Update all files with new citeproc-org package

This commit is contained in:
2020-08-17 23:00:20 +02:00
parent 5cd67f9b6a
commit 590782ba60
106 changed files with 1167 additions and 1138 deletions

View File

@@ -4,14 +4,13 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Tags
:
<./biblio/references.bib>
## Backlinks {#backlinks}
- [A concept of active mount for space applications]({{< relref "souleille18_concep_activ_mount_space_applic" >}})
- [Active isolation and damping of vibrations via stewart platform]({{< relref "hanieh03_activ_stewar" >}})
- [Active damping based on decoupled collocated control]({{< relref "holterman05_activ_dampin_based_decoup_colloc_contr" >}})
Tags
:
<./biblio/references.bib>

View File

@@ -4,31 +4,20 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Sensor Fusion]({{< relref "sensor_fusion" >}})
Tags
: [Complementary Filters]({{< relref "complementary_filters" >}})
<sup id="89b9470055c4d7f0f1957aa4400df9e8"><a href="#beijen19_mixed_feedb_feedf_contr_desig" title="Michiel Beijen, Marcel Heertjes, Hans Butler, \&amp; Maarten Steinbuch, Mixed Feedback and Feedforward Control Design for Multi-Axis Vibration Isolation Systems, Mechatronics, v(), 106 - 116 (2019).">("Michiel Beijen {\it et al.}, 2019)</a></sup>
([Beijen et al. 2019](#orgb647b35))
<sup id="28a270550e13d2c8d045c9e0a9557945"><a href="#beijen18_distur" title="@phdthesis{beijen18_distur,
author = {Beijen, MA},
school = {Technische Universiteit Eindhoven},
title = {Disturbance feedforward control for vibration isolation
systems: analysis, design, and implementation},
year = 2018,
}">@phdthesis{beijen18_distur,
author = {Beijen, MA},
school = {Technische Universiteit Eindhoven},
title = {Disturbance feedforward control for vibration isolation
systems: analysis, design, and implementation},
year = 2018,
}</a></sup> (section 6.3.1)
# Bibliography
<a id="beijen19_mixed_feedb_feedf_contr_desig"></a>Beijen, M. A., Heertjes, M. F., Butler, H., & Steinbuch, M., *Mixed feedback and feedforward control design for multi-axis vibration isolation systems*, Mechatronics, *61()*, 106116 (2019). http://dx.doi.org/https://doi.org/10.1016/j.mechatronics.2019.06.005 [](#89b9470055c4d7f0f1957aa4400df9e8)
<a id="beijen18_distur"></a>Beijen, M., *Disturbance feedforward control for vibration isolation systems: analysis, design, and implementation* (Doctoral dissertation) (2018). Technische Universiteit Eindhoven, . [](#28a270550e13d2c8d045c9e0a9557945)
([Beijen 2018](#orgb43eced)) (section 6.3.1)
## Backlinks {#backlinks}
## Bibliography {#bibliography}
- [Sensor Fusion]({{< relref "sensor_fusion" >}})
<a id="orgb43eced"></a>Beijen, MA. 2018. “Disturbance Feedforward Control for Vibration Isolation Systems: Analysis, Design, and Implementation.” Technische Universiteit Eindhoven.
<a id="orgb647b35"></a>Beijen, Michiel A., Marcel F. Heertjes, Hans Butler, and Maarten Steinbuch. 2019. “Mixed Feedback and Feedforward Control Design for Multi-Axis Vibration Isolation Systems.” _Mechatronics_ 61:10616. <https://doi.org/https://doi.org/10.1016/j.mechatronics.2019.06.005>.

View File

@@ -4,6 +4,13 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
- [Collocated Control]({{< relref "collocated_control" >}})
- [Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation]({{< relref "ito16_compar_class_high_precis_actuat" >}})
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
Tags
:
@@ -17,26 +24,18 @@ Links to specific actuators:
For vibration isolation:
- In ([Ito and Schitter 2016](#org9138007)), the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{< relref "ito16_compar_class_high_precis_actuat" >}}))
- In ([Ito and Schitter 2016](#org04f932d)), the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{< relref "ito16_compar_class_high_precis_actuat" >}}))
## Brush-less DC Motor {#brush-less-dc-motor}
- ([Yedamale 2003](#org6977e93))
- ([Yedamale 2003](#orge9272fd))
<https://www.electricaltechnology.org/2016/05/bldc-brushless-dc-motor-construction-working-principle.html>
## Bibliography {#bibliography}
<a id="org9138007"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 21 (2):116978. <https://doi.org/10.1109/tmech.2015.2478658>.
<a id="org04f932d"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 21 (2):116978. <https://doi.org/10.1109/tmech.2015.2478658>.
<a id="org6977e93"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (BLDC) Motor Fundamentals.” _Microchip Technology Inc_ 20:315.
## Backlinks {#backlinks}
- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
- [Collocated Control]({{< relref "collocated_control" >}})
- [Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation]({{< relref "ito16_compar_class_high_precis_actuat" >}})
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
<a id="orge9272fd"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (BLDC) Motor Fundamentals.” _Microchip Technology Inc_ 20:315.

View File

@@ -10,7 +10,7 @@ Tags
## Collocated/Dual actuator and sensor {#collocated-dual-actuator-and-sensor}
According to <sup id="454500a3af67ef66a7a754d1f2e1bd4a"><a class="reference-link" href="#preumont18_vibrat_contr_activ_struc_fourt_edition" title="Andre Preumont, Vibration Control of Active Structures - Fourth Edition, Springer International Publishing (2018).">(Andre Preumont, 2018)</a></sup>:
According to ([Preumont 2018](#org97812d4)):
> A **collocated** control system is a control system where the actuator and the sensor are attached to the same degree of freedom.
>
@@ -19,9 +19,9 @@ According to <sup id="454500a3af67ef66a7a754d1f2e1bd4a"><a class="reference-link
## Nearly Collocated Actuator Sensor Pair {#nearly-collocated-actuator-sensor-pair}
From Figure [1](#org00adcca), it is clear that at some frequency / for some mode, the actuator and the sensor will not be collocated anymore (here starting with mode 3).
From Figure [1](#org9754446), it is clear that at some frequency / for some mode, the actuator and the sensor will not be collocated anymore (here starting with mode 3).
<a id="org00adcca"></a>
<a id="org9754446"></a>
{{< figure src="/ox-hugo/preumont18_nearly_collocated_schematic.png" caption="Figure 1: Mode shapes for a uniform beam. \\(u\\) and \\(y\\) are not collocated actuator and sensor" >}}
@@ -37,5 +37,7 @@ Of course, this will reduce the sensibility.
- [ ] What happens is small pieces of actuators are mixed with small pieces of sensors?
# Bibliography
<a class="bibtex-entry" id="preumont18_vibrat_contr_activ_struc_fourt_edition">Preumont, A., *Vibration control of active structures - fourth edition* (2018), : Springer International Publishing.</a> [](#454500a3af67ef66a7a754d1f2e1bd4a)
## Bibliography {#bibliography}
<a id="org97812d4"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.

View File

@@ -4,14 +4,13 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Tags
:
<./biblio/references.bib>
## Backlinks {#backlinks}
- [Advances in internal model control technique: a review and future prospects]({{< relref "saxena12_advan_inter_model_contr_techn" >}})
- [Actuator Fusion]({{< relref "actuator_fusion" >}})
- [Sensor Fusion]({{< relref "sensor_fusion" >}})
Tags
:
<./biblio/references.bib>

View File

@@ -4,6 +4,12 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
- [Sensors and control of a space-based six-axis vibration isolation system]({{< relref "hauge04_sensor_contr_space_based_six" >}})
Tags
:
@@ -13,7 +19,7 @@ Tags
## Special Properties {#special-properties}
Cubic Stewart Platforms can be decoupled provided that (from ([Chen and McInroy 2000](#orgf50ffa1)))
Cubic Stewart Platforms can be decoupled provided that (from ([Chen and McInroy 2000](#org916c010)))
> 1. The payload mass-inertia matrix is diagonal
> 2. If a mutually orthogonal geometry has been selected, the payload's center of mass must coincide with the center of the cube formed by the orthogonal struts.
@@ -21,11 +27,4 @@ Cubic Stewart Platforms can be decoupled provided that (from ([Chen and McInroy
## Bibliography {#bibliography}
<a id="orgf50ffa1"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
## Backlinks {#backlinks}
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
- [Sensors and control of a space-based six-axis vibration isolation system]({{< relref "hauge04_sensor_contr_space_based_six" >}})
<a id="org916c010"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.

