Update Content - 2024-12-17

This commit is contained in:
2024-12-17 15:37:17 +01:00
parent 4d585dd592
commit 4fb2b6c969
86 changed files with 1314 additions and 711 deletions

View File

@@ -17,5 +17,5 @@ Mention in the literature:
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Beijen, MA. 2018. “Disturbance Feedforward Control for Vibration Isolation Systems: Analysis, Design, and Implementation.” Technische Universiteit Eindhoven.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Beijen, Michiel A., Marcel F. Heertjes, Hans Butler, and Maarten Steinbuch. 2019. “Mixed Feedback and Feedforward Control Design for Multi-Axis Vibration Isolation Systems.” <i>Mechatronics</i> 61: 10616. doi:<a href="https://doi.org/https://doi.org/10.1016/j.mechatronics.2019.06.005">https://doi.org/10.1016/j.mechatronics.2019.06.005</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Beijen, Michiel A., Marcel F. Heertjes, Hans Butler, and Maarten Steinbuch. 2019. “Mixed Feedback and Feedforward Control Design for Multi-Axis Vibration Isolation Systems.” <i>Mechatronics</i> 61: 10616. doi:<a href="https://doi.org/10.1016/j.mechatronics.2019.06.005">10.1016/j.mechatronics.2019.06.005</a>.</div>
</div>

View File

@@ -39,7 +39,7 @@ For vibration isolation:
## Bibliography {#bibliography}
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” <i>Ieee/Asme Transactions on Mechatronics</i> 21 (2): 116978. doi:<a href="https://doi.org/10.1109/tmech.2015.2478658">10.1109/tmech.2015.2478658</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Murugesan, S. 1981. “An Overview of Electric Motors for Space Applications.” <i>Ieee Transactions on Industrial Electronics and Control Instrumentation</i> IECI-28 (4): 26065. doi:<a href="https://doi.org/10.1109/TIECI.1981.351050">10.1109/TIECI.1981.351050</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (Bldc) Motor Fundamentals.” <i>Microchip Technology Inc</i> 20: 315.</div>
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” <i>IEEE/ASME Transactions on Mechatronics</i> 21 (2): 116978. doi:<a href="https://doi.org/10.1109/tmech.2015.2478658">10.1109/tmech.2015.2478658</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Murugesan, S. 1981. “An Overview of Electric Motors for Space Applications.” <i>IEEE Transactions on Industrial Electronics and Control Instrumentation</i> IECI-28 (4): 26065. doi:<a href="https://doi.org/10.1109/TIECI.1981.351050">10.1109/TIECI.1981.351050</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (BLDC) Motor Fundamentals.” <i>Microchip Technology Inc</i> 20: 315.</div>
</div>

View File

@@ -33,7 +33,7 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati
Interestingly, the noise amplitude is uniformly distributed.
The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., its a uniform distribution).
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#figure--fig:probability-density-function-adc)).
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [Figure 1](#figure--fig:probability-density-function-adc)).
<a id="figure--fig:probability-density-function-adc"></a>
@@ -118,7 +118,9 @@ f\_{os} = 4^w \cdot f\_s
## Sigma Delta ADC {#sigma-delta-adc}
From (<a href="#citeproc_bib_item_7">Schmidt, Schitter, and Rankers 2020</a>):
(<a href="#citeproc_bib_item_7">Pisani 2018</a>)
From (<a href="#citeproc_bib_item_8">Schmidt, Schitter, and Rankers 2020</a>):
> The low cost and excellent linearity properties of the Sigma-Delta ADC have replaced other ADC types in many measurement and registration systems, especially where storage of data is more important than real-time measurement.
> This has typically been the case in audio recording and reproduction.
@@ -159,5 +161,6 @@ Therefore, even though there are sigma-delta ADC with high precision and samplin
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Kester, Walt. 2005. “Taking the Mystery out of the Infamous Formula, $snr = 6.02 N + 1.76 Db$, and Why You Should Care.”</div>
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>Lab, Silicon. 2013. “Improving the ADC Resolution by Oversampling and Averaging.” Silicon Laboratories.</div>
<div class="csl-entry"><a id="citeproc_bib_item_6"></a>Microchip. 1999. “Anti-Aliasing, Analog Filters for Data Acquisition Systems.”</div>
<div class="csl-entry"><a id="citeproc_bib_item_7"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2020. <i>The Design of High Performance Mechatronics - Third Revised Edition</i>. Ios Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_7"></a>Pisani, Brian. 2018. “Accounting for Delay from Multiple Sources in Delta-Sigma ADCs.</div>
<div class="csl-entry"><a id="citeproc_bib_item_8"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2020. <i>The Design of High Performance Mechatronics - Third Revised Edition</i>. Ios Press.</div>
</div>

