Update all files with new citeproc-org package
This commit is contained in:
@@ -4,14 +4,13 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [A concept of active mount for space applications]({{< relref "souleille18_concep_activ_mount_space_applic" >}})
|
||||
- [Active isolation and damping of vibrations via stewart platform]({{< relref "hanieh03_activ_stewar" >}})
|
||||
- [Active damping based on decoupled collocated control]({{< relref "holterman05_activ_dampin_based_decoup_colloc_contr" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -4,31 +4,20 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Sensor Fusion]({{< relref "sensor_fusion" >}})
|
||||
|
||||
Tags
|
||||
: [Complementary Filters]({{< relref "complementary_filters" >}})
|
||||
|
||||
<sup id="89b9470055c4d7f0f1957aa4400df9e8"><a href="#beijen19_mixed_feedb_feedf_contr_desig" title="Michiel Beijen, Marcel Heertjes, Hans Butler, \& Maarten Steinbuch, Mixed Feedback and Feedforward Control Design for Multi-Axis Vibration Isolation Systems, Mechatronics, v(), 106 - 116 (2019).">("Michiel Beijen {\it et al.}, 2019)</a></sup>
|
||||
([Beijen et al. 2019](#orgb647b35))
|
||||
|
||||
<sup id="28a270550e13d2c8d045c9e0a9557945"><a href="#beijen18_distur" title="@phdthesis{beijen18_distur,
|
||||
author = {Beijen, MA},
|
||||
school = {Technische Universiteit Eindhoven},
|
||||
title = {Disturbance feedforward control for vibration isolation
|
||||
systems: analysis, design, and implementation},
|
||||
year = 2018,
|
||||
}">@phdthesis{beijen18_distur,
|
||||
author = {Beijen, MA},
|
||||
school = {Technische Universiteit Eindhoven},
|
||||
title = {Disturbance feedforward control for vibration isolation
|
||||
systems: analysis, design, and implementation},
|
||||
year = 2018,
|
||||
}</a></sup> (section 6.3.1)
|
||||
|
||||
# Bibliography
|
||||
<a id="beijen19_mixed_feedb_feedf_contr_desig"></a>Beijen, M. A., Heertjes, M. F., Butler, H., & Steinbuch, M., *Mixed feedback and feedforward control design for multi-axis vibration isolation systems*, Mechatronics, *61()*, 106–116 (2019). http://dx.doi.org/https://doi.org/10.1016/j.mechatronics.2019.06.005 [↩](#89b9470055c4d7f0f1957aa4400df9e8)
|
||||
|
||||
<a id="beijen18_distur"></a>Beijen, M., *Disturbance feedforward control for vibration isolation systems: analysis, design, and implementation* (Doctoral dissertation) (2018). Technische Universiteit Eindhoven, . [↩](#28a270550e13d2c8d045c9e0a9557945)
|
||||
([Beijen 2018](#orgb43eced)) (section 6.3.1)
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
- [Sensor Fusion]({{< relref "sensor_fusion" >}})
|
||||
<a id="orgb43eced"></a>Beijen, MA. 2018. “Disturbance Feedforward Control for Vibration Isolation Systems: Analysis, Design, and Implementation.” Technische Universiteit Eindhoven.
|
||||
|
||||
<a id="orgb647b35"></a>Beijen, Michiel A., Marcel F. Heertjes, Hans Butler, and Maarten Steinbuch. 2019. “Mixed Feedback and Feedforward Control Design for Multi-Axis Vibration Isolation Systems.” _Mechatronics_ 61:106–16. <https://doi.org/https://doi.org/10.1016/j.mechatronics.2019.06.005>.
|
||||
|
@@ -4,6 +4,13 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
- [Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation]({{< relref "ito16_compar_class_high_precis_actuat" >}})
|
||||
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
@@ -17,26 +24,18 @@ Links to specific actuators:
|
||||
|
||||
For vibration isolation:
|
||||
|
||||
- In ([Ito and Schitter 2016](#org9138007)), the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{< relref "ito16_compar_class_high_precis_actuat" >}}))
|
||||
- In ([Ito and Schitter 2016](#org04f932d)), the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{< relref "ito16_compar_class_high_precis_actuat" >}}))
|
||||
|
||||
|
||||
## Brush-less DC Motor {#brush-less-dc-motor}
|
||||
|
||||
- ([Yedamale 2003](#org6977e93))
|
||||
- ([Yedamale 2003](#orge9272fd))
|
||||
|
||||
<https://www.electricaltechnology.org/2016/05/bldc-brushless-dc-motor-construction-working-principle.html>
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org9138007"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 21 (2):1169–78. <https://doi.org/10.1109/tmech.2015.2478658>.
|
||||
<a id="org04f932d"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 21 (2):1169–78. <https://doi.org/10.1109/tmech.2015.2478658>.
|
||||
|
||||
<a id="org6977e93"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (BLDC) Motor Fundamentals.” _Microchip Technology Inc_ 20:3–15.
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
- [Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation]({{< relref "ito16_compar_class_high_precis_actuat" >}})
|
||||
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
|
||||
<a id="orge9272fd"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (BLDC) Motor Fundamentals.” _Microchip Technology Inc_ 20:3–15.
|
||||
|
@@ -10,7 +10,7 @@ Tags
|
||||
|
||||
## Collocated/Dual actuator and sensor {#collocated-dual-actuator-and-sensor}
|
||||
|
||||
According to <sup id="454500a3af67ef66a7a754d1f2e1bd4a"><a class="reference-link" href="#preumont18_vibrat_contr_activ_struc_fourt_edition" title="Andre Preumont, Vibration Control of Active Structures - Fourth Edition, Springer International Publishing (2018).">(Andre Preumont, 2018)</a></sup>:
|
||||
According to ([Preumont 2018](#org97812d4)):
|
||||
|
||||
> A **collocated** control system is a control system where the actuator and the sensor are attached to the same degree of freedom.
|
||||
>
|
||||
@@ -19,9 +19,9 @@ According to <sup id="454500a3af67ef66a7a754d1f2e1bd4a"><a class="reference-link
|
||||
|
||||
## Nearly Collocated Actuator Sensor Pair {#nearly-collocated-actuator-sensor-pair}
|
||||
|
||||
From Figure [1](#org00adcca), it is clear that at some frequency / for some mode, the actuator and the sensor will not be collocated anymore (here starting with mode 3).
|
||||
From Figure [1](#org9754446), it is clear that at some frequency / for some mode, the actuator and the sensor will not be collocated anymore (here starting with mode 3).
|
||||
|
||||
<a id="org00adcca"></a>
|
||||
<a id="org9754446"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/preumont18_nearly_collocated_schematic.png" caption="Figure 1: Mode shapes for a uniform beam. \\(u\\) and \\(y\\) are not collocated actuator and sensor" >}}
|
||||
|
||||
@@ -37,5 +37,7 @@ Of course, this will reduce the sensibility.
|
||||
|
||||
- [ ] What happens is small pieces of actuators are mixed with small pieces of sensors?
