Update Content - 2021-09-23
This commit is contained in:
@@ -5,7 +5,7 @@ draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
: [Position Sensors]({{<relref "position_sensors.md#" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
@@ -22,9 +22,14 @@ Tags
|
||||
| [Optics11](https://optics11.com/) | Netherlands |
|
||||
|
||||
|
||||
## Reviews {#reviews}
|
||||
|
||||
([Ducourtieux 2018](#orgba5debb), [2018](#orgba5debb); [Bobroff 1993](#org9cfc0be), [1993](#org9cfc0be); [Thurner et al. 2015](#org9f4a3ed), [2015](#org9f4a3ed); [Loughridge and Abramovitch 2013](#org2c02ae6))
|
||||
|
||||
|
||||
## Effect of Refractive Index - Environmental Units {#effect-of-refractive-index-environmental-units}
|
||||
|
||||
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#org90df4b2))).
|
||||
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#org9f4a3ed))).
|
||||
|
||||
<a id="table--tab:index-air"></a>
|
||||
<div class="table-caption">
|
||||
@@ -59,16 +64,16 @@ Typical characteristics of commercial environmental units are shown in Table [2]
|
||||
|
||||
## Interferometer Precision {#interferometer-precision}
|
||||
|
||||
Figure [1](#org195a5db) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#org4c766f1))).
|
||||
Figure [1](#org1406d51) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#orgcfb1fbe))).
|
||||
|
||||
<a id="org195a5db"></a>
|
||||
<a id="org1406d51"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
|
||||
|
||||
|
||||
## Sources of uncertainty {#sources-of-uncertainty}
|
||||
|
||||
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#org08e49c8)).
|
||||
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#orgba5debb)).
|
||||
|
||||
It includes:
|
||||
|
||||
@@ -78,10 +83,10 @@ It includes:
|
||||
- Pressure: \\(K\_P \approx 0.27 ppm hPa^{-1}\\)
|
||||
- Humidity: \\(K\_{HR} \approx 0.01 ppm \% RH^{-1}\\)
|
||||
- These errors can partially be compensated using an environmental unit.
|
||||
- Air turbulence (Figure [2](#org7f738e4))
|
||||
- Air turbulence (Figure [2](#org690599c))
|
||||
- Non linearity
|
||||
|
||||
<a id="org7f738e4"></a>
|
||||
<a id="org690599c"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/interferometers_air_turbulence.png" caption="Figure 2: Effect of air turbulences on measurement stability" >}}
|
||||
|
||||
@@ -89,8 +94,12 @@ It includes:
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org08e49c8"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
|
||||
<a id="org9cfc0be"></a>Bobroff, N. 1993. “Recent Advances in Displacement Measuring Interferometry.” _Measurement Science and Technology_ 4 (9):907–26. <https://doi.org/10.1088/0957-0233/4/9/001>.
|
||||
|
||||
<a id="org4c766f1"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
||||
<a id="orgba5debb"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
|
||||
|
||||
<a id="org90df4b2"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:3051–63.
|
||||
<a id="orgcfb1fbe"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
||||
|
||||
<a id="org2c02ae6"></a>Loughridge, Russell, and Daniel Y. Abramovitch. 2013. “A Tutorial on Laser Interferometry for Precision Measurements.” In _2013 American Control Conference_, nil. <https://doi.org/10.1109/acc.2013.6580402>.
|
||||
|
||||
<a id="org9f4a3ed"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:3051–63.
|
||||
|
@@ -10,18 +10,18 @@ Tags
|
||||
Here are some notes on the literature about the isotropy of parallel manipulators.
|
||||
|
||||
|
||||
## ([Tsai and Huang 2003](#org0724ed5)) {#tsai-and-huang-2003--org0724ed5}
|
||||
## ([Tsai and Huang 2003](#orgfdcbc5f)) {#tsai-and-huang-2003--orgfdcbc5f}
|
||||
|
||||
|
||||
## ([Fassi, Legnani, and Tosi 2005](#orgd63d03a)) {#fassi-legnani-and-tosi-2005--orgd63d03a}
|
||||
## ([Fassi, Legnani, and Tosi 2005](#org420bcfa)) {#fassi-legnani-and-tosi-2005--org420bcfa}
|
||||
|
||||
|
||||
## ([Bandyopadhyay and Ghosal 2008](#orgf824a14)) {#bandyopadhyay-and-ghosal-2008--orgf824a14}
|
||||
## ([Bandyopadhyay and Ghosal 2008](#org403a5a5)) {#bandyopadhyay-and-ghosal-2008--org403a5a5}
|
||||
|
||||
Uses `mathematica` to inverse analytical Jacobian matrix and obtain conditions for isotropy.