View File

@@ -4,35 +4,23 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Dynamic error budgeting, a design approach]({{< relref "monkhorst04_dynam_error_budget" >}})
- [Systems and Signals Norms]({{< relref "norms" >}})
- [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
- [The design of high performance mechatronics - 2nd revised edition]({{< relref "schmidt14_desig_high_perfor_mechat_revis_edition" >}})
- [Mechatronic design of a magnetically suspended rotating platform]({{< relref "jabben07_mechat" >}})
Tags
:
A good introduction to Dynamic Error Budgeting is given in <sup id="651e626e040250ee71a0847aec41b60c"><a class="reference-link" href="#monkhorst04_dynam_error_budget" title="@phdthesis{monkhorst04_dynam_error_budget,
author = {Wouter Monkhorst},
school = {Delft University},
title = {Dynamic Error Budgeting, a design approach},
year = 2004,
}">@phdthesis{monkhorst04_dynam_error_budget,
author = {Wouter Monkhorst},
school = {Delft University},
title = {Dynamic Error Budgeting, a design approach},
year = 2004,
}</a></sup>.
A good introduction to Dynamic Error Budgeting is given in ([Monkhorst 2004](#org9c3cf08)).
## Step by Step process {#step-by-step-process}
Taken from <sup id="651e626e040250ee71a0847aec41b60c"><a class="reference-link" href="#monkhorst04_dynam_error_budget" title="@phdthesis{monkhorst04_dynam_error_budget,
author = {Wouter Monkhorst},
school = {Delft University},
title = {Dynamic Error Budgeting, a design approach},
year = 2004,
}">@phdthesis{monkhorst04_dynam_error_budget,
author = {Wouter Monkhorst},
school = {Delft University},
title = {Dynamic Error Budgeting, a design approach},
year = 2004,
}</a></sup>: ([Notes]({{< relref "monkhorst04_dynam_error_budget" >}}))
Taken from ([Monkhorst 2004](#org9c3cf08)): ([Notes]({{< relref "monkhorst04_dynam_error_budget" >}}))
> Step by step, the process is as follows:
>
@@ -45,14 +33,7 @@ Taken from <sup id="651e626e040250ee71a0847aec41b60c"><a class="reference-link"
> - Make changes to the system that are expected to improve the performance level, and simulate the output error again.
> Iterate until the error budget is meet.
# Bibliography
<a class="bibtex-entry" id="monkhorst04_dynam_error_budget">Monkhorst, W., *Dynamic error budgeting, a design approach* (Doctoral dissertation) (2004). Delft University, .</a> [](#651e626e040250ee71a0847aec41b60c)
## Bibliography {#bibliography}
## Backlinks {#backlinks}
- [The design of high performance mechatronics - 2nd revised edition]({{< relref "schmidt14_desig_high_perfor_mechat_revis_edition" >}})
- [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
- [Mechatronic design of a magnetically suspended rotating platform]({{< relref "jabben07_mechat" >}})
- [Systems and Signals Norms]({{< relref "norms" >}})
- [Dynamic error budgeting, a design approach]({{< relref "monkhorst04_dynam_error_budget" >}})
<a id="org9c3cf08"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.

View File

@@ -4,13 +4,13 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Tags
:
<./biblio/references.bib>
## Backlinks {#backlinks}
- [The art of electronics - third edition]({{< relref "horowitz15_art_of_elect_third_edition" >}})
- [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
Tags
:
<./biblio/references.bib>

View File

@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Vibration Simulation using Matlab and ANSYS]({{< relref "hatch00_vibrat_matlab_ansys" >}})
Tags
:
@@ -12,20 +16,17 @@ Tags
Some resources:
- <sup id="484c4fad309f6b0e866a7cacf4653d74"><a class="reference-link" href="#hatch00_vibrat_matlab_ansys" title="Hatch, Vibration simulation using MATLAB and ANSYS, CRC Press (2000).">(Hatch, 2000)</a></sup> ([Notes]({{< relref "hatch00_vibrat_matlab_ansys" >}}))
- <sup id="961d4331bc9da7f553368ca6a06cb743"><a class="reference-link" href="#khot11_model_respon_analy_dynam_system" title="Khot \&amp; Yelve, Modeling and Response Analysis of Dynamic Systems By Using ANSYS{\copyright} and MATLAB{\copyright}, {Journal of Vibration and Control}, v(6), 953--958 (2011).">(Khot \& Yelve, 2011)</a></sup>
- <sup id="326e544dd573b7069b69e0ec90fad499"><a class="reference-link" href="#kosarac15_creat_siso_ansys" title="Ko\vsarac, Zeljkovi\'c, , Mla\djenovi\'c \&amp; \vZivkovi\'c, Create SISO state space model of main spindle from ANSYS model, 37--41, in in: {12th International Scientific Conference, Novi Sad, Serbia}, edited by (2015)">(Ko\vsarac {\it et al.}, 2015)</a></sup>
- ([Hatch 2000](#org7219756)) ([Notes]({{< relref "hatch00_vibrat_matlab_ansys" >}}))
- ([Khot and Yelve 2011](#org9158163))
- ([Kovarac et al. 2015](#orga16f226))
The idea is to extract reduced state space model from Ansys into Matlab.
# Bibliography
<a class="bibtex-entry" id="hatch00_vibrat_matlab_ansys">Hatch, M. R., *Vibration simulation using matlab and ansys* (2000), : CRC Press.</a> [](#484c4fad309f6b0e866a7cacf4653d74)
<a class="bibtex-entry" id="khot11_model_respon_analy_dynam_system">Khot, S., & Yelve, N. P., *Modeling and response analysis of dynamic systems by using ansys\copyright and matlab\copyright*, Journal of Vibration and Control, *17(6)*, 953958 (2011). </a> [](#961d4331bc9da7f553368ca6a06cb743)
## Bibliography {#bibliography}
<a class="bibtex-entry" id="kosarac15_creat_siso_ansys">Ko\vsarac, A, Zeljkovi\'c, M, Mla\djenovi\'c, C, & \vZivkovi\'c, A, *Create siso state space model of main spindle from ansys model*, In , 12th International Scientific Conference, Novi Sad, Serbia (pp. 3741) (2015). : .</a> [](#326e544dd573b7069b69e0ec90fad499)
<a id="org7219756"></a>Hatch, Michael R. 2000. _Vibration Simulation Using MATLAB and ANSYS_. CRC Press.
<a id="org9158163"></a>Khot, SM, and Nitesh P Yelve. 2011. “Modeling and Response Analysis of Dynamic Systems by Using ANSYS and MATLAB.” _Journal of Vibration and Control_ 17 (6). SAGE Publications Sage UK: London, England:95358.
## Backlinks {#backlinks}
- [Vibration simulation using matlab and ansys]({{< relref "hatch00_vibrat_matlab_ansys" >}})
<a id="orga16f226"></a>Kovarac, A, M Zeljkovic, C Mladjenovic, and A Zivkovic. 2015. “Create SISO State Space Model of Main Spindle from ANSYS Model.” In _12th International Scientific Conference, Novi Sad, Serbia_, 3741.