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="preumont18_vibrat_contr_activ_struc_fourt_edition">Preumont, A., *Vibration control of active structures - fourth edition* (2018), : Springer International Publishing.</a> [↩](#454500a3af67ef66a7a754d1f2e1bd4a)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org97812d4"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
|
@@ -4,14 +4,13 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Advances in internal model control technique: a review and future prospects]({{< relref "saxena12_advan_inter_model_contr_techn" >}})
|
||||
- [Actuator Fusion]({{< relref "actuator_fusion" >}})
|
||||
- [Sensor Fusion]({{< relref "sensor_fusion" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -4,6 +4,12 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
|
||||
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
|
||||
- [Sensors and control of a space-based six-axis vibration isolation system]({{< relref "hauge04_sensor_contr_space_based_six" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
@@ -13,7 +19,7 @@ Tags
|
||||
|
||||
## Special Properties {#special-properties}
|
||||
|
||||
Cubic Stewart Platforms can be decoupled provided that (from ([Chen and McInroy 2000](#orgf50ffa1)))
|
||||
Cubic Stewart Platforms can be decoupled provided that (from ([Chen and McInroy 2000](#org916c010)))
|
||||
|
||||
> 1. The payload mass-inertia matrix is diagonal
|
||||
> 2. If a mutually orthogonal geometry has been selected, the payload's center of mass must coincide with the center of the cube formed by the orthogonal struts.
|
||||
@@ -21,11 +27,4 @@ Cubic Stewart Platforms can be decoupled provided that (from ([Chen and McInroy
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgf50ffa1"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
|
||||
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
|
||||
- [Sensors and control of a space-based six-axis vibration isolation system]({{< relref "hauge04_sensor_contr_space_based_six" >}})
|
||||
<a id="org916c010"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
@@ -4,35 +4,23 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Dynamic error budgeting, a design approach]({{< relref "monkhorst04_dynam_error_budget" >}})
|
||||
- [Systems and Signals Norms]({{< relref "norms" >}})
|
||||
- [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
|
||||
- [The design of high performance mechatronics - 2nd revised edition]({{< relref "schmidt14_desig_high_perfor_mechat_revis_edition" >}})
|
||||
- [Mechatronic design of a magnetically suspended rotating platform]({{< relref "jabben07_mechat" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
A good introduction to Dynamic Error Budgeting is given in <sup id="651e626e040250ee71a0847aec41b60c"><a class="reference-link" href="#monkhorst04_dynam_error_budget" title="@phdthesis{monkhorst04_dynam_error_budget,
|
||||
author = {Wouter Monkhorst},
|
||||
school = {Delft University},
|
||||
title = {Dynamic Error Budgeting, a design approach},
|
||||
year = 2004,
|
||||
}">@phdthesis{monkhorst04_dynam_error_budget,
|
||||
author = {Wouter Monkhorst},
|
||||
school = {Delft University},
|
||||
title = {Dynamic Error Budgeting, a design approach},
|
||||
year = 2004,
|
||||
}</a></sup>.
|
||||
A good introduction to Dynamic Error Budgeting is given in ([Monkhorst 2004](#org9c3cf08)).
|
||||
|
||||
|
||||
## Step by Step process {#step-by-step-process}
|
||||
|
||||
Taken from <sup id="651e626e040250ee71a0847aec41b60c"><a class="reference-link" href="#monkhorst04_dynam_error_budget" title="@phdthesis{monkhorst04_dynam_error_budget,
|
||||
author = {Wouter Monkhorst},
|
||||
school = {Delft University},
|
||||
title = {Dynamic Error Budgeting, a design approach},
|
||||
year = 2004,
|
||||
}">@phdthesis{monkhorst04_dynam_error_budget,
|
||||
author = {Wouter Monkhorst},
|
||||
school = {Delft University},
|
||||
title = {Dynamic Error Budgeting, a design approach},
|
||||
year = 2004,
|
||||
}</a></sup>: ([Notes]({{< relref "monkhorst04_dynam_error_budget" >}}))
|
||||
Taken from ([Monkhorst 2004](#org9c3cf08)): ([Notes]({{< relref "monkhorst04_dynam_error_budget" >}}))
|
||||
|
||||
> Step by step, the process is as follows:
|
||||
>
|
||||
@@ -45,14 +33,7 @@ Taken from <sup id="651e626e040250ee71a0847aec41b60c"><a class="reference-link"
|
||||
> - Make changes to the system that are expected to improve the performance level, and simulate the output error again.
|
||||
> Iterate until the error budget is meet.
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="monkhorst04_dynam_error_budget">Monkhorst, W., *Dynamic error budgeting, a design approach* (Doctoral dissertation) (2004). Delft University, .</a> [↩](#651e626e040250ee71a0847aec41b60c)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [The design of high performance mechatronics - 2nd revised edition]({{< relref "schmidt14_desig_high_perfor_mechat_revis_edition" >}})
|
||||
- [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
|
||||
- [Mechatronic design of a magnetically suspended rotating platform]({{< relref "jabben07_mechat" >}})
|
||||
- [Systems and Signals Norms]({{< relref "norms" >}})
|
||||
- [Dynamic error budgeting, a design approach]({{< relref "monkhorst04_dynam_error_budget" >}})
|
||||
<a id="org9c3cf08"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
|
@@ -4,13 +4,13 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [The art of electronics - third edition]({{< relref "horowitz15_art_of_elect_third_edition" >}})
|
||||
- [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
|
||||
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Vibration Simulation using Matlab and ANSYS]({{< relref "hatch00_vibrat_matlab_ansys" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
@@ -12,20 +16,17 @@ Tags
|
||||
|
||||
Some resources:
|
||||
|
||||
- <sup id="484c4fad309f6b0e866a7cacf4653d74"><a class="reference-link" href="#hatch00_vibrat_matlab_ansys" title="Hatch, Vibration simulation using MATLAB and ANSYS, CRC Press (2000).">(Hatch, 2000)</a></sup> ([Notes]({{< relref "hatch00_vibrat_matlab_ansys" >}}))
|
||||
- <sup id="961d4331bc9da7f553368ca6a06cb743"><a class="reference-link" href="#khot11_model_respon_analy_dynam_system" title="Khot \& Yelve, Modeling and Response Analysis of Dynamic Systems By Using ANSYS{\copyright} and MATLAB{\copyright}, {Journal of Vibration and Control}, v(6), 953--958 (2011).">(Khot \& Yelve, 2011)</a></sup>
|
||||
- <sup id="326e544dd573b7069b69e0ec90fad499"><a class="reference-link" href="#kosarac15_creat_siso_ansys" title="Ko\vsarac, Zeljkovi\'c, , Mla\djenovi\'c \& \vZivkovi\'c, Create SISO state space model of main spindle from ANSYS model, 37--41, in in: {12th International Scientific Conference, Novi Sad, Serbia}, edited by (2015)">(Ko\vsarac {\it et al.}, 2015)</a></sup>
|
||||
- ([Hatch 2000](#org7219756)) ([Notes]({{< relref "hatch00_vibrat_matlab_ansys" >}}))
|
||||
- ([Khot and Yelve 2011](#org9158163))
|
||||
- ([Kovarac et al. 2015](#orga16f226))
|
||||
|
||||
The idea is to extract reduced state space model from Ansys into Matlab.
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="hatch00_vibrat_matlab_ansys">Hatch, M. R., *Vibration simulation using matlab and ansys* (2000), : CRC Press.</a> [↩](#484c4fad309f6b0e866a7cacf4653d74)
|
||||
|
||||
<a class="bibtex-entry" id="khot11_model_respon_analy_dynam_system">Khot, S., & Yelve, N. P., *Modeling and response analysis of dynamic systems by using ansys\copyright and matlab\copyright*, Journal of Vibration and Control, *17(6)*, 953–958 (2011). </a> [↩](#961d4331bc9da7f553368ca6a06cb743)
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a class="bibtex-entry" id="kosarac15_creat_siso_ansys">Ko\vsarac, A, Zeljkovi\'c, M, Mla\djenovi\'c, C, & \vZivkovi\'c, A, *Create siso state space model of main spindle from ansys model*, In , 12th International Scientific Conference, Novi Sad, Serbia (pp. 37–41) (2015). : .</a> [↩](#326e544dd573b7069b69e0ec90fad499)
|
||||
<a id="org7219756"></a>Hatch, Michael R. 2000. _Vibration Simulation Using MATLAB and ANSYS_. CRC Press.
|
||||
|
||||
<a id="org9158163"></a>Khot, SM, and Nitesh P Yelve. 2011. “Modeling and Response Analysis of Dynamic Systems by Using ANSYS and MATLAB.” _Journal of Vibration and Control_ 17 (6). SAGE Publications Sage UK: London, England:953–58.