|
||||
|
||||
|
||||
## ([Legnani et al. 2010](#org513282b)) {#legnani-et-al-dot-2010--org513282b}
|
||||
## ([Legnani et al. 2010](#orgf42f367)) {#legnani-et-al-dot-2010--orgf42f367}
|
||||
|
||||
|
||||
### Abstract {#abstract}
|
||||
@@ -115,7 +115,7 @@ Then conditions are given to find an isotropic TCP.
|
||||
Conditions can be applied to the Stewart platform and isotropy points can be found.
|
||||
|
||||
|
||||
## ([Tong et al. 2011](#org6ea337f)) {#tong-et-al-dot-2011--org6ea337f}
|
||||
## ([Tong et al. 2011](#org3d4f33e)) {#tong-et-al-dot-2011--org3d4f33e}
|
||||
|
||||
A parallel manipulator consists of a movable platform, a fixed base, and six struts, each with a linear actuator.
|
||||
The struts are partitioned into two groups: the first group with strut 1,3,5 and the second group with strut 2,4,6.
|
||||
@@ -123,7 +123,7 @@ The attached points of each strut are uniformly spaced on the circumferences of
|
||||
The three struts in each group are rotational symmetry and repeat every 120 deg.
|
||||
This parallel manipulator with this kind of configurations are defined as generalized symmetric Gough-Stewart parallel manipulators (GSGSPMs).
|
||||
|
||||
<a id="orgf6e6061"></a>
|
||||
<a id="org1222642"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/tong11_architecture_gsgspm.png" caption="Figure 1: Architecture of a GSGSPM" >}}
|
||||
|
||||
@@ -131,7 +131,7 @@ A compliance center exists consequentially for any GSGSPMs.
|
||||
At the compliance center, a GSGSPM is uncoupled.
|
||||
|
||||
|
||||
## ([Legnani et al. 2012](#org0747a45)) {#legnani-et-al-dot-2012--org0747a45}
|
||||
## ([Legnani et al. 2012](#orgac23b06)) {#legnani-et-al-dot-2012--orgac23b06}
|
||||
|
||||
A manipulator is called partially of totally decoupled if the general movements of the robot can be subdivided in elementary tasks, each actuated by one or a group of actuators.
|
||||
Decoupling may be referred to the end effector coordinate or to local kinetostatic properties related to the Jacobian.
|
||||
@@ -140,7 +140,7 @@ Decoupling may be referred to the end effector coordinate or to local kinetostat
|
||||
- Partial decoupling is when the Jacobian is triangular
|
||||
- Block decoupling is when the Jacobian is block diagonal
|
||||
|
||||
<a id="org0738057"></a>
|
||||
<a id="orga046465"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/legnani12_isotropic_pkm.png" caption="Figure 2: An isotropic PKM" >}}
|
||||
|
||||
@@ -151,26 +151,32 @@ It is highlighted how isotropy and decoupling may be achieved for pure translati
|
||||
</summary>
|
||||
|
||||
|
||||
## ([Ding et al. 2014](#orgbeecf44)) {#ding-et-al-dot-2014--orgbeecf44}
|
||||
## ([Ding et al. 2014](#orga0fa269)) {#ding-et-al-dot-2014--orga0fa269}
|
||||
|
||||
|
||||
## ([Wu et al. 2018](#orgcb2f4d0)) {#wu-et-al-dot-2018--orgcb2f4d0}
|
||||
## ([Afzali-Far 2016](#orgc42aa83)) {#afzali-far-2016--orgc42aa83}
|
||||
|
||||
> The problem of dynamic isotropy, as an optimal design solution for hexapods, is also addressed in this dissertation.
|
||||
> **Dynamic isotropy is a condition in which all eigenfrequencies of a robot are equal**.
|
||||
|
||||
|
||||
## ([Wu et al. 2018](#orgbacd7c7)) {#wu-et-al-dot-2018--orgbacd7c7}
|
||||
|
||||
Isotropy => J\*J' = a\*I
|
||||
|
||||
- Stiffness isotropy = static isotropy
|
||||
- velocity isotropy = kinematic isotropy
|
||||
|
||||
They also proved that the symmetric generalized Stewart platform at a neutral position could be fully decoupled by adjusting the payload's center of mass to coincide with its **compliance center**. ([Tong et al. 2011](#org6ea337f))
|
||||
They also proved that the symmetric generalized Stewart platform at a neutral position could be fully decoupled by adjusting the payload's center of mass to coincide with its **compliance center**. ([Tong et al. 2011](#org3d4f33e))
|
||||
|
||||
Dynamic isotropy => same resonance frequency for all suspension modes.