View File

@@ -4,46 +4,7 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Tags
:
## Resources {#resources}
Books:
- ([Lobontiu 2002](#orgb3f874f))
- ([Henein 2003](#orgad0500e))
- ([Smith 2005](#org48acd08))
- ([Soemers 2011](#org03d0c96))
- ([Cosandier 2017](#org6494792))
## Flexure Joints for Stewart Platforms: {#flexure-joints-for-stewart-platforms}
From ([Chen and McInroy 2000](#org2cba46e)):
> To avoid the extremely non-linear micro-dynamics of joint friction and backlash, these hexapods employ flexure joints.
> A flexure joint bends material to achieve motion, rather than sliding of rolling across two surfaces.
> This does eliminate friction and backlash, but adds spring dynamics and limits the workspace.
## Bibliography {#bibliography}
<a id="org2cba46e"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
<a id="org6494792"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
<a id="orgad0500e"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
<a id="orgb3f874f"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
<a id="org48acd08"></a>Smith, Stuart T. 2005. _Foundations of Ultra-Precision Mechanism Design_. Vol. 2. CRC Press.
<a id="org03d0c96"></a>Soemers, Herman. 2011. _Design Principles for Precision Mechanisms_. T-Pointprint.
## Backlinks {#backlinks}
### Backlinks {#backlinks}
- [Identification and decoupling control of flexure jointed hexapods]({{< relref "chen00_ident_decoup_contr_flexur_joint_hexap" >}})
- [Dynamic modeling and experimental analyses of stewart platform with flexible hinges]({{< relref "jiao18_dynam_model_exper_analy_stewar" >}})
@@ -53,3 +14,41 @@ From ([Chen and McInroy 2000](#org2cba46e)):
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
- [Dynamic modeling of flexure jointed hexapods for control purposes]({{< relref "mcinroy99_dynam" >}})
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
Tags
:
## Resources {#resources}
Books:
- ([Lobontiu 2002](#orgf8c62f3))
- ([Henein 2003](#org4dba0af))
- ([Smith 2005](#orgeb2cb93))
- ([Soemers 2011](#org7d2ccfb))
- ([Cosandier 2017](#org4a2f5bd))
## Flexure Joints for Stewart Platforms: {#flexure-joints-for-stewart-platforms}
From ([Chen and McInroy 2000](#orga69dc7b)):
> To avoid the extremely non-linear micro-dynamics of joint friction and backlash, these hexapods employ flexure joints.
> A flexure joint bends material to achieve motion, rather than sliding of rolling across two surfaces.
> This does eliminate friction and backlash, but adds spring dynamics and limits the workspace.
## Bibliography {#bibliography}
<a id="orga69dc7b"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
<a id="org4a2f5bd"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
<a id="org4dba0af"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
<a id="orgf8c62f3"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
<a id="orgeb2cb93"></a>Smith, Stuart T. 2005. _Foundations of Ultra-Precision Mechanism Design_. Vol. 2. CRC Press.
<a id="org7d2ccfb"></a>Soemers, Herman. 2011. _Design Principles for Precision Mechanisms_. T-Pointprint.

View File

@@ -4,6 +4,14 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Signal Conditioner]({{< relref "signal_conditioner" >}})
- [Sensors]({{< relref "sensors" >}})
- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}})
- [Collocated Control]({{< relref "collocated_control" >}})
- [Position Sensors]({{< relref "position_sensors" >}})
Tags
:
@@ -13,31 +21,43 @@ Tags
### Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor}
An analysis the dynamics and noise of a piezoelectric force sensor is done in <sup id="c823f68dd2a72b9667a61b3c046b4731"><a class="reference-link" href="#fleming10_nanop_system_with_force_feedb" title="Fleming, Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control, {IEEE/ASME Transactions on Mechatronics}, v(3), 433-447 (2010).">(Fleming, 2010)</a></sup> ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org82df6e1)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
### Manufacturers {#manufacturers}
| Manufacturers | Links |
|---------------|---------------------------------------------------------------|
| PCB | [link](https://www.pcb.com/products/productfinder.aspx?tx=17) |
| Manufacturers | Links | Country |
|---------------|------------------------------------------------------------------------------------------------|---------|
| PCB | [link](https://www.pcb.com/products/productfinder.aspx?tx=17) | USA |
| HBM | [link](https://www.hbm.com/en/6107/force-sensors-with-flange-mounting/) | Germany |
| Kistler | [link](https://www.kistler.com/fr/produits/composants/capteurs-de-force/?pfv%5Fmetrics=metric) | Swiss |
| MMF | [link](https://www.mmf.de/force%5Ftransducers.htm) | Germany |
### Signal Conditioner {#signal-conditioner}
The voltage generated by the piezoelectric material generally needs to be amplified.
| Manufacturers | Links |
|---------------|-----------------------------------------------|
| PCB | [link](https://www.pcb.com/products?m=482c15) |
Either **charge** amplifiers or **voltage** amplifiers can be used.
# Bibliography
<a class="bibtex-entry" id="fleming10_nanop_system_with_force_feedb">Fleming, A., *Nanopositioning system with force feedback for high-performance tracking and vibration control*, IEEE/ASME Transactions on Mechatronics, *15(3)*, 433447 (2010). http://dx.doi.org/10.1109/tmech.2009.2028422</a> [](#c823f68dd2a72b9667a61b3c046b4731)
| Manufacturers | Links | Country |
|---------------|------------------------------------------------------------------------------------|---------|
| PCB | [link](https://www.pcb.com/products?m=482c15) | USA |
| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany |
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
## Backlinks {#backlinks}
### Effect of using multiple Stacks in series of parallels {#effect-of-using-multiple-stacks-in-series-of-parallels}
- [Collocated Control]({{< relref "collocated_control" >}})
- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}})
- [Sensors]({{< relref "sensors" >}})
- [Position Sensors]({{< relref "position_sensors" >}})
If two stack are wired in series, the generated charge is kept constant and the capacitance is reduced by a factor 2.
Thus, the measured voltage is double while the measured charge is kept constant.
If two stacks are wired in parallel, the capacitance and the number of charge will be doubled.
Thus, if a voltage amplifier is used, no change of voltage will be experienced.
However, if a charge conditioner is used, the signal will be doubled.
## Bibliography {#bibliography}
<a id="org82df6e1"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):43347. <https://doi.org/10.1109/tmech.2009.2028422>.

View File

@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Guidelines for the selection of weighting functions for h-infinity control]({{< relref "bibel92_guidel_h" >}})
Tags
:
@@ -17,8 +21,3 @@ From _Rosenbrock, H. H. (1974). Computer-Aided Control System Design, Academic P
> A good design usually has strong aesthetic appeal to those who are competent in the subject.
<./biblio/references.bib>
## Backlinks {#backlinks}
- [Guidelines for the selection of weighting functions for h-infinity control]({{< relref "bibel92_guidel_h" >}})