View File

@@ -18,7 +18,7 @@ This can be typically used to interface with piezoelectric sensors.
## Basic Circuit {#basic-circuit}
Two basic circuits of charge amplifiers are shown in Figure [1](#figure--fig:charge-amplifier-circuit) (taken from (<a href="#citeproc_bib_item_1">Fleming 2010</a>)) and Figure [2](#figure--fig:charge-amplifier-circuit-bis) (taken from (<a href="#citeproc_bib_item_2">Schmidt, Schitter, and Rankers 2014</a>))
Two basic circuits of charge amplifiers are shown in [Figure 1](#figure--fig:charge-amplifier-circuit) (taken from (<a href="#citeproc_bib_item_1">Fleming 2010</a>)) and [Figure 2](#figure--fig:charge-amplifier-circuit-bis) (taken from (<a href="#citeproc_bib_item_2">Schmidt, Schitter, and Rankers 2014</a>))
<a id="figure--fig:charge-amplifier-circuit"></a>
@@ -30,7 +30,7 @@ Two basic circuits of charge amplifiers are shown in Figure [1](#figure--fig:cha
The input impedance of the charge amplifier is very small (unlike when using a voltage amplifier).
The gain of the charge amplified (Figure [1](#figure--fig:charge-amplifier-circuit)) is equal to:
The gain of the charge amplified ([Figure 1](#figure--fig:charge-amplifier-circuit)) is equal to:
\\[ \frac{V\_s}{q} = \frac{-1}{C\_s} \\]
@@ -51,6 +51,6 @@ The gain of the charge amplified (Figure [1](#figure--fig:charge-amplifier-circu
## Bibliography {#bibliography}
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” <i>Ieee/Asme Transactions on Mechatronics</i> 15 (3): 43347. doi:<a href="https://doi.org/10.1109/tmech.2009.2028422">10.1109/tmech.2009.2028422</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” <i>IEEE/ASME Transactions on Mechatronics</i> 15 (3): 43347. doi:<a href="https://doi.org/10.1109/tmech.2009.2028422">10.1109/tmech.2009.2028422</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. <i>The Design of High Performance Mechatronics - 2nd Revised Edition</i>. Ios Press.</div>
</div>

View File

@@ -19,7 +19,7 @@ According to (<a href="#citeproc_bib_item_1">Preumont 2018</a>):
## Nearly Collocated Actuator Sensor Pair {#nearly-collocated-actuator-sensor-pair}
From Figure [1](#figure--fig:preumont18-nearly-collocated-schematic), it is clear that at some frequency / for some mode, the actuator and the sensor will not be collocated anymore (here starting with mode 3).
From [Figure 1](#figure--fig:preumont18-nearly-collocated-schematic), it is clear that at some frequency / for some mode, the actuator and the sensor will not be collocated anymore (here starting with mode 3).
<a id="figure--fig:preumont18-nearly-collocated-schematic"></a>

View File

@@ -20,7 +20,7 @@ Tags
## BNC {#bnc}
BNC connectors can have an impedance of 50Ohms or 75Ohms as shown in Figure [1](#figure--fig:bnc-50-75-ohms).
BNC connectors can have an impedance of 50Ohms or 75Ohms as shown in [Figure 1](#figure--fig:bnc-50-75-ohms).
<a id="figure--fig:bnc-50-75-ohms"></a>

View File

@@ -22,5 +22,5 @@ Cubic Stewart Platforms can be decoupled provided that (from (<a href="#citeproc
## Bibliography {#bibliography}
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In <i>Proceedings 2000 Icra. Millennium Conference. Ieee International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00ch37065)</i>, nil. doi:<a href="https://doi.org/10.1109/robot.2000.844878">10.1109/robot.2000.844878</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In <i>Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)</i>. doi:<a href="https://doi.org/10.1109/robot.2000.844878">10.1109/robot.2000.844878</a>.</div>
</div>