|
||||
|
||||
<a id="org171ed4c"></a>
|
||||
<a id="orge4ddb31"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/wu18_stewart_picture.png" caption="Figure 3: Optimized Stewart platform" >}}
|
||||
|
||||
|
||||
## ([Yang et al. 2020](#orgda6537c)) {#yang-et-al-dot-2020--orgda6537c}
|
||||
## ([Yang et al. 2020](#orge144852)) {#yang-et-al-dot-2020--orge144852}
|
||||
|
||||
<summary>
|
||||
This paper proposes a novel concept, namely _isotropic control_ to solve the problem of having identical performance in all DoF.
|
||||
@@ -182,28 +188,30 @@ An identical corner frequency, active damping, and rate of low-frequency transmi
|
||||
</summary>
|
||||
|
||||
|
||||
## ([Kang et al. 2020](#org460918c)) {#kang-et-al-dot-2020--org460918c}
|
||||
## ([Kang et al. 2020](#orgb043f30)) {#kang-et-al-dot-2020--orgb043f30}
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgf824a14"></a>Bandyopadhyay, Sandipan, and Ashitava Ghosal. 2008. “An Algebraic Formulation of Kinematic Isotropy and Design of Isotropic 6-6 Stewart Platform Manipulators.” _Mechanism and Machine Theory_ 43 (5):591–616. <https://doi.org/10.1016/j.mechmachtheory.2007.05.003>.
|
||||
<a id="orgc42aa83"></a>Afzali-Far, Behrouz. 2016. “Vibrations and Dynamic Isotropy in Hexapods-Analytical Studies.” Lund University.
|
||||
|
||||
<a id="orgbeecf44"></a>Ding, Boyin, Benjamin S. Cazzolato, Richard M. Stanley, Steven Grainger, and John J. Costi. 2014. “Stiffness Analysis and Control of a Stewart Platform-Based Manipulator with Decoupled Sensor-Actuator Locations for Ultrahigh Accuracy Positioning under Large External Loads.” _Journal of Dynamic Systems, Measurement, and Control_ 136 (6):nil. <https://doi.org/10.1115/1.4027945>.
|
||||
<a id="org403a5a5"></a>Bandyopadhyay, Sandipan, and Ashitava Ghosal. 2008. “An Algebraic Formulation of Kinematic Isotropy and Design of Isotropic 6-6 Stewart Platform Manipulators.” _Mechanism and Machine Theory_ 43 (5):591–616. <https://doi.org/10.1016/j.mechmachtheory.2007.05.003>.
|
||||
|
||||
<a id="orgd63d03a"></a>Fassi, Irene, Giovanni Legnani, and Diego Tosi. 2005. “Geometrical Conditions for the Design of Partial or Full Isotropic Hexapods.” _Journal of Robotic Systems_ 22 (10):507–18. <https://doi.org/10.1002/rob.20074>.
|
||||
<a id="orga0fa269"></a>Ding, Boyin, Benjamin S. Cazzolato, Richard M. Stanley, Steven Grainger, and John J. Costi. 2014. “Stiffness Analysis and Control of a Stewart Platform-Based Manipulator with Decoupled Sensor-Actuator Locations for Ultrahigh Accuracy Positioning under Large External Loads.” _Journal of Dynamic Systems, Measurement, and Control_ 136 (6):nil. <https://doi.org/10.1115/1.4027945>.
|
||||
|
||||
<a id="org460918c"></a>Kang, Shengzheng, Hongtao Wu, Shengdong Yu, Yao Li, Xiaolong Yang, and Jiafeng Yao. 2020. “Modeling and Control of a Six-Axis Parallel Piezo-Flexural Micropositioning Stage with Cross-Coupling Hysteresis Nonlinearities.” In _2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)_, 1350–55. IEEE.
|
||||
<a id="org420bcfa"></a>Fassi, Irene, Giovanni Legnani, and Diego Tosi. 2005. “Geometrical Conditions for the Design of Partial or Full Isotropic Hexapods.” _Journal of Robotic Systems_ 22 (10):507–18. <https://doi.org/10.1002/rob.20074>.
|
||||
|
||||
<a id="org0747a45"></a>Legnani, G., I. Fassi, H. Giberti, S. Cinquemani, and D. Tosi. 2012. “A New Isotropic and Decoupled 6-Dof Parallel Manipulator.” _Mechanism and Machine Theory_ 58 (nil):64–81. <https://doi.org/10.1016/j.mechmachtheory.2012.07.008>.