View File

@@ -4,38 +4,38 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
- [Control of spacecraft and aircraft]({{< relref "bryson93_contr_spacec_aircr" >}})
Tags
:
High-Authority Control/Low-Authority Control
From <sup id="454500a3af67ef66a7a754d1f2e1bd4a"><a class="reference-link" href="#preumont18_vibrat_contr_activ_struc_fourt_edition" title="Andre Preumont, Vibration Control of Active Structures - Fourth Edition, Springer International Publishing (2018).">(Andre Preumont, 2018)</a></sup>:
From ([Preumont 2018](#org8496b17)):
> The HAC/LAC approach consist of combining the two approached in a dual-loop control as shown in Figure [1](#org21fb08d). The inner loop uses a set of collocated actuator/sensor pairs for decentralized active damping with guaranteed stability ; the outer loop consists of a non-collocated HAC based on a model of the actively damped structure. This approach has the following advantages:
> The HAC/LAC approach consist of combining the two approached in a dual-loop control as shown in Figure [1](#orgf651b12). The inner loop uses a set of collocated actuator/sensor pairs for decentralized active damping with guaranteed stability ; the outer loop consists of a non-collocated HAC based on a model of the actively damped structure. This approach has the following advantages:
>
> - The active damping extends outside the bandwidth of the HAC and reduces the settling time of the modes which are outsite the bandwidth
> - The active damping makes it easier to gain-stabilize the modes outside the bandwidth of the output loop (improved gain margin)
> - The larger damping of the modes within the controller bandwidth makes them more robust to the parmetric uncertainty (improved phase margin)
<a id="org21fb08d"></a>
<a id="orgf651b12"></a>
{{< figure src="/ox-hugo/hac_lac_control_architecture.png" caption="Figure 1: HAC-LAC Control Architecture" >}}
Nice papers:
- <sup id="ef357e45dadd8cc8869beda6e463777b"><a class="reference-link" href="#williams89_limit" title="Williams \&amp; Antsaklis, Limitations of vibration suppression in flexible space structures, nil, in in: {Proceedings of the 28th IEEE Conference on Decision and
Control}, edited by (1989)">(Williams \& Antsaklis, 1989)</a></sup>
- <sup id="df6fde1eeef81966b2c7fb5421adbe8d"><a class="reference-link" href="#aubrun80_theor_contr_struc_by_low_author_contr" title="Aubrun, Theory of the Control of Structures By Low-Authority Controllers, {Journal of Guidance and Control}, v(5), 444-451 (1980).">(Aubrun, 1980)</a></sup>
# Bibliography
<a class="bibtex-entry" id="preumont18_vibrat_contr_activ_struc_fourt_edition">Preumont, A., *Vibration control of active structures - fourth edition* (2018), : Springer International Publishing.</a> [](#454500a3af67ef66a7a754d1f2e1bd4a)
<a class="bibtex-entry" id="williams89_limit">Williams, T., & Antsaklis, P., *Limitations of vibration suppression in flexible space structures*, In , Proceedings of the 28th IEEE Conference on Decision and Control (pp. ) (1989). : .</a> [](#ef357e45dadd8cc8869beda6e463777b)
<a class="bibtex-entry" id="aubrun80_theor_contr_struc_by_low_author_contr">Aubrun, J., *Theory of the control of structures by low-authority controllers*, Journal of Guidance and Control, *3(5)*, 444451 (1980). http://dx.doi.org/10.2514/3.56019</a> [](#df6fde1eeef81966b2c7fb5421adbe8d)
- ([Williams and Antsaklis 1989](#org457e1df))
- ([Aubrun 1980](#org0d91759))
## Backlinks {#backlinks}
## Bibliography {#bibliography}
- [Control of spacecraft and aircraft]({{< relref "bryson93_contr_spacec_aircr" >}})
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
<a id="org0d91759"></a>Aubrun, J.N. 1980. “Theory of the Control of Structures by Low-Authority Controllers.” _Journal of Guidance and Control_ 3 (5):44451. <https://doi.org/10.2514/3.56019>.
<a id="org8496b17"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
<a id="org457e1df"></a>Williams, T.W.C., and P.J. Antsaklis. 1989. “Limitations of Vibration Suppression in Flexible Space Structures.” In _Proceedings of the 28th IEEE Conference on Decision and Control_, nil. <https://doi.org/10.1109/cdc.1989.70563>.

View File

@@ -4,16 +4,23 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Modal Analysis]({{< relref "modal_analysis" >}})
- [Sensors]({{< relref "sensors" >}})
- [Collocated Control]({{< relref "collocated_control" >}})
- [Position Sensors]({{< relref "position_sensors" >}})
Tags
: [Position Sensors]({{< relref "position_sensors" >}})
## Review of Absolute (inertial) Position Sensors {#review-of-absolute--inertial--position-sensors}
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#org3cd922d))
- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#org8b5d5a2))
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#org9a2f97b))
- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#org989ed0f))
<a id="org1914e49"></a>
<a id="org265a89c"></a>
{{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}}
@@ -33,7 +40,7 @@ Wireless Accelerometers
- <https://micromega-dynamics.com/products/recovib/miniature-vibration-recorder/>
<a id="orgf34c817"></a>
<a id="orgb67663b"></a>
{{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="Figure 2: Characteristics of commercially available accelerometers <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a class=\"reference-link\" href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \&amp; Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">(Collette {\it et al.}, 2011)</a></sup>" >}}
@@ -50,20 +57,13 @@ Wireless Accelerometers
| Guralp | [link](https://www.guralp.com/products/surface) | UK |
| Nanometric | [link](https://www.nanometrics.ca/products/seismometers) | Canada |
<a id="org877de39"></a>
<a id="org0be590f"></a>
{{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="Figure 3: Characteristics of commercially available geophones <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a class=\"reference-link\" href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \&amp; Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">(Collette {\it et al.}, 2011)</a></sup>" >}}
## Bibliography {#bibliography}
<a id="org3cd922d"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):12891300. <https://doi.org/10.1785/0120110223>.
<a id="org9a2f97b"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):12891300. <https://doi.org/10.1785/0120110223>.
<a id="org8b5d5a2"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_.
## Backlinks {#backlinks}
- [Sensors]({{< relref "sensors" >}})
- [Collocated Control]({{< relref "collocated_control" >}})
- [Position Sensors]({{< relref "position_sensors" >}})
<a id="org989ed0f"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_.

View File

@@ -32,7 +32,7 @@ Tags
>
> The primary disadvantage of FIR filters is that they often require a much higher filter order than IIR filters to achieve a given level of performance. Correspondingly, the delay of these filters is often much greater than for an equal performance IIR filter.
From ([Shaw and Srinivasan 1990](#org7a68e45))
From ([Shaw and Srinivasan 1990](#org99d8f66))
> The FIR are capable of realizing filters with linear phase shift characteristics and furthermore are less susceptible to signal input and filter coefficient quantization effects.
> However, their computational demands are excessively large because of the large number of multiplications and additions to be performed at each sampling interval.
@@ -51,4 +51,4 @@ From <https://dsp.stackexchange.com/a/30999>
## Bibliography {#bibliography}
<a id="org7a68e45"></a>Shaw, F.R., and K. Srinivasan. 1990. “Bandwidth Enhancement of Position Measurements Using Measured Acceleration.” _Mechanical Systems and Signal Processing_ 4 (1):2338. <https://doi.org/10.1016/0888-3270(90)>90038-m.
<a id="org99d8f66"></a>Shaw, F.R., and K. Srinivasan. 1990. “Bandwidth Enhancement of Position Measurements Using Measured Acceleration.” _Mechanical Systems and Signal Processing_ 4 (1):2338. <https://doi.org/10.1016/0888-3270(90)>90038-m.