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Vibration simulation using matlab and ansys]({{< relref "hatch00_vibrat_matlab_ansys" >}})
|
||||
<a id="orga16f226"></a>Kovarac, A, M Zeljkovic, C Mladjenovic, and A Zivkovic. 2015. “Create SISO State Space Model of Main Spindle from ANSYS Model.” In _12th International Scientific Conference, Novi Sad, Serbia_, 37–41.
|
||||
|
@@ -4,46 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Resources {#resources}
|
||||
|
||||
Books:
|
||||
|
||||
- ([Lobontiu 2002](#orgb3f874f))
|
||||
- ([Henein 2003](#orgad0500e))
|
||||
- ([Smith 2005](#org48acd08))
|
||||
- ([Soemers 2011](#org03d0c96))
|
||||
- ([Cosandier 2017](#org6494792))
|
||||
|
||||
|
||||
## Flexure Joints for Stewart Platforms: {#flexure-joints-for-stewart-platforms}
|
||||
|
||||
From ([Chen and McInroy 2000](#org2cba46e)):
|
||||
|
||||
> To avoid the extremely non-linear micro-dynamics of joint friction and backlash, these hexapods employ flexure joints.
|
||||
> A flexure joint bends material to achieve motion, rather than sliding of rolling across two surfaces.
|
||||
> This does eliminate friction and backlash, but adds spring dynamics and limits the workspace.
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org2cba46e"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
||||
<a id="org6494792"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
|
||||
|
||||
<a id="orgad0500e"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
|
||||
|
||||
<a id="orgb3f874f"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
|
||||
|
||||
<a id="org48acd08"></a>Smith, Stuart T. 2005. _Foundations of Ultra-Precision Mechanism Design_. Vol. 2. CRC Press.
|
||||
|
||||
<a id="org03d0c96"></a>Soemers, Herman. 2011. _Design Principles for Precision Mechanisms_. T-Pointprint.
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Identification and decoupling control of flexure jointed hexapods]({{< relref "chen00_ident_decoup_contr_flexur_joint_hexap" >}})
|
||||
- [Dynamic modeling and experimental analyses of stewart platform with flexible hinges]({{< relref "jiao18_dynam_model_exper_analy_stewar" >}})
|
||||
@@ -53,3 +14,41 @@ From ([Chen and McInroy 2000](#org2cba46e)):
|
||||
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
|
||||
- [Dynamic modeling of flexure jointed hexapods for control purposes]({{< relref "mcinroy99_dynam" >}})
|
||||
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Resources {#resources}
|
||||
|
||||
Books:
|
||||
|
||||
- ([Lobontiu 2002](#orgf8c62f3))
|
||||
- ([Henein 2003](#org4dba0af))
|
||||
- ([Smith 2005](#orgeb2cb93))
|
||||
- ([Soemers 2011](#org7d2ccfb))
|
||||
- ([Cosandier 2017](#org4a2f5bd))
|
||||
|
||||
|
||||
## Flexure Joints for Stewart Platforms: {#flexure-joints-for-stewart-platforms}
|
||||
|
||||
From ([Chen and McInroy 2000](#orga69dc7b)):
|
||||
|
||||
> To avoid the extremely non-linear micro-dynamics of joint friction and backlash, these hexapods employ flexure joints.
|
||||
> A flexure joint bends material to achieve motion, rather than sliding of rolling across two surfaces.
|
||||
> This does eliminate friction and backlash, but adds spring dynamics and limits the workspace.
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orga69dc7b"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
||||
<a id="org4a2f5bd"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
|
||||
|
||||
<a id="org4dba0af"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
|
||||
|
||||
<a id="orgf8c62f3"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
|
||||
|
||||
<a id="orgeb2cb93"></a>Smith, Stuart T. 2005. _Foundations of Ultra-Precision Mechanism Design_. Vol. 2. CRC Press.
|
||||
|
||||
<a id="org7d2ccfb"></a>Soemers, Herman. 2011. _Design Principles for Precision Mechanisms_. T-Pointprint.
|
||||
|
@@ -4,6 +4,14 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Signal Conditioner]({{< relref "signal_conditioner" >}})
|
||||
- [Sensors]({{< relref "sensors" >}})
|
||||
- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
@@ -13,31 +21,43 @@ Tags
|
||||
|
||||
### Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor}
|
||||
|
||||
An analysis the dynamics and noise of a piezoelectric force sensor is done in <sup id="c823f68dd2a72b9667a61b3c046b4731"><a class="reference-link" href="#fleming10_nanop_system_with_force_feedb" title="Fleming, Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control, {IEEE/ASME Transactions on Mechatronics}, v(3), 433-447 (2010).">(Fleming, 2010)</a></sup> ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org82df6e1)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
|
||||
|
||||
### Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links |
|
||||
|---------------|---------------------------------------------------------------|
|
||||
| PCB | [link](https://www.pcb.com/products/productfinder.aspx?tx=17) |
|
||||
| Manufacturers | Links | Country |
|
||||
|---------------|------------------------------------------------------------------------------------------------|---------|
|
||||
| PCB | [link](https://www.pcb.com/products/productfinder.aspx?tx=17) | USA |
|
||||
| HBM | [link](https://www.hbm.com/en/6107/force-sensors-with-flange-mounting/) | Germany |
|
||||
| Kistler | [link](https://www.kistler.com/fr/produits/composants/capteurs-de-force/?pfv%5Fmetrics=metric) | Swiss |
|
||||
| MMF | [link](https://www.mmf.de/force%5Ftransducers.htm) | Germany |
|
||||
|
||||
|
||||
### Signal Conditioner {#signal-conditioner}
|
||||
|
||||
The voltage generated by the piezoelectric material generally needs to be amplified.
|
||||
|
||||
| Manufacturers | Links |
|
||||
|---------------|-----------------------------------------------|
|
||||
| PCB | [link](https://www.pcb.com/products?m=482c15) |
|
||||
Either **charge** amplifiers or **voltage** amplifiers can be used.
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="fleming10_nanop_system_with_force_feedb">Fleming, A., *Nanopositioning system with force feedback for high-performance tracking and vibration control*, IEEE/ASME Transactions on Mechatronics, *15(3)*, 433–447 (2010). http://dx.doi.org/10.1109/tmech.2009.2028422</a> [↩](#c823f68dd2a72b9667a61b3c046b4731)
|
||||
| Manufacturers | Links | Country |
|
||||
|---------------|------------------------------------------------------------------------------------|---------|
|
||||
| PCB | [link](https://www.pcb.com/products?m=482c15) | USA |
|
||||
| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany |
|
||||
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
|
||||
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
### Effect of using multiple Stacks in series of parallels {#effect-of-using-multiple-stacks-in-series-of-parallels}
|
||||
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}})
|
||||
- [Sensors]({{< relref "sensors" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
If two stack are wired in series, the generated charge is kept constant and the capacitance is reduced by a factor 2.
|
||||
Thus, the measured voltage is double while the measured charge is kept constant.
|
||||
|
||||
If two stacks are wired in parallel, the capacitance and the number of charge will be doubled.
|
||||
Thus, if a voltage amplifier is used, no change of voltage will be experienced.
|
||||
However, if a charge conditioner is used, the signal will be doubled.
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org82df6e1"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Guidelines for the selection of weighting functions for h-infinity control]({{< relref "bibel92_guidel_h" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
@@ -17,8 +21,3 @@ From _Rosenbrock, H. H. (1974). Computer-Aided Control System Design, Academic P
|
||||
> A good design usually has strong aesthetic appeal to those who are competent in the subject.