|
||||
<a id="orgb043f30"></a>Kang, Shengzheng, Hongtao Wu, Shengdong Yu, Yao Li, Xiaolong Yang, and Jiafeng Yao. 2020. “Modeling and Control of a Six-Axis Parallel Piezo-Flexural Micropositioning Stage with Cross-Coupling Hysteresis Nonlinearities.” In _2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)_, 1350–55. IEEE.
|
||||
|
||||
<a id="org513282b"></a>Legnani, Giovanni, D Tosi, I Fassi, Hermes Giberti, and Simone Cinquemani. 2010. “The ‘Point of Isotropy’ and Other Properties of Serial and Parallel Manipulators.” _Mechanism and Machine Theory_ 45 (10). Elsevier:1407–23.
|
||||
<a id="orgac23b06"></a>Legnani, G., I. Fassi, H. Giberti, S. Cinquemani, and D. Tosi. 2012. “A New Isotropic and Decoupled 6-Dof Parallel Manipulator.” _Mechanism and Machine Theory_ 58 (nil):64–81. <https://doi.org/10.1016/j.mechmachtheory.2012.07.008>.
|
||||
|
||||
<a id="org6ea337f"></a>Tong, Zhizhong, Jingfeng He, Hongzhou Jiang, and Guangren Duan. 2011. “Optimal Design of a Class of Generalized Symmetric Gough-Stewart Parallel Manipulators with Dynamic Isotropy and Singularity-Free Workspace.” _Robotica_ 30 (2):305–14. <https://doi.org/10.1017/s0263574711000531>.
|
||||
<a id="orgf42f367"></a>Legnani, Giovanni, D Tosi, I Fassi, Hermes Giberti, and Simone Cinquemani. 2010. “The ‘Point of Isotropy’ and Other Properties of Serial and Parallel Manipulators.” _Mechanism and Machine Theory_ 45 (10). Elsevier:1407–23.
|
||||
|
||||
<a id="org0724ed5"></a>Tsai, K.Y., and K.D. Huang. 2003. “The Design of Isotropic 6-Dof Parallel Manipulators Using Isotropy Generators.” _Mechanism and Machine Theory_ 38 (11):1199–1214. <https://doi.org/10.1016/s0094-114x(03)00067-3>.
|
||||
<a id="org3d4f33e"></a>Tong, Zhizhong, Jingfeng He, Hongzhou Jiang, and Guangren Duan. 2011. “Optimal Design of a Class of Generalized Symmetric Gough-Stewart Parallel Manipulators with Dynamic Isotropy and Singularity-Free Workspace.” _Robotica_ 30 (2):305–14. <https://doi.org/10.1017/s0263574711000531>.
|
||||
|
||||
<a id="orgcb2f4d0"></a>Wu, Ying, Kaiping Yu, Jian Jiao, Dengqing Cao, Weichao Chi, and Jie Tang. 2018. “Dynamic Isotropy Design and Analysis of a Six-Dof Active Micro-Vibration Isolation Manipulator on Satellites.” _Robotics and Computer-Integrated Manufacturing_ 49 (nil):408–25. <https://doi.org/10.1016/j.rcim.2017.08.003>.
|
||||
<a id="orgfdcbc5f"></a>Tsai, K.Y., and K.D. Huang. 2003. “The Design of Isotropic 6-Dof Parallel Manipulators Using Isotropy Generators.” _Mechanism and Machine Theory_ 38 (11):1199–1214. <https://doi.org/10.1016/s0094-114x(03)00067-3>.
|
||||
|
||||
<a id="orgda6537c"></a>Yang, Xiaolong, Hongtao Wu, Yao Li, Shengzheng Kang, Bai Chen, Huimin Lu, Carman K. M. Lee, and Ping Ji. 2020. “Dynamics and Isotropic Control of Parallel Mechanisms for Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 25 (4):2027–34. <https://doi.org/10.1109/tmech.2020.2996641>.
|
||||
<a id="orgbacd7c7"></a>Wu, Ying, Kaiping Yu, Jian Jiao, Dengqing Cao, Weichao Chi, and Jie Tang. 2018. “Dynamic Isotropy Design and Analysis of a Six-Dof Active Micro-Vibration Isolation Manipulator on Satellites.” _Robotics and Computer-Integrated Manufacturing_ 49 (nil):408–25. <https://doi.org/10.1016/j.rcim.2017.08.003>.
|
||||
|
||||
<a id="orge144852"></a>Yang, Xiaolong, Hongtao Wu, Yao Li, Shengzheng Kang, Bai Chen, Huimin Lu, Carman K. M. Lee, and Ping Ji. 2020. “Dynamics and Isotropic Control of Parallel Mechanisms for Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 25 (4):2027–34. <https://doi.org/10.1109/tmech.2020.2996641>.
|
||||
|
Reference in New Issue
Block a user