View File

@@ -12,11 +12,11 @@ Tags
Books:
- ([Higham 2017](#org8ba8e47))
- ([Attaway 2018](#org4c6aa3b))
- ([OverFlow 2018](#orgad9dce4))
- ([Johnson 2010](#org1aa5652))
- ([Hahn and Valentine 2016](#orgc9b02db))
- ([Higham 2017](#org706fce9))
- ([Attaway 2018](#org83f2c16))
- ([OverFlow 2018](#orgc00fab5))
- ([Johnson 2010](#org6262ff7))
- ([Hahn and Valentine 2016](#org0601633))
## Useful Commands {#useful-commands}
@@ -46,12 +46,12 @@ Books:
### Do not show legend for one plot {#do-not-show-legend-for-one-plot}
```matlab
figure;
hold on;
plot(x, y1, 'DisplayName, 'lengendname');
plot(x, y2, 'HandleVisibility', 'off');
hold off;
legend('Location', 'northeast');
figure;
hold on;
plot(x, y1, 'DisplayName, 'lengendname');
plot(x, y2, 'HandleVisibility', 'off');
hold off;
legend('Location', 'northeast');
```
@@ -60,7 +60,7 @@ Books:
If a single user is using the Matlab installation on the machine:
```bash
sudo chown -R $LOGNAME: /usr/local/MATLAB/R2017b
sudo chown -R $LOGNAME: /usr/local/MATLAB/R2017b
```
Then, Toolboxes can be installed by the user without any problem.
@@ -101,12 +101,12 @@ Nice functions:
## Bibliography {#bibliography}
<a id="org4c6aa3b"></a>Attaway, Stormy. 2018. _MATLAB : a Practical Introduction to Programming and Problem Solving_. Amsterdam: Butterworth-Heinemann.
<a id="org83f2c16"></a>Attaway, Stormy. 2018. _MATLAB : a Practical Introduction to Programming and Problem Solving_. Amsterdam: Butterworth-Heinemann.
<a id="orgc9b02db"></a>Hahn, Brian, and Daniel T Valentine. 2016. _Essential MATLAB for Engineers and Scientists_. Academic Press.
<a id="org0601633"></a>Hahn, Brian, and Daniel T Valentine. 2016. _Essential MATLAB for Engineers and Scientists_. Academic Press.
<a id="org8ba8e47"></a>Higham, Desmond. 2017. _MATLAB Guide_. Philadelphia: Society for Industrial and Applied Mathematics.
<a id="org706fce9"></a>Higham, Desmond. 2017. _MATLAB Guide_. Philadelphia: Society for Industrial and Applied Mathematics.
<a id="org1aa5652"></a>Johnson, Richard K. 2010. _The Elements of MATLAB Style_. Cambridge University Press.
<a id="org6262ff7"></a>Johnson, Richard K. 2010. _The Elements of MATLAB Style_. Cambridge University Press.
<a id="orgad9dce4"></a>OverFlow, Stack. 2018. _MATLAB Notes for Professionals_. GoalKicker.com.
<a id="orgc00fab5"></a>OverFlow, Stack. 2018. _MATLAB Notes for Professionals_. GoalKicker.com.

View File

@@ -4,12 +4,11 @@ author = ["Thomas Dehaeze"]
draft = false
+++
## Backlinks {#backlinks}
- [Fundamental principles of engineering nanometrology]({{< relref "leach14_fundam_princ_engin_nanom" >}})
Tags
:
<./biblio/references.bib>
## Backlinks {#backlinks}
- [Fundamental principles of engineering nanometrology]({{< relref "leach14_fundam_princ_engin_nanom" >}})

View File

@@ -4,13 +4,12 @@ author = ["Thomas Dehaeze"]
draft = false
+++
## Backlinks {#backlinks}
- [Instrumented Hammer]({{< relref "instrumented_hammer" >}})
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
Tags
: [Inertial Sensors]({{< relref "inertial_sensors" >}}), [Shaker]({{< relref "shaker" >}})
<./biblio/references.bib>
## Backlinks {#backlinks}
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
- [Instrumented Hammer]({{< relref "instrumented_hammer" >}})

View File

@@ -4,12 +4,11 @@ author = ["Thomas Dehaeze"]
draft = false
+++
## Backlinks {#backlinks}
- [Advanced motion control for precision mechatronics: control, identification, and learning of complex systems]({{< relref "oomen18_advan_motion_contr_precis_mechat" >}})
Tags
:
<./biblio/references.bib>
## Backlinks {#backlinks}
- [Advanced motion control for precision mechatronics: control, identification, and learning of complex systems]({{< relref "oomen18_advan_motion_contr_precis_mechat" >}})

View File

@@ -4,12 +4,6 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Tags
: [Norms]({{< relref "norms" >}})
<./biblio/references.bib>
## Backlinks {#backlinks}
- [Implementation challenges for multivariable control: what you did not learn in school!]({{< relref "garg07_implem_chall_multiv_contr" >}})
@@ -17,3 +11,8 @@ Tags
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
- [Multivariable feedback control: analysis and design]({{< relref "skogestad07_multiv_feedb_contr" >}})
- [Position control in lithographic equipment]({{< relref "butler11_posit_contr_lithog_equip" >}})
Tags
: [Norms]({{< relref "norms" >}})
<./biblio/references.bib>

View File

@@ -4,14 +4,13 @@ author = ["Thomas Dehaeze"]
draft = false
+++
## Backlinks {#backlinks}
- [Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution]({{< relref "wang12_autom_marker_full_field_hard" >}})
- [An instrument for 3d x-ray nano-imaging]({{< relref "holler12_instr_x_ray_nano_imagin" >}})
- [Interferometric characterization of rotation stages for x-ray nanotomography]({{< relref "stankevic17_inter_charac_rotat_stages_x_ray_nanot" >}})
Tags
:
<./biblio/references.bib>
## Backlinks {#backlinks}
- [An instrument for 3d x-ray nano-imaging]({{< relref "holler12_instr_x_ray_nano_imagin" >}})
- [Interferometric characterization of rotation stages for x-ray nanotomography]({{< relref "stankevic17_inter_charac_rotat_stages_x_ray_nanot" >}})
- [Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution]({{< relref "wang12_autom_marker_full_field_hard" >}})

View File

@@ -4,19 +4,18 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Multivariable Control]({{< relref "multivariable_control" >}})
Tags
:
Resources:
- <sup id="ad6f62e369b7a8d31c21671886adec1f"><a href="#skogestad07_multiv_feedb_contr" title="Skogestad \&amp; Postlethwaite, Multivariable Feedback Control: Analysis and Design, John Wiley (2007).">(Skogestad \& Postlethwaite, 2007)</a></sup>
- <sup id="90e96a2c8cdb40b7bdf895cf013c0946"><a href="#toivonen02_robus_contr_method" title="@misc{toivonen02_robus_contr_method,
author = {Hannu T. Toivonen},
institution = {Abo Akademi University},
title = {Robust Control Methods},
year = 2002,
}">(Hannu Toivonen, 2002)</a></sup>
- <sup id="8db224194542fbd4c7f4fbe56fdd4e73"><a href="#zhang11_quant_proces_contr_theor" title="Zhang, Quantitative Process Control Theory, CRC Press (2011).">(Zhang, 2011)</a></sup>
- ([Skogestad and Postlethwaite 2007](#org533c8de))
- ([Toivonen 2002](#orgb393f10))
- ([Zhang 2011](#org1ea8e81))
## \\(\mathcal{H}\_\infty\\) Norm {#mathcal-h-infty--norm}
@@ -32,33 +31,20 @@ RMS value
The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}}).
As explained in <sup id="651e626e040250ee71a0847aec41b60c"><a href="#monkhorst04_dynam_error_budget" title="@phdthesis{monkhorst04_dynam_error_budget,
author = {Wouter Monkhorst},
school = {Delft University},
title = {Dynamic Error Budgeting, a design approach},
year = 2004,
}">@phdthesis{monkhorst04_dynam_error_budget,
author = {Wouter Monkhorst},
school = {Delft University},
title = {Dynamic Error Budgeting, a design approach},
year = 2004,
}</a></sup>, the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
As explained in ([Monkhorst 2004](#org5e40c21)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
> The squared \\(\mathcal{H}\_2\\) norm can be interpreted as the output variance of a system with zero mean white noise input.
## Link between signal and system norms {#link-between-signal-and-system-norms}
# Bibliography
<a id="skogestad07_multiv_feedb_contr"></a>Skogestad, S., & Postlethwaite, I., *Multivariable feedback control: analysis and design* (2007), : John Wiley. [](#ad6f62e369b7a8d31c21671886adec1f)
<a id="toivonen02_robus_contr_method"></a>Toivonen, H. T. (2002). *Robust Control Methods*. Retrieved from [](). . [](#90e96a2c8cdb40b7bdf895cf013c0946)
## Bibliography {#bibliography}
<a id="zhang11_quant_proces_contr_theor"></a>Zhang, W., *Quantitative Process Control Theory* (2011), : CRC Press. [](#8db224194542fbd4c7f4fbe56fdd4e73)
<a id="org5e40c21"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
<a id="monkhorst04_dynam_error_budget"></a>Monkhorst, W., *Dynamic error budgeting, a design approach* (Doctoral dissertation) (2004). Delft University, . [](#651e626e040250ee71a0847aec41b60c)
<a id="org533c8de"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
<a id="orgb393f10"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
## Backlinks {#backlinks}
- [Multivariable Control]({{< relref "multivariable_control" >}})
<a id="org1ea8e81"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.