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Guidelines for the selection of weighting functions for h-infinity control]({{< relref "bibel92_guidel_h" >}})
|
||||
|
@@ -4,38 +4,38 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
|
||||
- [Control of spacecraft and aircraft]({{< relref "bryson93_contr_spacec_aircr" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
High-Authority Control/Low-Authority Control
|
||||
|
||||
From <sup id="454500a3af67ef66a7a754d1f2e1bd4a"><a class="reference-link" href="#preumont18_vibrat_contr_activ_struc_fourt_edition" title="Andre Preumont, Vibration Control of Active Structures - Fourth Edition, Springer International Publishing (2018).">(Andre Preumont, 2018)</a></sup>:
|
||||
From ([Preumont 2018](#org8496b17)):
|
||||
|
||||
> The HAC/LAC approach consist of combining the two approached in a dual-loop control as shown in Figure [1](#org21fb08d). The inner loop uses a set of collocated actuator/sensor pairs for decentralized active damping with guaranteed stability ; the outer loop consists of a non-collocated HAC based on a model of the actively damped structure. This approach has the following advantages:
|
||||
> The HAC/LAC approach consist of combining the two approached in a dual-loop control as shown in Figure [1](#orgf651b12). The inner loop uses a set of collocated actuator/sensor pairs for decentralized active damping with guaranteed stability ; the outer loop consists of a non-collocated HAC based on a model of the actively damped structure. This approach has the following advantages:
|
||||
>
|
||||
> - The active damping extends outside the bandwidth of the HAC and reduces the settling time of the modes which are outsite the bandwidth
|
||||
> - The active damping makes it easier to gain-stabilize the modes outside the bandwidth of the output loop (improved gain margin)
|
||||
> - The larger damping of the modes within the controller bandwidth makes them more robust to the parmetric uncertainty (improved phase margin)
|
||||
|
||||
<a id="org21fb08d"></a>
|
||||
<a id="orgf651b12"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/hac_lac_control_architecture.png" caption="Figure 1: HAC-LAC Control Architecture" >}}
|
||||
|
||||
Nice papers:
|
||||
|
||||
- <sup id="ef357e45dadd8cc8869beda6e463777b"><a class="reference-link" href="#williams89_limit" title="Williams \& Antsaklis, Limitations of vibration suppression in flexible space structures, nil, in in: {Proceedings of the 28th IEEE Conference on Decision and
|
||||
Control}, edited by (1989)">(Williams \& Antsaklis, 1989)</a></sup>
|
||||
- <sup id="df6fde1eeef81966b2c7fb5421adbe8d"><a class="reference-link" href="#aubrun80_theor_contr_struc_by_low_author_contr" title="Aubrun, Theory of the Control of Structures By Low-Authority Controllers, {Journal of Guidance and Control}, v(5), 444-451 (1980).">(Aubrun, 1980)</a></sup>
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="preumont18_vibrat_contr_activ_struc_fourt_edition">Preumont, A., *Vibration control of active structures - fourth edition* (2018), : Springer International Publishing.</a> [↩](#454500a3af67ef66a7a754d1f2e1bd4a)
|
||||
|
||||
<a class="bibtex-entry" id="williams89_limit">Williams, T., & Antsaklis, P., *Limitations of vibration suppression in flexible space structures*, In , Proceedings of the 28th IEEE Conference on Decision and Control (pp. ) (1989). : .</a> [↩](#ef357e45dadd8cc8869beda6e463777b)
|
||||
|
||||
<a class="bibtex-entry" id="aubrun80_theor_contr_struc_by_low_author_contr">Aubrun, J., *Theory of the control of structures by low-authority controllers*, Journal of Guidance and Control, *3(5)*, 444–451 (1980). http://dx.doi.org/10.2514/3.56019</a> [↩](#df6fde1eeef81966b2c7fb5421adbe8d)
|
||||
- ([Williams and Antsaklis 1989](#org457e1df))
|
||||
- ([Aubrun 1980](#org0d91759))
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
- [Control of spacecraft and aircraft]({{< relref "bryson93_contr_spacec_aircr" >}})
|
||||
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
|
||||
<a id="org0d91759"></a>Aubrun, J.N. 1980. “Theory of the Control of Structures by Low-Authority Controllers.” _Journal of Guidance and Control_ 3 (5):444–51. <https://doi.org/10.2514/3.56019>.
|
||||
|
||||
<a id="org8496b17"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
|
||||
<a id="org457e1df"></a>Williams, T.W.C., and P.J. Antsaklis. 1989. “Limitations of Vibration Suppression in Flexible Space Structures.” In _Proceedings of the 28th IEEE Conference on Decision and Control_, nil. <https://doi.org/10.1109/cdc.1989.70563>.
|
||||
|
@@ -4,16 +4,23 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Modal Analysis]({{< relref "modal_analysis" >}})
|
||||
- [Sensors]({{< relref "sensors" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
|
||||
## Review of Absolute (inertial) Position Sensors {#review-of-absolute--inertial--position-sensors}
|
||||
|
||||
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#org3cd922d))
|
||||
- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#org8b5d5a2))
|
||||
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#org9a2f97b))
|
||||
- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#org989ed0f))
|
||||
|
||||
<a id="org1914e49"></a>
|
||||
<a id="org265a89c"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}}
|
||||
|
||||
@@ -33,7 +40,7 @@ Wireless Accelerometers
|
||||
|
||||
- <https://micromega-dynamics.com/products/recovib/miniature-vibration-recorder/>
|
||||
|
||||
<a id="orgf34c817"></a>
|
||||
<a id="orgb67663b"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="Figure 2: Characteristics of commercially available accelerometers <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a class=\"reference-link\" href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">(Collette {\it et al.}, 2011)</a></sup>" >}}
|
||||
|
||||
@@ -50,20 +57,13 @@ Wireless Accelerometers
|
||||
| Guralp | [link](https://www.guralp.com/products/surface) | UK |
|
||||
| Nanometric | [link](https://www.nanometrics.ca/products/seismometers) | Canada |
|
||||
|
||||
<a id="org877de39"></a>
|
||||
<a id="org0be590f"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="Figure 3: Characteristics of commercially available geophones <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a class=\"reference-link\" href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">(Collette {\it et al.}, 2011)</a></sup>" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org3cd922d"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):1289–1300. <https://doi.org/10.1785/0120110223>.
|
||||
<a id="org9a2f97b"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):1289–1300. <https://doi.org/10.1785/0120110223>.
|
||||
|
||||
<a id="org8b5d5a2"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_.
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Sensors]({{< relref "sensors" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
<a id="org989ed0f"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_.
|
||||
|
@@ -32,7 +32,7 @@ Tags
|
||||
>
|
||||
> The primary disadvantage of FIR filters is that they often require a much higher filter order than IIR filters to achieve a given level of performance. Correspondingly, the delay of these filters is often much greater than for an equal performance IIR filter.
|
||||
|
||||
From ([Shaw and Srinivasan 1990](#org7a68e45))
|
||||
From ([Shaw and Srinivasan 1990](#org99d8f66))
|
||||
|
||||
> The FIR are capable of realizing filters with linear phase shift characteristics and furthermore are less susceptible to signal input and filter coefficient quantization effects.
|
||||
> However, their computational demands are excessively large because of the large number of multiplications and additions to be performed at each sampling interval.
|
||||
@@ -51,4 +51,4 @@ From <https://dsp.stackexchange.com/a/30999>
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org7a68e45"></a>Shaw, F.R., and K. Srinivasan. 1990. “Bandwidth Enhancement of Position Measurements Using Measured Acceleration.” _Mechanical Systems and Signal Processing_ 4 (1):23–38. <https://doi.org/10.1016/0888-3270(90)>90038-m.
|
||||
<a id="org99d8f66"></a>Shaw, F.R., and K. Srinivasan. 1990. “Bandwidth Enhancement of Position Measurements Using Measured Acceleration.” _Mechanical Systems and Signal Processing_ 4 (1):23–38. <https://doi.org/10.1016/0888-3270(90)>90038-m.
|
||||
|
@@ -12,11 +12,11 @@ Tags
|
||||
|
||||
Books:
|
||||
|
||||
- ([Higham 2017](#org8ba8e47))
|
||||
- ([Attaway 2018](#org4c6aa3b))
|
||||
- ([OverFlow 2018](#orgad9dce4))
|
||||
- ([Johnson 2010](#org1aa5652))
|
||||
- ([Hahn and Valentine 2016](#orgc9b02db))
|
||||
- ([Higham 2017](#org706fce9))
|
||||
- ([Attaway 2018](#org83f2c16))
|
||||
- ([OverFlow 2018](#orgc00fab5))
|
||||
- ([Johnson 2010](#org6262ff7))
|
||||
- ([Hahn and Valentine 2016](#org0601633))
|
||||
|
||||
|
||||
## Useful Commands {#useful-commands}
|
||||
@@ -46,12 +46,12 @@ Books:
|
||||
### Do not show legend for one plot {#do-not-show-legend-for-one-plot}
|
||||
|
||||
```matlab
|
||||
figure;
|
||||
hold on;
|
||||
plot(x, y1, 'DisplayName, 'lengendname');
|
||||
plot(x, y2, 'HandleVisibility', 'off');
|
||||
hold off;
|
||||
legend('Location', 'northeast');
|
||||
figure;
|
||||
hold on;
|
||||
plot(x, y1, 'DisplayName, 'lengendname');
|
||||
plot(x, y2, 'HandleVisibility', 'off');
|
||||
hold off;
|
||||
legend('Location', 'northeast');
|
||||
```
|
||||
|
||||
|
||||
@@ -60,7 +60,7 @@ Books:
|
||||
If a single user is using the Matlab installation on the machine:
|
||||
|
||||
```bash
|
||||
sudo chown -R $LOGNAME: /usr/local/MATLAB/R2017b
|
||||
sudo chown -R $LOGNAME: /usr/local/MATLAB/R2017b
|
||||
```
|
||||
|
||||
Then, Toolboxes can be installed by the user without any problem.
