Low Pass Filter" >}}
|
||||||
|
|
||||||
|
|
||||||
|
## High Pass Filter {#high-pass-filter}
|
||||||
|
|
||||||
|
Same as [1](#org21a1d35) but by exchanging R1 with C1 and R2 with C2
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\frac{V\_o}{V\_i}(s) = \frac{R^2 C\_1 C\_2 s^2}{R^2 C\_1 C\_2 s^2 + 2 R C\_2 s + 1}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
With:
|
||||||
|
|
||||||
|
- \\(\omega\_0 = \frac{1}{R\sqrt{C\_1 C\_2}}\\)
|
||||||
|
- \\(\xi = \frac{C\_2}{C\_1}\\)
|
||||||
|
|
||||||
|
<./biblio/references.bib>
|
44
content/zettels/electronic_passive_filters.md
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
+++
|
||||||
|
title = "Electronic Passive Filters"
|
||||||
|
author = ["Thomas Dehaeze"]
|
||||||
|
draft = false
|
||||||
|
+++
|
||||||
|
|
||||||
|
Tags
|
||||||
|
:
|
||||||
|
|
||||||
|
TODOS:
|
||||||
|
|
||||||
|
- [X] Electronics circuits containing input voltage, output voltage, R L and C components
|
||||||
|
- [ ] Bode plot of the filter from input voltage to output voltage
|
||||||
|
- [ ] Equation of the transfer functions with nice parameters (\\(\omega\_c\\), \\(\xi\\))
|
||||||
|
|
||||||
|
|
||||||
|
## First Order Low Pass Filter {#first-order-low-pass-filter}
|
||||||
|
|
||||||
|
<a id="orgf718550"></a>
|
||||||
|
|
||||||
|
{{< figure src="/ox-hugo/elec_passive_first_order_low_pass_filter.png" caption="Figure 1: First Order Low Pass Filter using an RC circuit" >}}
|
||||||
|
|
||||||
|
|
||||||
|
## First Order High Pass Filter {#first-order-high-pass-filter}
|
||||||
|
|
||||||
|
<a id="orgc9b929d"></a>
|
||||||
|
|
||||||
|
{{< figure src="/ox-hugo/elec_passive_first_order_high_pass_filter.png" caption="Figure 2: First Order High Pass Filter using an RC circuit" >}}
|
||||||
|
|
||||||
|
|
||||||
|
## Second Order Low Pass Filter {#second-order-low-pass-filter}
|
||||||
|
|
||||||
|
<a id="orgb56edb0"></a>
|
||||||
|
|
||||||
|
{{< figure src="/ox-hugo/elec_passive_second_order_low_pass_filter.png" caption="Figure 3: Second Order Low Pass Filter using an RLC circuit" >}}
|
||||||
|
|
||||||
|
|
||||||
|
## Second Order High Pass Filter {#second-order-high-pass-filter}
|
||||||
|
|
||||||
|
<a id="org1bcacc5"></a>
|
||||||
|
|
||||||
|
{{< figure src="/ox-hugo/elec_passive_second_order_high_pass_filter.png" caption="Figure 4: Second Order High Pass Filter using an RLC circuit" >}}
|
||||||
|
|
||||||
|
<./biblio/references.bib>
|
@ -7,4 +7,52 @@ draft = false
|
|||||||
Tags
|
Tags
|
||||||
:
|
:
|
||||||
|
|
||||||
|
|
||||||
|
## Actuated Mass Spring Damper System {#actuated-mass-spring-damper-system}
|
||||||
|
|
||||||
|
Let's consider Figure [1](#orgeec8f0f) where:
|
||||||
|
|
||||||
|
- \\(m\\) is the mass in [kg]
|
||||||
|
- \\(ḱ\\) is the spring stiffness in [N/m]
|
||||||
|
- \\(c\\) is the damping coefficient in [N/(m/s)]
|
||||||
|
- \\(F\\) is the actuator force in [N]
|
||||||
|
- \\(F\_d\\) is external force applied to the mass in [N]
|
||||||
|
- \\(w\\) is ground motion
|
||||||
|
- \\(x\\) is the absolute mass motion
|
||||||
|
|
||||||
|
<a id="orgeec8f0f"></a>
|
||||||
|
|
||||||
|
{{< figure src="/ox-hugo/mass_spring_damper_system.png" caption="Figure 1: Mass Spring Damper System" >}}
|
||||||
|
|
||||||
|
Let's write the transfer function from \\(F\\) to \\(x\\):
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\frac{x}{F}(s) = \frac{1}{m s^2 + c s + k}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
This can be re-written as:
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\frac{x}{F}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
with:
|
||||||
|
|
||||||
|
- \\(\omega\_0\\) the natural frequency in [rad/s]
|
||||||
|
- \\(\xi\\) the damping ratio
|
||||||
|
|
||||||
|
|
||||||
|
## Transmissibility {#transmissibility}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\frac{x}{w}(s) = \frac{1}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
|
## Compliance {#compliance}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\frac{x}{F\_d}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
10
content/zettels/operational_amplifiers.md
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
+++
|
||||||
|
title = "Operational Amplifiers"
|
||||||
|
author = ["Thomas Dehaeze"]
|
||||||
|
draft = false
|
||||||
|
+++
|
||||||
|
|
||||||
|
Tags
|
||||||
|
:
|
||||||
|
|
||||||
|
<./biblio/references.bib>
|
BIN
static/ox-hugo/elec_active_second_order_low_pass_filter.png
Normal file
After Width: | Height: | Size: 19 KiB |
BIN
static/ox-hugo/elec_passive_first_order_high_pass_filter.png
Normal file
After Width: | Height: | Size: 9.0 KiB |
BIN
static/ox-hugo/elec_passive_first_order_low_pass_filter.png
Normal file
After Width: | Height: | Size: 9.7 KiB |
BIN
static/ox-hugo/elec_passive_second_order_high_pass_filter.png
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
static/ox-hugo/elec_passive_second_order_low_pass_filter.png
Normal file
After Width: | Height: | Size: 13 KiB |
BIN
static/ox-hugo/mass_spring_damper_system.png
Normal file
After Width: | Height: | Size: 4.4 KiB |
BIN
static/ox-hugo/mech_sys_alone.png
Normal file
After Width: | Height: | Size: 3.7 KiB |