View File

@@ -4,6 +4,11 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Actuators]({{< relref "actuators" >}})
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
Tags
: [Actuators]({{< relref "actuators" >}})
@@ -30,7 +35,7 @@ Tags
### Model {#model}
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#org1025f36)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgdda2743)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
@@ -45,14 +50,14 @@ with:
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org4de69d6)):
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#orga200a60)):
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
> The flatter is the actuator, the higher is the amplification.
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org2278a86)).
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org46de525)).
<a id="org220f472"></a>
<a id="orgeed82ad"></a>
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a class=\"reference-link\" href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \&amp; Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">(Mingxiang Ling {\it et al.}, 2016)</a></sup>" >}}
@@ -144,57 +149,51 @@ For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolut
### Electrical Capacitance {#electrical-capacitance}
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org4b5f8bd)).
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org9c97b26)).
This is due to the fact that voltage amplifier has a limitation on the deliverable current.
[Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
<a id="org4b5f8bd"></a>
<a id="org9c97b26"></a>
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org6e4c8b2)).
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org6172e71)).
<a id="org6e4c8b2"></a>
<a id="org6172e71"></a>
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgadae726)):
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#org802b6e3)):
\begin{equation}
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
\end{equation}
<a id="orgadae726"></a>
<a id="org802b6e3"></a>
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
For piezo actuators, force and displacement are inversely related (Figure [5](#org51f52cb)).
For piezo actuators, force and displacement are inversely related (Figure [5](#orga68d9e2)).
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
<a id="org51f52cb"></a>
<a id="orga68d9e2"></a>
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
## Bibliography {#bibliography}
<a id="org4de69d6"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):314. <https://doi.org/10.1080/00150190701351865>.
<a id="orga200a60"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):314. <https://doi.org/10.1080/00150190701351865>.
<a id="org1025f36"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):43347. <https://doi.org/10.1109/tmech.2009.2028422>.
<a id="orgdda2743"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):43347. <https://doi.org/10.1109/tmech.2009.2028422>.
<a id="org2278a86"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
## Backlinks {#backlinks}
- [Actuators]({{< relref "actuators" >}})
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
<a id="org46de525"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”

View File

@@ -4,13 +4,21 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})
- [Measurement technologies for precision positioning]({{< relref "gao15_measur_techn_precis_posit" >}})
- [Inertial Sensors]({{< relref "inertial_sensors" >}})
- [Sensors]({{< relref "sensors" >}})
- [Collocated Control]({{< relref "collocated_control" >}})
Tags
: [Inertial Sensors]({{< relref "inertial_sensors" >}}), [Force Sensors]({{< relref "force_sensors" >}}), [Sensor Fusion]({{< relref "sensor_fusion" >}}), [Signal Conditioner]({{< relref "signal_conditioner" >}}), [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#orgeaf4a0a)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#orgdd1b6d5)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
<a id="table--tab:characteristics-relative-sensor"></a>
<div class="table-caption">
@@ -30,7 +38,7 @@ Tags
<a id="table--tab:summary-position-sensors"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:summary-position-sensors">Table 2</a></span>:
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of \(100 \mu m\) and a first order bandwidth of \(1 kHz\) <a class='org-ref-reference' href="#fleming13_review_nanom_resol_posit_sensor">fleming13_review_nanom_resol_posit_sensor</a>
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of 100um and a first order bandwidth of \(1 kHz\) <a class='org-ref-reference' href="#fleming13_review_nanom_resol_posit_sensor">fleming13_review_nanom_resol_posit_sensor</a>
</div>
| Sensor Type | Range | DNR | Resolution | Max. BW | Accuracy |
@@ -108,9 +116,9 @@ Description:
| Renishaw | 0.2 | 1 | 6 | 1 |
| Picoscale | 0.2 | 2 | 2 | 1 |
([Jang and Kim 2017](#org5a2485c))
([Jang and Kim 2017](#orgbcf1569))
<a id="orgdc4dc3c"></a>
<a id="orgf2b5520"></a>
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
@@ -126,15 +134,6 @@ Description:
## Bibliography {#bibliography}
<a id="orgeaf4a0a"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):10626. <https://doi.org/10.1016/j.sna.2012.10.016>.
<a id="orgdd1b6d5"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):10626. <https://doi.org/10.1016/j.sna.2012.10.016>.
<a id="org5a2485c"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):188190. <https://doi.org/10.1007/s12541-017-0217-y>.
## Backlinks {#backlinks}
- [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})
- [Measurement technologies for precision positioning]({{< relref "gao15_measur_techn_precis_posit" >}})
- [Inertial Sensors]({{< relref "inertial_sensors" >}})
- [Sensors]({{< relref "sensors" >}})
- [Collocated Control]({{< relref "collocated_control" >}})
<a id="orgbcf1569"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):188190. <https://doi.org/10.1007/s12541-017-0217-y>.

View File

@@ -4,14 +4,13 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Tags
:
<./biblio/references.bib>
## Backlinks {#backlinks}
- [Position control in lithographic equipment]({{< relref "butler11_posit_contr_lithog_equip" >}})
- [An instrument for 3d x-ray nano-imaging]({{< relref "holler12_instr_x_ray_nano_imagin" >}})
- [Interferometric characterization of rotation stages for x-ray nanotomography]({{< relref "stankevic17_inter_charac_rotat_stages_x_ray_nanot" >}})
Tags
:
<./biblio/references.bib>

View File

@@ -9,9 +9,9 @@ Tags
Tutorial about Power Spectral Density is accessible [here](https://tdehaeze.github.io/spectral-analysis/).
A good article about how to use the `pwelch` function with Matlab ([Schmid 2012](#org206dff2)).
A good article about how to use the `pwelch` function with Matlab ([Schmid 2012](#org28534e1)).
## Bibliography {#bibliography}
<a id="org206dff2"></a>Schmid, Hanspeter. 2012. “How to Use the FFT and Matlabs Pwelch Function for Signal and Noise Simulations and Measurements.” _Institute of Microelectronics_.
<a id="org28534e1"></a>Schmid, Hanspeter. 2012. “How to Use the FFT and Matlabs Pwelch Function for Signal and Noise Simulations and Measurements.” _Institute of Microelectronics_.