|
||||
@@ -101,12 +101,12 @@ Nice functions:
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org4c6aa3b"></a>Attaway, Stormy. 2018. _MATLAB : a Practical Introduction to Programming and Problem Solving_. Amsterdam: Butterworth-Heinemann.
|
||||
<a id="org83f2c16"></a>Attaway, Stormy. 2018. _MATLAB : a Practical Introduction to Programming and Problem Solving_. Amsterdam: Butterworth-Heinemann.
|
||||
|
||||
<a id="orgc9b02db"></a>Hahn, Brian, and Daniel T Valentine. 2016. _Essential MATLAB for Engineers and Scientists_. Academic Press.
|
||||
<a id="org0601633"></a>Hahn, Brian, and Daniel T Valentine. 2016. _Essential MATLAB for Engineers and Scientists_. Academic Press.
|
||||
|
||||
<a id="org8ba8e47"></a>Higham, Desmond. 2017. _MATLAB Guide_. Philadelphia: Society for Industrial and Applied Mathematics.
|
||||
<a id="org706fce9"></a>Higham, Desmond. 2017. _MATLAB Guide_. Philadelphia: Society for Industrial and Applied Mathematics.
|
||||
|
||||
<a id="org1aa5652"></a>Johnson, Richard K. 2010. _The Elements of MATLAB Style_. Cambridge University Press.
|
||||
<a id="org6262ff7"></a>Johnson, Richard K. 2010. _The Elements of MATLAB Style_. Cambridge University Press.
|
||||
|
||||
<a id="orgad9dce4"></a>OverFlow, Stack. 2018. _MATLAB Notes for Professionals_. GoalKicker.com.
|
||||
<a id="orgc00fab5"></a>OverFlow, Stack. 2018. _MATLAB Notes for Professionals_. GoalKicker.com.
|
||||
|
@@ -4,12 +4,11 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Fundamental principles of engineering nanometrology]({{< relref "leach14_fundam_princ_engin_nanom" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Fundamental principles of engineering nanometrology]({{< relref "leach14_fundam_princ_engin_nanom" >}})
|
||||
|
@@ -4,13 +4,12 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Instrumented Hammer]({{< relref "instrumented_hammer" >}})
|
||||
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
|
||||
|
||||
Tags
|
||||
: [Inertial Sensors]({{< relref "inertial_sensors" >}}), [Shaker]({{< relref "shaker" >}})
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
|
||||
- [Instrumented Hammer]({{< relref "instrumented_hammer" >}})
|
||||
|
@@ -4,12 +4,11 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Advanced motion control for precision mechatronics: control, identification, and learning of complex systems]({{< relref "oomen18_advan_motion_contr_precis_mechat" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Advanced motion control for precision mechatronics: control, identification, and learning of complex systems]({{< relref "oomen18_advan_motion_contr_precis_mechat" >}})
|
||||
|
@@ -4,12 +4,6 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Norms]({{< relref "norms" >}})
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Implementation challenges for multivariable control: what you did not learn in school!]({{< relref "garg07_implem_chall_multiv_contr" >}})
|
||||
@@ -17,3 +11,8 @@ Tags
|
||||
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
|
||||
- [Multivariable feedback control: analysis and design]({{< relref "skogestad07_multiv_feedb_contr" >}})
|
||||
- [Position control in lithographic equipment]({{< relref "butler11_posit_contr_lithog_equip" >}})
|
||||
|
||||
Tags
|
||||
: [Norms]({{< relref "norms" >}})
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -4,14 +4,13 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution]({{< relref "wang12_autom_marker_full_field_hard" >}})
|
||||
- [An instrument for 3d x-ray nano-imaging]({{< relref "holler12_instr_x_ray_nano_imagin" >}})
|
||||
- [Interferometric characterization of rotation stages for x-ray nanotomography]({{< relref "stankevic17_inter_charac_rotat_stages_x_ray_nanot" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [An instrument for 3d x-ray nano-imaging]({{< relref "holler12_instr_x_ray_nano_imagin" >}})
|
||||
- [Interferometric characterization of rotation stages for x-ray nanotomography]({{< relref "stankevic17_inter_charac_rotat_stages_x_ray_nanot" >}})
|
||||
- [Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution]({{< relref "wang12_autom_marker_full_field_hard" >}})
|
||||
|
@@ -4,19 +4,18 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Multivariable Control]({{< relref "multivariable_control" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
Resources:
|
||||
|
||||
- <sup id="ad6f62e369b7a8d31c21671886adec1f"><a href="#skogestad07_multiv_feedb_contr" title="Skogestad \& Postlethwaite, Multivariable Feedback Control: Analysis and Design, John Wiley (2007).">(Skogestad \& Postlethwaite, 2007)</a></sup>
|
||||
- <sup id="90e96a2c8cdb40b7bdf895cf013c0946"><a href="#toivonen02_robus_contr_method" title="@misc{toivonen02_robus_contr_method,
|
||||
author = {Hannu T. Toivonen},
|
||||
institution = {Abo Akademi University},
|
||||
title = {Robust Control Methods},
|
||||
year = 2002,
|
||||
}">(Hannu Toivonen, 2002)</a></sup>
|
||||
- <sup id="8db224194542fbd4c7f4fbe56fdd4e73"><a href="#zhang11_quant_proces_contr_theor" title="Zhang, Quantitative Process Control Theory, CRC Press (2011).">(Zhang, 2011)</a></sup>
|
||||
- ([Skogestad and Postlethwaite 2007](#org533c8de))
|
||||
- ([Toivonen 2002](#orgb393f10))
|
||||
- ([Zhang 2011](#org1ea8e81))
|
||||
|
||||
|
||||
## \\(\mathcal{H}\_\infty\\) Norm {#mathcal-h-infty--norm}
|
||||
@@ -32,33 +31,20 @@ RMS value
|
||||
|
||||
The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}}).
|
||||
|
||||
As explained in <sup id="651e626e040250ee71a0847aec41b60c"><a href="#monkhorst04_dynam_error_budget" title="@phdthesis{monkhorst04_dynam_error_budget,
|
||||
author = {Wouter Monkhorst},
|
||||
school = {Delft University},
|
||||
title = {Dynamic Error Budgeting, a design approach},
|
||||
year = 2004,
|
||||
}">@phdthesis{monkhorst04_dynam_error_budget,
|
||||
author = {Wouter Monkhorst},
|
||||
school = {Delft University},
|
||||
title = {Dynamic Error Budgeting, a design approach},
|
||||
year = 2004,
|
||||
}</a></sup>, the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
|
||||
As explained in ([Monkhorst 2004](#org5e40c21)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
|
||||
|
||||
> The squared \\(\mathcal{H}\_2\\) norm can be interpreted as the output variance of a system with zero mean white noise input.
