Update Content - 2025-01-17

This commit is contained in:
Thomas Dehaeze 2025-01-17 09:59:46 +01:00
parent 802a5f97a1
commit 553a14fdc7

View File

@ -199,20 +199,25 @@ The resistance as a function of temperature is approximated by the CallendarV
R\_0 (1 + A \cdot T + B \cdot T^2), & \text{for } T>0^oC \\\\
R\_0 (1 + A\cdot T + B \cdot T^2 + C \cdot (T - 100) \cdot T^3), & \text{for } T<0^oC
\end{cases} \\]
with \\(R\_0\\) the resistance value at 0 degrees (\\(100\\,\Omega\\) for a Pt100 and \\(1000\\,\Omega\\) for a Pt1000).
With \\(R\_0\\) the resistance value at 0 degrees (\\(100\\,\Omega\\) for a Pt100 and \\(1000\\,\Omega\\) for a Pt1000).
Values for A, B, C and D are depending on the exact model (summarized in <tab:pt100_values>).
Values for A, B, C and D are depending on the exact model.
For a TCR of 3850 ppm/K, the values are:
<a id="table--tab:pt100-values"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:pt100-values">Table 1</a>:</span>
Values of the Callendar-Van Dusen equations
</div>
- \\(A = 3.9083 \cdot 10^{-3}\ [{}^oC^{-1}]\\)
- \\(B = -5.775 \cdot 10^{-7}\ [{}^oC^{-2}]\\)
- \\(C = -4.183 \cdot 10^{-12}\ [{}^oC^{-4}]\\)
<!--listend-->
| TCR | A | B | C |
|------------|----------------------------|------------------------------|------------------------------|
| 3850 ppm/K | \\(3.9083 \cdot 10^{-3}\\) | \\(-5.775 \cdot 10^{-7}\\) | \\(-4.183 \cdot 10^{-12}\\) |
| 3911 ppm/K | \\(3.9692 \cdot 10^{-3}\\) | \\(-5.829 \cdot 10^{-7}\\) | \\(-4.3303 \cdot 10^{-12}\\) |
| 3750 ppm/K | \\(3.8102 \cdot 10^{-3}\\) | \\(-6.01888 \cdot 10^{-7}\\) | \\(-6 \cdot 10^{-12}\\) |
| 3770 ppm/K | \\(3.8285 \cdot 10^{-3}\\) | \\(-5.85 \cdot 10^{-7}\\) | |
```matlab
%% Pt100
%% Pt100 (3850 ppm/K)
R0 = 100; % [Ohm]
A = 3.9083e-3;