View File

@@ -4,13 +4,12 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Tags
:
<./biblio/references.bib>
## Backlinks {#backlinks}
- [Basics of precision engineering - 1st edition]({{< relref "leach18_basic_precis_engin_edition" >}})
- [Design for precision: current status and trends]({{< relref "schellekens98_desig_precis" >}})
Tags
:
<./biblio/references.bib>

View File

@@ -4,17 +4,16 @@ author = ["Thomas Dehaeze"]
draft = false
+++
## Backlinks {#backlinks}
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
- [Multivariable feedback control: analysis and design]({{< relref "skogestad07_multiv_feedb_contr" >}})
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
- [The art of electronics - third edition]({{< relref "horowitz15_art_of_elect_third_edition" >}})
- [The design of high performance mechatronics - 2nd revised edition]({{< relref "schmidt14_desig_high_perfor_mechat_revis_edition" >}})
- [Parallel robots : mechanics and control]({{< relref "taghirad13_paral" >}})
Tags
:
<./biblio/references.bib>
## Backlinks {#backlinks}
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
- [The art of electronics - third edition]({{< relref "horowitz15_art_of_elect_third_edition" >}})
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
- [Multivariable feedback control: analysis and design]({{< relref "skogestad07_multiv_feedb_contr" >}})
- [Parallel robots : mechanics and control]({{< relref "taghirad13_paral" >}})
- [The design of high performance mechatronics - 2nd revised edition]({{< relref "schmidt14_desig_high_perfor_mechat_revis_edition" >}})

View File

@@ -4,17 +4,16 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Tags
: [Actuator Fusion]({{< relref "actuator_fusion" >}}), [Complementary Filters]({{< relref "complementary_filters" >}}), [Sensors]({{< relref "sensors" >}})
<./biblio/references.bib>
## Backlinks {#backlinks}
- [Nanopositioning with multiple sensors: a case study in data storage]({{< relref "sebastian12_nanop_with_multip_sensor" >}})
- [Sensor fusion for active vibration isolation in precision equipment]({{< relref "tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip" >}})
- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}})
- [Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs]({{< relref "collette14_vibrat" >}})
- [Sensor fusion methods for high performance active vibration isolation systems]({{< relref "collette15_sensor_fusion_method_high_perfor" >}})
- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}})
- [Position Sensors]({{< relref "position_sensors" >}})
Tags
: [Actuator Fusion]({{< relref "actuator_fusion" >}}), [Complementary Filters]({{< relref "complementary_filters" >}}), [Sensors]({{< relref "sensors" >}})
<./biblio/references.bib>

View File

@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
draft = false
+++
## Backlinks {#backlinks}
- [Sensor Fusion]({{< relref "sensor_fusion" >}})
Tags
:

View File

@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Modal Analysis]({{< relref "modal_analysis" >}})
Tags
: [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})

View File

@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Position Sensors]({{< relref "position_sensors" >}})
Tags
: [Force Sensors]({{< relref "force_sensors" >}})
@@ -44,8 +48,3 @@ The signal conditioning electronics can have different functions:
| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) |
<./biblio/references.bib>
## Backlinks {#backlinks}
- [Position Sensors]({{< relref "position_sensors" >}})

View File

@@ -4,13 +4,20 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Power Spectral Density]({{< relref "power_spectral_density" >}})
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
- [Position Sensors]({{< relref "position_sensors" >}})
Tags
: [Electronics]({{< relref "electronics" >}}), [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}})
## SNR to Noise PSD {#snr-to-noise-psd}
From ([Jabben 2007](#org05d266b)) (Section 3.3.2):
From ([Jabben 2007](#org620f0ec)) (Section 3.3.2):
> Electronic equipment does most often not come with detailed electric schemes, in which case the PSD should be determined from measurements.
> In the design phase however, one has to rely on information provided by specification sheets from the manufacturer.
@@ -77,7 +84,7 @@ Let's say the wanted noise is \\(1 mV, \text{rms}\\) for a full range of \\(20 V
## Noise Density to RMS noise {#noise-density-to-rms-noise}
From ([Fleming 2010](#org8235840)):
From ([Fleming 2010](#org094853a)):
\\[ \text{RMS noise} = \sqrt{2 \times \text{bandwidth}} \times \text{noise density} \\]
If the noise is normally distributed, the RMS value is also the standard deviation \\(\sigma\\).
@@ -97,15 +104,6 @@ The peak-to-peak noise will be approximately \\(6 \sigma = 1.7 nm\\)
## Bibliography {#bibliography}
<a id="org8235840"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):43347. <https://doi.org/10.1109/tmech.2009.2028422>.
<a id="org094853a"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):43347. <https://doi.org/10.1109/tmech.2009.2028422>.
<a id="org05d266b"></a>Jabben, Leon. 2007. “Mechatronic Design of a Magnetically Suspended Rotating Platform.” Delft University.
## Backlinks {#backlinks}
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
- [Power Spectral Density]({{< relref "power_spectral_density" >}})
- [Position Sensors]({{< relref "position_sensors" >}})
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
<a id="org620f0ec"></a>Jabben, Leon. 2007. “Mechatronic Design of a Magnetically Suspended Rotating Platform.” Delft University.

View File

@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Matlab]({{< relref "matlab" >}})
Tags
:

View File

@@ -4,50 +4,7 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Tags
:
## Flexure Jointed Stewart Platforms {#flexure-jointed-stewart-platforms}
Papers by J.E. McInroy:
- ([OBrien et al. 1998](#orgd3ca372))
- ([McInroy, OBrien, and Neat 1999](#orgf721e37))
- ([McInroy 1999](#org3433881))
- ([McInroy and Hamann 2000](#org637713e))
- ([Chen and McInroy 2000](#org36c0c78))
- ([McInroy 2002](#org9e4db5a))
- ([Li, Hamann, and McInroy 2001](#orgeede940))
- ([Lin and McInroy 2003](#orgdc4ea44))
- ([Jafari and McInroy 2003](#org567288a))
- ([Chen and McInroy 2004](#org9cf3624))
## Bibliography {#bibliography}
<a id="org9cf3624"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):41321. <https://doi.org/10.1109/tcst.2004.824339>.
<a id="org36c0c78"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
<a id="org567288a"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595603. <https://doi.org/10.1109/tra.2003.814506>.
<a id="orgdc4ea44"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):26772. <https://doi.org/10.1109/tcst.2003.809248>.
<a id="orgeede940"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
<a id="org3433881"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
<a id="org9e4db5a"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):9599. <https://doi.org/10.1109/3516.990892>.
<a id="org637713e"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):37281. <https://doi.org/10.1109/70.864229>.
<a id="orgf721e37"></a>McInroy, J.E., J.F. OBrien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):9195. <https://doi.org/10.1109/3516.752089>.
<a id="orgd3ca372"></a>OBrien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.
## Backlinks {#backlinks}
### Backlinks {#backlinks}
- [Decentralized vibration control of a voice coil motor-based stewart parallel mechanism: simulation and experiments]({{< relref "tang18_decen_vibrat_contr_voice_coil" >}})
- [Identification and decoupling control of flexure jointed hexapods]({{< relref "chen00_ident_decoup_contr_flexur_joint_hexap" >}})
@@ -70,3 +27,45 @@ Papers by J.E. McInroy:
- [Parallel robots : mechanics and control]({{< relref "taghirad13_paral" >}})
- [Simultaneous vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_vibrat_isolat_point_contr" >}})
- [Sensors and control of a space-based six-axis vibration isolation system]({{< relref "hauge04_sensor_contr_space_based_six" >}})
Tags
:
## Flexure Jointed Stewart Platforms {#flexure-jointed-stewart-platforms}
Papers by J.E. McInroy:
- ([OBrien et al. 1998](#orgaa46d57))
- ([McInroy, OBrien, and Neat 1999](#org378c866))
- ([McInroy 1999](#org3334ff2))
- ([McInroy and Hamann 2000](#orgbb67e4d))
- ([Chen and McInroy 2000](#org37a21cf))
- ([McInroy 2002](#org8af76b7))
- ([Li, Hamann, and McInroy 2001](#orgd55cfdb))
- ([Lin and McInroy 2003](#orged11f1d))
- ([Jafari and McInroy 2003](#org3d4fb3c))
- ([Chen and McInroy 2004](#orgda0daba))
## Bibliography {#bibliography}
<a id="orgda0daba"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):41321. <https://doi.org/10.1109/tcst.2004.824339>.
<a id="org37a21cf"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
<a id="org3d4fb3c"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595603. <https://doi.org/10.1109/tra.2003.814506>.
<a id="orged11f1d"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):26772. <https://doi.org/10.1109/tcst.2003.809248>.
<a id="orgd55cfdb"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
<a id="org3334ff2"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
<a id="org8af76b7"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):9599. <https://doi.org/10.1109/3516.990892>.
<a id="orgbb67e4d"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):37281. <https://doi.org/10.1109/70.864229>.
<a id="org378c866"></a>McInroy, J.E., J.F. OBrien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):9195. <https://doi.org/10.1109/3516.752089>.
<a id="orgaa46d57"></a>OBrien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.