|
||||
|
||||
|
||||
## Link between signal and system norms {#link-between-signal-and-system-norms}
|
||||
|
||||
# Bibliography
|
||||
<a id="skogestad07_multiv_feedb_contr"></a>Skogestad, S., & Postlethwaite, I., *Multivariable feedback control: analysis and design* (2007), : John Wiley. [↩](#ad6f62e369b7a8d31c21671886adec1f)
|
||||
|
||||
<a id="toivonen02_robus_contr_method"></a>Toivonen, H. T. (2002). *Robust Control Methods*. Retrieved from [](). . [↩](#90e96a2c8cdb40b7bdf895cf013c0946)
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="zhang11_quant_proces_contr_theor"></a>Zhang, W., *Quantitative Process Control Theory* (2011), : CRC Press. [↩](#8db224194542fbd4c7f4fbe56fdd4e73)
|
||||
<a id="org5e40c21"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
|
||||
|
||||
<a id="monkhorst04_dynam_error_budget"></a>Monkhorst, W., *Dynamic error budgeting, a design approach* (Doctoral dissertation) (2004). Delft University, . [↩](#651e626e040250ee71a0847aec41b60c)
|
||||
<a id="org533c8de"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
|
||||
<a id="orgb393f10"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Multivariable Control]({{< relref "multivariable_control" >}})
|
||||
<a id="org1ea8e81"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.
|
||||
|
@@ -4,6 +4,11 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Actuators]({{< relref "actuators" >}})
|
||||
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
|
||||
|
||||
Tags
|
||||
: [Actuators]({{< relref "actuators" >}})
|
||||
|
||||
@@ -30,7 +35,7 @@ Tags
|
||||
|
||||
### Model {#model}
|
||||
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#org1025f36)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgdda2743)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
|
||||
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
|
||||
|
||||
@@ -45,14 +50,14 @@ with:
|
||||
|
||||
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
|
||||
|
||||
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org4de69d6)):
|
||||
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#orga200a60)):
|
||||
|
||||
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
|
||||
> The flatter is the actuator, the higher is the amplification.
|
||||
|
||||
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org2278a86)).
|
||||
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org46de525)).
|
||||
|
||||
<a id="org220f472"></a>
|
||||
<a id="orgeed82ad"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a class=\"reference-link\" href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \& Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">(Mingxiang Ling {\it et al.}, 2016)</a></sup>" >}}
|
||||
|
||||
@@ -144,57 +149,51 @@ For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolut
|
||||
|
||||
### Electrical Capacitance {#electrical-capacitance}
|
||||
|
||||
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org4b5f8bd)).
|
||||
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org9c97b26)).
|
||||
This is due to the fact that voltage amplifier has a limitation on the deliverable current.
|
||||
|
||||
[Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
|
||||
|
||||
<a id="org4b5f8bd"></a>
|
||||
<a id="org9c97b26"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
|
||||
|
||||
|
||||
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
|
||||
|
||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org6e4c8b2)).
|
||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org6172e71)).
|
||||
|
||||
<a id="org6e4c8b2"></a>
|
||||
<a id="org6172e71"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
|
||||
|
||||
|
||||
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
|
||||
|
||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgadae726)):
|
||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#org802b6e3)):
|
||||
|
||||
\begin{equation}
|
||||
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
|
||||
\end{equation}
|
||||
|
||||
<a id="orgadae726"></a>
|
||||
<a id="org802b6e3"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
|
||||
|
||||
For piezo actuators, force and displacement are inversely related (Figure [5](#org51f52cb)).
|
||||
For piezo actuators, force and displacement are inversely related (Figure [5](#orga68d9e2)).
|
||||
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
|
||||
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
|
||||
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
|
||||
|
||||
<a id="org51f52cb"></a>
|
||||
<a id="orga68d9e2"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org4de69d6"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
||||
<a id="orga200a60"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
||||
|
||||
<a id="org1025f36"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="orgdda2743"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
||||
<a id="org2278a86"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Actuators]({{< relref "actuators" >}})
|
||||
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
|
||||
<a id="org46de525"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
||||
|
@@ -4,13 +4,21 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})
|
||||
- [Measurement technologies for precision positioning]({{< relref "gao15_measur_techn_precis_posit" >}})
|
||||
- [Inertial Sensors]({{< relref "inertial_sensors" >}})
|
||||
- [Sensors]({{< relref "sensors" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
|
||||
Tags
|
||||
: [Inertial Sensors]({{< relref "inertial_sensors" >}}), [Force Sensors]({{< relref "force_sensors" >}}), [Sensor Fusion]({{< relref "sensor_fusion" >}}), [Signal Conditioner]({{< relref "signal_conditioner" >}}), [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
|
||||
|
||||
|
||||
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
|
||||
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#orgeaf4a0a)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#orgdd1b6d5)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
|
||||
|
||||
<a id="table--tab:characteristics-relative-sensor"></a>
|
||||
<div class="table-caption">
|
||||
@@ -30,7 +38,7 @@ Tags
|
||||
<a id="table--tab:summary-position-sensors"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:summary-position-sensors">Table 2</a></span>:
|
||||
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of \(100 \mu m\) and a first order bandwidth of \(1 kHz\) <a class='org-ref-reference' href="#fleming13_review_nanom_resol_posit_sensor">fleming13_review_nanom_resol_posit_sensor</a>
|
||||
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of 100um and a first order bandwidth of \(1 kHz\) <a class='org-ref-reference' href="#fleming13_review_nanom_resol_posit_sensor">fleming13_review_nanom_resol_posit_sensor</a>
|
||||
</div>
|
||||
|
||||
| Sensor Type | Range | DNR | Resolution | Max. BW | Accuracy |
|
||||
@@ -108,9 +116,9 @@ Description:
|
||||
| Renishaw | 0.2 | 1 | 6 | 1 |
|
||||
| Picoscale | 0.2 | 2 | 2 | 1 |
|
||||
|
||||
([Jang and Kim 2017](#org5a2485c))
|
||||
([Jang and Kim 2017](#orgbcf1569))
|
||||
|
||||
<a id="orgdc4dc3c"></a>
|
||||
<a id="orgf2b5520"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
|
||||
|
||||
@@ -126,15 +134,6 @@ Description:
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgeaf4a0a"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
||||
<a id="orgdd1b6d5"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
||||
|
||||
<a id="org5a2485c"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})
|
||||
- [Measurement technologies for precision positioning]({{< relref "gao15_measur_techn_precis_posit" >}})
|
||||
- [Inertial Sensors]({{< relref "inertial_sensors" >}})
|
||||
- [Sensors]({{< relref "sensors" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
<a id="orgbcf1569"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
||||
|
@@ -4,14 +4,13 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Position control in lithographic equipment]({{< relref "butler11_posit_contr_lithog_equip" >}})
|
||||
- [An instrument for 3d x-ray nano-imaging]({{< relref "holler12_instr_x_ray_nano_imagin" >}})
|
||||
- [Interferometric characterization of rotation stages for x-ray nanotomography]({{< relref "stankevic17_inter_charac_rotat_stages_x_ray_nanot" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -9,9 +9,9 @@ Tags
|
||||
|
||||
Tutorial about Power Spectral Density is accessible [here](https://tdehaeze.github.io/spectral-analysis/).
|
||||
|
||||
A good article about how to use the `pwelch` function with Matlab ([Schmid 2012](#org206dff2)).
|
||||
A good article about how to use the `pwelch` function with Matlab ([Schmid 2012](#org28534e1)).
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org206dff2"></a>Schmid, Hanspeter. 2012. “How to Use the FFT and Matlab’s Pwelch Function for Signal and Noise Simulations and Measurements.” _Institute of Microelectronics_.
|
||||
<a id="org28534e1"></a>Schmid, Hanspeter. 2012. “How to Use the FFT and Matlab’s Pwelch Function for Signal and Noise Simulations and Measurements.” _Institute of Microelectronics_.
|
||||
|
@@ -4,13 +4,12 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Basics of precision engineering - 1st edition]({{< relref "leach18_basic_precis_engin_edition" >}})
|
||||
- [Design for precision: current status and trends]({{< relref "schellekens98_desig_precis" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -4,17 +4,16 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
|
||||
- [Multivariable feedback control: analysis and design]({{< relref "skogestad07_multiv_feedb_contr" >}})
|
||||
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
|
||||
- [The art of electronics - third edition]({{< relref "horowitz15_art_of_elect_third_edition" >}})
|
||||
- [The design of high performance mechatronics - 2nd revised edition]({{< relref "schmidt14_desig_high_perfor_mechat_revis_edition" >}})
|
||||
- [Parallel robots : mechanics and control]({{< relref "taghirad13_paral" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
|
||||
- [The art of electronics - third edition]({{< relref "horowitz15_art_of_elect_third_edition" >}})
|
||||
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
|
||||
- [Multivariable feedback control: analysis and design]({{< relref "skogestad07_multiv_feedb_contr" >}})
|
||||
- [Parallel robots : mechanics and control]({{< relref "taghirad13_paral" >}})
|
||||
- [The design of high performance mechatronics - 2nd revised edition]({{< relref "schmidt14_desig_high_perfor_mechat_revis_edition" >}})
|
||||
|
@@ -4,17 +4,16 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Actuator Fusion]({{< relref "actuator_fusion" >}}), [Complementary Filters]({{< relref "complementary_filters" >}}), [Sensors]({{< relref "sensors" >}})
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Nanopositioning with multiple sensors: a case study in data storage]({{< relref "sebastian12_nanop_with_multip_sensor" >}})
|
||||
- [Sensor fusion for active vibration isolation in precision equipment]({{< relref "tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip" >}})
|
||||
- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}})
|
||||
- [Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs]({{< relref "collette14_vibrat" >}})
|
||||
- [Sensor fusion methods for high performance active vibration isolation systems]({{< relref "collette15_sensor_fusion_method_high_perfor" >}})
|
||||
- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
Tags
|
||||
: [Actuator Fusion]({{< relref "actuator_fusion" >}}), [Complementary Filters]({{< relref "complementary_filters" >}}), [Sensors]({{< relref "sensors" >}})
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Sensor Fusion]({{< relref "sensor_fusion" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Modal Analysis]({{< relref "modal_analysis" >}})
|
||||
|
||||
Tags
|
||||
: [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
||||
|
||||
|
@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
Tags
|
||||
: [Force Sensors]({{< relref "force_sensors" >}})
|
||||
|
||||
@@ -44,8 +48,3 @@ The signal conditioning electronics can have different functions:
|
||||
| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) |
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
@@ -4,13 +4,20 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Power Spectral Density]({{< relref "power_spectral_density" >}})
|
||||
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
|
||||
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
Tags
|
||||
: [Electronics]({{< relref "electronics" >}}), [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}})
|
||||
|
||||
|
||||
## SNR to Noise PSD {#snr-to-noise-psd}
|
||||
|
||||
From ([Jabben 2007](#org05d266b)) (Section 3.3.2):
|
||||
From ([Jabben 2007](#org620f0ec)) (Section 3.3.2):
|
||||
|
||||
> Electronic equipment does most often not come with detailed electric schemes, in which case the PSD should be determined from measurements.
|
||||
> In the design phase however, one has to rely on information provided by specification sheets from the manufacturer.
|
||||
@@ -77,7 +84,7 @@ Let's say the wanted noise is \\(1 mV, \text{rms}\\) for a full range of \\(20 V
|
||||
|
||||
## Noise Density to RMS noise {#noise-density-to-rms-noise}
|
||||
|
||||
From ([Fleming 2010](#org8235840)):
|
||||
From ([Fleming 2010](#org094853a)):
|
||||
\\[ \text{RMS noise} = \sqrt{2 \times \text{bandwidth}} \times \text{noise density} \\]
|
||||
|
||||
If the noise is normally distributed, the RMS value is also the standard deviation \\(\sigma\\).
|
||||
@@ -97,15 +104,6 @@ The peak-to-peak noise will be approximately \\(6 \sigma = 1.7 nm\\)
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org8235840"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="org094853a"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
||||
<a id="org05d266b"></a>Jabben, Leon. 2007. “Mechatronic Design of a Magnetically Suspended Rotating Platform.” Delft University.
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
|
||||
- [Power Spectral Density]({{< relref "power_spectral_density" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
|
||||
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
|
||||
<a id="org620f0ec"></a>Jabben, Leon. 2007. “Mechatronic Design of a Magnetically Suspended Rotating Platform.” Delft University.
|
||||
|
@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Matlab]({{< relref "matlab" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
@@ -4,50 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Flexure Jointed Stewart Platforms {#flexure-jointed-stewart-platforms}
|
||||
|
||||
Papers by J.E. McInroy:
|
||||
|
||||
- ([O’Brien et al. 1998](#orgd3ca372))
|
||||
- ([McInroy, O’Brien, and Neat 1999](#orgf721e37))
|
||||
- ([McInroy 1999](#org3433881))
|
||||
- ([McInroy and Hamann 2000](#org637713e))
|
||||
- ([Chen and McInroy 2000](#org36c0c78))
|
||||
- ([McInroy 2002](#org9e4db5a))
|
||||
- ([Li, Hamann, and McInroy 2001](#orgeede940))
|
||||
- ([Lin and McInroy 2003](#orgdc4ea44))
|
||||
- ([Jafari and McInroy 2003](#org567288a))
|
||||
- ([Chen and McInroy 2004](#org9cf3624))
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org9cf3624"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. <https://doi.org/10.1109/tcst.2004.824339>.
|
||||
|
||||
<a id="org36c0c78"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
||||
<a id="org567288a"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. <https://doi.org/10.1109/tra.2003.814506>.
|
||||
|
||||
<a id="orgdc4ea44"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. <https://doi.org/10.1109/tcst.2003.809248>.
|
||||
|
||||
<a id="orgeede940"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
|
||||
|
||||
<a id="org3433881"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
|
||||
|
||||
<a id="org9e4db5a"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. <https://doi.org/10.1109/3516.990892>.
|
||||
|
||||
<a id="org637713e"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. <https://doi.org/10.1109/70.864229>.
|
||||
|
||||
<a id="orgf721e37"></a>McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. <https://doi.org/10.1109/3516.752089>.
|
||||
|
||||
<a id="orgd3ca372"></a>O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Decentralized vibration control of a voice coil motor-based stewart parallel mechanism: simulation and experiments]({{< relref "tang18_decen_vibrat_contr_voice_coil" >}})
|
||||
- [Identification and decoupling control of flexure jointed hexapods]({{< relref "chen00_ident_decoup_contr_flexur_joint_hexap" >}})
|
||||
@@ -70,3 +27,45 @@ Papers by J.E. McInroy:
|
||||
- [Parallel robots : mechanics and control]({{< relref "taghirad13_paral" >}})
|
||||
- [Simultaneous vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_vibrat_isolat_point_contr" >}})
|
||||
- [Sensors and control of a space-based six-axis vibration isolation system]({{< relref "hauge04_sensor_contr_space_based_six" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Flexure Jointed Stewart Platforms {#flexure-jointed-stewart-platforms}
|
||||
|
||||
Papers by J.E. McInroy:
|
||||
|
||||
- ([O’Brien et al. 1998](#orgaa46d57))
|
||||
- ([McInroy, O’Brien, and Neat 1999](#org378c866))
|
||||
- ([McInroy 1999](#org3334ff2))
|
||||
- ([McInroy and Hamann 2000](#orgbb67e4d))
|
||||
- ([Chen and McInroy 2000](#org37a21cf))
|
||||
- ([McInroy 2002](#org8af76b7))
|
||||
- ([Li, Hamann, and McInroy 2001](#orgd55cfdb))
|
||||
- ([Lin and McInroy 2003](#orged11f1d))
|
||||
- ([Jafari and McInroy 2003](#org3d4fb3c))
|
||||
- ([Chen and McInroy 2004](#orgda0daba))
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgda0daba"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. <https://doi.org/10.1109/tcst.2004.824339>.
|
||||
|
||||
<a id="org37a21cf"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
||||
<a id="org3d4fb3c"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. <https://doi.org/10.1109/tra.2003.814506>.
|
||||
|
||||
<a id="orged11f1d"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. <https://doi.org/10.1109/tcst.2003.809248>.
|
||||
|
||||
<a id="orgd55cfdb"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
|
||||
|
||||
<a id="org3334ff2"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
|
||||
|
||||
<a id="org8af76b7"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. <https://doi.org/10.1109/3516.990892>.