View File

@@ -4,12 +4,11 @@ author = ["Thomas Dehaeze"]
draft = false
+++
## Backlinks {#backlinks}
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
Tags
:
<./biblio/references.bib>
## Backlinks {#backlinks}
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})

View File

@@ -4,31 +4,31 @@ author = ["Thomas Dehaeze"]
draft = false
+++
## Backlinks {#backlinks}
- [Element and system design for active and passive vibration isolation]({{< relref "zuo04_elemen_system_desig_activ_passiv_vibrat_isolat" >}})
- [A six-axis single-stage active vibration isolator based on stewart platform]({{< relref "preumont07_six_axis_singl_stage_activ" >}})
- [Investigation on active vibration isolation of a stewart platform with piezoelectric actuators]({{< relref "wang16_inves_activ_vibrat_isolat_stewar" >}})
- [Active isolation and damping of vibrations via stewart platform]({{< relref "hanieh03_activ_stewar" >}})
- [Modeling and control of vibration in mechanical systems]({{< relref "du10_model_contr_vibrat_mechan_system" >}})
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
- [Sensor fusion for active vibration isolation in precision equipment]({{< relref "tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip" >}})
- [An intelligent control system for multiple degree-of-freedom vibration isolation]({{< relref "geng95_intel_contr_system_multip_degree" >}})
- [A soft 6-axis active vibration isolator]({{< relref "spanos95_soft_activ_vibrat_isolat" >}})
- [Six dof active vibration control using stewart platform with non-cubic configuration]({{< relref "zhang11_six_dof" >}})
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
- [Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation]({{< relref "ito16_compar_class_high_precis_actuat" >}})
- [Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs]({{< relref "collette14_vibrat" >}})
- [Review of active vibration isolation strategies]({{< relref "collette11_review_activ_vibrat_isolat_strat" >}})
- [Force feedback versus acceleration feedback in active vibration isolation]({{< relref "preumont02_force_feedb_versus_accel_feedb" >}})
- [Active Isolation Platforms]({{< relref "active_isolation_platforms" >}})
- [Simultaneous vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_vibrat_isolat_point_contr" >}})
- [Sensors and control of a space-based six-axis vibration isolation system]({{< relref "hauge04_sensor_contr_space_based_six" >}})
- [An exploration of active hard mount vibration isolation for precision equipment]({{< relref "poel10_explor_activ_hard_mount_vibrat" >}})
- [Sensor fusion methods for high performance active vibration isolation systems]({{< relref "collette15_sensor_fusion_method_high_perfor" >}})
Tags
:
<./biblio/references.bib>
## Backlinks {#backlinks}
- [Review of active vibration isolation strategies]({{< relref "collette11_review_activ_vibrat_isolat_strat" >}})
- [Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs]({{< relref "collette14_vibrat" >}})
- [Sensor fusion methods for high performance active vibration isolation systems]({{< relref "collette15_sensor_fusion_method_high_perfor" >}})
- [Modeling and control of vibration in mechanical systems]({{< relref "du10_model_contr_vibrat_mechan_system" >}})
- [An intelligent control system for multiple degree-of-freedom vibration isolation]({{< relref "geng95_intel_contr_system_multip_degree" >}})
- [Active isolation and damping of vibrations via stewart platform]({{< relref "hanieh03_activ_stewar" >}})
- [Sensors and control of a space-based six-axis vibration isolation system]({{< relref "hauge04_sensor_contr_space_based_six" >}})
- [Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation]({{< relref "ito16_compar_class_high_precis_actuat" >}})
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
- [Simultaneous vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_vibrat_isolat_point_contr" >}})
- [An exploration of active hard mount vibration isolation for precision equipment]({{< relref "poel10_explor_activ_hard_mount_vibrat" >}})
- [Force feedback versus acceleration feedback in active vibration isolation]({{< relref "preumont02_force_feedb_versus_accel_feedb" >}})
- [A six-axis single-stage active vibration isolator based on stewart platform]({{< relref "preumont07_six_axis_singl_stage_activ" >}})
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
- [A soft 6-axis active vibration isolator]({{< relref "spanos95_soft_activ_vibrat_isolat" >}})
- [Sensor fusion for active vibration isolation in precision equipment]({{< relref "tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip" >}})
- [Investigation on active vibration isolation of a stewart platform with piezoelectric actuators]({{< relref "wang16_inves_activ_vibrat_isolat_stewar" >}})
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
- [Six dof active vibration control using stewart platform with non-cubic configuration]({{< relref "zhang11_six_dof" >}})
- [Element and system design for active and passive vibration isolation]({{< relref "zuo04_elemen_system_desig_activ_passiv_vibrat_isolat" >}})

View File

@@ -4,12 +4,11 @@ author = ["Thomas Dehaeze"]
draft = false
+++
## Backlinks {#backlinks}
- [Advances in internal model control technique: a review and future prospects]({{< relref "saxena12_advan_inter_model_contr_techn" >}})
Tags
:
<./biblio/references.bib>
## Backlinks {#backlinks}
- [Advances in internal model control technique: a review and future prospects]({{< relref "saxena12_advan_inter_model_contr_techn" >}})

View File

@@ -4,6 +4,11 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Actuators]({{< relref "actuators" >}})
- [Shaker]({{< relref "shaker" >}})
Tags
: [Actuators]({{< relref "actuators" >}})
@@ -27,8 +32,3 @@ Tags
## Typical Specifications {#typical-specifications}
<./biblio/references.bib>
## Backlinks {#backlinks}
- [Actuators]({{< relref "actuators" >}})

View File

@@ -4,6 +4,10 @@ author = ["Thomas Dehaeze"]
draft = false
+++
### Backlinks {#backlinks}
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
Tags
: [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}), [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}}), [Electronics]({{< relref "electronics" >}})
@@ -15,9 +19,9 @@ Tags
The piezoelectric stack can be represented as a capacitance.
Let's take a capacitance driven by a voltage amplifier (Figure [1](#orgcab6e6f)).
Let's take a capacitance driven by a voltage amplifier (Figure [1](#org7969f96)).
<a id="orgcab6e6f"></a>
<a id="org7969f96"></a>
{{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}}
@@ -37,7 +41,7 @@ Thus, for a specified maximum current \\(I\_\text{max}\\), the "power bandwidth"
- Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency:
\\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\]
The maximum voltage as a function of frequency is shown in Figure [2](#org1475933).
The maximum voltage as a function of frequency is shown in Figure [2](#org310483b).
```matlab
Vpkp = 170; % [V]
@@ -51,7 +55,7 @@ C = 1e-6; % [F]
56.172
```
<a id="org1475933"></a>
<a id="org310483b"></a>
{{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}}
@@ -65,7 +69,7 @@ If driven at \\(\Delta U = 100V\\), \\(C = 1 \mu F\\) and \\(I\_\text{max} = 1 A
### Bandwidth limitation (small signals) {#bandwidth-limitation--small-signals}
This is takken from Chapter 14 of ([Fleming and Leang 2014](#org01aad4a)).
This is takken from Chapter 14 of ([Fleming and Leang 2014](#orga9ea9d3)).
```matlab
L = 250e-9; % Cable inductance [H]
@@ -107,10 +111,4 @@ The bandwidth can be estimated from the Maximum Current and the Capacitance of t
## Bibliography {#bibliography}
<a id="org01aad4a"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
## Backlinks {#backlinks}
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
<a id="orga9ea9d3"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.