|
||||
|
||||
<a id="orgbb67e4d"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. <https://doi.org/10.1109/70.864229>.
|
||||
|
||||
<a id="org378c866"></a>McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. <https://doi.org/10.1109/3516.752089>.
|
||||
|
||||
<a id="orgaa46d57"></a>O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.
|
||||
|
@@ -4,12 +4,11 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
|
||||
|
@@ -4,31 +4,31 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Element and system design for active and passive vibration isolation]({{< relref "zuo04_elemen_system_desig_activ_passiv_vibrat_isolat" >}})
|
||||
- [A six-axis single-stage active vibration isolator based on stewart platform]({{< relref "preumont07_six_axis_singl_stage_activ" >}})
|
||||
- [Investigation on active vibration isolation of a stewart platform with piezoelectric actuators]({{< relref "wang16_inves_activ_vibrat_isolat_stewar" >}})
|
||||
- [Active isolation and damping of vibrations via stewart platform]({{< relref "hanieh03_activ_stewar" >}})
|
||||
- [Modeling and control of vibration in mechanical systems]({{< relref "du10_model_contr_vibrat_mechan_system" >}})
|
||||
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
|
||||
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
|
||||
- [Sensor fusion for active vibration isolation in precision equipment]({{< relref "tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip" >}})
|
||||
- [An intelligent control system for multiple degree-of-freedom vibration isolation]({{< relref "geng95_intel_contr_system_multip_degree" >}})
|
||||
- [A soft 6-axis active vibration isolator]({{< relref "spanos95_soft_activ_vibrat_isolat" >}})
|
||||
- [Six dof active vibration control using stewart platform with non-cubic configuration]({{< relref "zhang11_six_dof" >}})
|
||||
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
|
||||
- [Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation]({{< relref "ito16_compar_class_high_precis_actuat" >}})
|
||||
- [Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs]({{< relref "collette14_vibrat" >}})
|
||||
- [Review of active vibration isolation strategies]({{< relref "collette11_review_activ_vibrat_isolat_strat" >}})
|
||||
- [Force feedback versus acceleration feedback in active vibration isolation]({{< relref "preumont02_force_feedb_versus_accel_feedb" >}})
|
||||
- [Active Isolation Platforms]({{< relref "active_isolation_platforms" >}})
|
||||
- [Simultaneous vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_vibrat_isolat_point_contr" >}})
|
||||
- [Sensors and control of a space-based six-axis vibration isolation system]({{< relref "hauge04_sensor_contr_space_based_six" >}})
|
||||
- [An exploration of active hard mount vibration isolation for precision equipment]({{< relref "poel10_explor_activ_hard_mount_vibrat" >}})
|
||||
- [Sensor fusion methods for high performance active vibration isolation systems]({{< relref "collette15_sensor_fusion_method_high_perfor" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Review of active vibration isolation strategies]({{< relref "collette11_review_activ_vibrat_isolat_strat" >}})
|
||||
- [Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs]({{< relref "collette14_vibrat" >}})
|
||||
- [Sensor fusion methods for high performance active vibration isolation systems]({{< relref "collette15_sensor_fusion_method_high_perfor" >}})
|
||||
- [Modeling and control of vibration in mechanical systems]({{< relref "du10_model_contr_vibrat_mechan_system" >}})
|
||||
- [An intelligent control system for multiple degree-of-freedom vibration isolation]({{< relref "geng95_intel_contr_system_multip_degree" >}})
|
||||
- [Active isolation and damping of vibrations via stewart platform]({{< relref "hanieh03_activ_stewar" >}})
|
||||
- [Sensors and control of a space-based six-axis vibration isolation system]({{< relref "hauge04_sensor_contr_space_based_six" >}})
|
||||
- [Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation]({{< relref "ito16_compar_class_high_precis_actuat" >}})
|
||||
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
|
||||
- [Simultaneous vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_vibrat_isolat_point_contr" >}})
|
||||
- [An exploration of active hard mount vibration isolation for precision equipment]({{< relref "poel10_explor_activ_hard_mount_vibrat" >}})
|
||||
- [Force feedback versus acceleration feedback in active vibration isolation]({{< relref "preumont02_force_feedb_versus_accel_feedb" >}})
|
||||
- [A six-axis single-stage active vibration isolator based on stewart platform]({{< relref "preumont07_six_axis_singl_stage_activ" >}})
|
||||
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
|
||||
- [A soft 6-axis active vibration isolator]({{< relref "spanos95_soft_activ_vibrat_isolat" >}})
|
||||
- [Sensor fusion for active vibration isolation in precision equipment]({{< relref "tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip" >}})
|
||||
- [Investigation on active vibration isolation of a stewart platform with piezoelectric actuators]({{< relref "wang16_inves_activ_vibrat_isolat_stewar" >}})
|
||||
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
|
||||
- [Six dof active vibration control using stewart platform with non-cubic configuration]({{< relref "zhang11_six_dof" >}})
|
||||
- [Element and system design for active and passive vibration isolation]({{< relref "zuo04_elemen_system_desig_activ_passiv_vibrat_isolat" >}})
|
||||
|
@@ -4,12 +4,11 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Advances in internal model control technique: a review and future prospects]({{< relref "saxena12_advan_inter_model_contr_techn" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Advances in internal model control technique: a review and future prospects]({{< relref "saxena12_advan_inter_model_contr_techn" >}})
|
||||
|
@@ -4,6 +4,11 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Actuators]({{< relref "actuators" >}})
|
||||
- [Shaker]({{< relref "shaker" >}})
|
||||
|
||||
Tags
|
||||
: [Actuators]({{< relref "actuators" >}})
|
||||
|
||||
@@ -27,8 +32,3 @@ Tags
|
||||
## Typical Specifications {#typical-specifications}
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Actuators]({{< relref "actuators" >}})
|
||||
|
@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
|
||||
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
|
||||
|
||||
Tags
|
||||
: [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}), [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}}), [Electronics]({{< relref "electronics" >}})
|
||||
|
||||
@@ -15,9 +19,9 @@ Tags
|
||||
|
||||
The piezoelectric stack can be represented as a capacitance.
|
||||
|
||||
Let's take a capacitance driven by a voltage amplifier (Figure [1](#orgcab6e6f)).
|
||||
Let's take a capacitance driven by a voltage amplifier (Figure [1](#org7969f96)).
|
||||
|
||||
<a id="orgcab6e6f"></a>
|
||||
<a id="org7969f96"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}}
|
||||
|
||||
@@ -37,7 +41,7 @@ Thus, for a specified maximum current \\(I\_\text{max}\\), the "power bandwidth"
|
||||
- Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency:
|
||||
\\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\]
|
||||
|
||||
The maximum voltage as a function of frequency is shown in Figure [2](#org1475933).
|
||||
The maximum voltage as a function of frequency is shown in Figure [2](#org310483b).
|
||||
|
||||
```matlab
|
||||
Vpkp = 170; % [V]
|
||||
@@ -51,7 +55,7 @@ C = 1e-6; % [F]
|
||||
56.172
|
||||
```
|
||||
|
||||
<a id="org1475933"></a>
|
||||
<a id="org310483b"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}}
|
||||
|
||||
@@ -65,7 +69,7 @@ If driven at \\(\Delta U = 100V\\), \\(C = 1 \mu F\\) and \\(I\_\text{max} = 1 A
|
||||
|
||||
### Bandwidth limitation (small signals) {#bandwidth-limitation--small-signals}
|
||||
|
||||
This is takken from Chapter 14 of ([Fleming and Leang 2014](#org01aad4a)).
|
||||
This is takken from Chapter 14 of ([Fleming and Leang 2014](#orga9ea9d3)).
|
||||
|
||||
```matlab
|
||||
L = 250e-9; % Cable inductance [H]
|
||||
@@ -107,10 +111,4 @@ The bandwidth can be estimated from the Maximum Current and the Capacitance of t
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org01aad4a"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
|
||||
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
|
||||
<a id="orga9ea9d3"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
||||
|
Reference in New Issue
Block a user