View File

@@ -7,14 +7,8 @@ draft = false
Tags
: [Operational Amplifiers]({{< relref "operational_amplifiers.md" >}})
TODOS:
- [X] Electronics circuits containing input voltage, output voltage, Op-amp, RLC components
- [ ] Bode plots of the filters
- [ ] Inputs and output impedance
## Low Pass Filter {#low-pass-filter}
## Second Order Low Pass Filter {#second-order-low-pass-filter}
\begin{equation}
\frac{V\_o}{V\_i}(s) = \frac{1}{R^2 C\_1 C\_2 s^2 + 2 R C\_2 s + 1}
@@ -29,14 +23,16 @@ With:
- \\(\omega\_0 = \frac{1}{R\sqrt{C\_1 C\_2}}\\)
- \\(\xi = \frac{C\_2}{C\_1}\\)
<a id="figure--fig:elec-active-second-order-low-pass-filter"></a>
The input impedance is \\(V\_i/i\_i\\).
{{< figure src="/ox-hugo/elec_active_second_order_low_pass_filter.png" caption="<span class=\"figure-number\">Figure 1: </span>Second Order Low Pass Filter" >}}
<a id="figure--fig:analog-act-filt-second-order-lpf"></a>
{{< figure src="/ox-hugo/analog_act_filt_second_order_lpf.png" caption="<span class=\"figure-number\">Figure 1: </span>Second Order Low Pass Filter" >}}
## High Pass Filter {#high-pass-filter}
## Second Order High Pass Filter {#second-order-high-pass-filter}
Same as [1](#figure--fig:elec-active-second-order-low-pass-filter) but by exchanging R1 with C1 and R2 with C2
Same as [Figure 1](#figure--fig:analog-act-filt-second-order-lpf) but by exchanging R1 with C1 and R2 with C2
\begin{equation}
\frac{V\_o}{V\_i}(s) = \frac{R^2 C\_1 C\_2 s^2}{R^2 C\_1 C\_2 s^2 + 2 R C\_2 s + 1}
@@ -48,6 +44,11 @@ With:
- \\(\xi = \frac{C\_2}{C\_1}\\)
## PID controller {#pid-controller}
See [The design of high performance mechatronics - third revised edition]({{< relref "schmidt20_desig_high_perfor_mechat_third_revis_edition.md" >}}) (Chapter 6.2.6).
## Bibliography {#bibliography}
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">

View File

@@ -14,7 +14,7 @@ Some resources:
- (<a href="#citeproc_bib_item_1">Hatch 2000</a>) ([Notes]({{< relref "hatch00_vibrat_matlab_ansys.md" >}}))
- (<a href="#citeproc_bib_item_2">Khot and Yelve 2011</a>)
- (<a href="#citeproc_bib_item_3">Kovarac et al. 2015</a>)
- (NO_ITEM_DATA:kosarac15_creat_siso_ansys)
The idea is to extract reduced state space model from Ansys into Matlab.
@@ -22,7 +22,7 @@ The idea is to extract reduced state space model from Ansys into Matlab.
## Bibliography {#bibliography}
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Hatch, Michael R. 2000. <i>Vibration Simulation Using Matlab and Ansys</i>. CRC Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Hatch, Michael R. 2000. <i>Vibration Simulation Using MATLAB and ANSYS</i>. CRC Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Khot, SM, and Nitesh P Yelve. 2011. “Modeling and Response Analysis of Dynamic Systems by Using Ansys and Matlab.” <i>Journal of Vibration and Control</i> 17 (6). SAGE Publications Sage UK: London, England: 95358.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Kovarac, A, M Zeljkovic, C Mladjenovic, and A Zivkovic. 2015. “Create Siso State Space Model of Main Spindle from Ansys Model.” In <i>12th International Scientific Conference, Novi Sad, Serbia</i>, 3741.</div>
<div class="csl-entry">NO_ITEM_DATA:kosarac15_creat_siso_ansys</div>
</div>

View File

@@ -18,7 +18,7 @@ There are two main technique for force sensors:
The choice between the two is usually based on whether the measurement is static (strain gauge) or dynamics (piezoelectric).
Main differences between the two are shown in Figure [1](#figure--fig:force-sensor-piezo-vs-strain-gauge).
Main differences between the two are shown in [Figure 1](#figure--fig:force-sensor-piezo-vs-strain-gauge).
<a id="figure--fig:force-sensor-piezo-vs-strain-gauge"></a>
@@ -79,5 +79,5 @@ However, if a charge conditioner is used, the signal will be doubled.
## Bibliography {#bibliography}
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” <i>Ieee/Asme Transactions on Mechatronics</i> 15 (3): 43347. doi:<a href="https://doi.org/10.1109/tmech.2009.2028422">10.1109/tmech.2009.2028422</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” <i>IEEE/ASME Transactions on Mechatronics</i> 15 (3): 43347. doi:<a href="https://doi.org/10.1109/tmech.2009.2028422">10.1109/tmech.2009.2028422</a>.</div>
</div>

View File

@@ -37,7 +37,7 @@ G =
Continuous-time transfer function.
```
Few examples of different slopes are shown in Figure [1](#figure--fig:approximate-deriv-int).
Few examples of different slopes are shown in [Figure 1](#figure--fig:approximate-deriv-int).
<a id="figure--fig:approximate-deriv-int"></a>

View File

@@ -1,5 +1,6 @@
+++
title = "Granite"
author = ["Dehaeze Thomas"]
draft = false
category = "equipment"
+++

View File

@@ -11,7 +11,7 @@ High-Authority Control/Low-Authority Control
From (<a href="#citeproc_bib_item_2">Preumont 2018</a>):
> The HAC/LAC approach consist of combining the two approached in a dual-loop control as shown in Figure [1](#figure--fig:hac-lac-control-architecture). The inner loop uses a set of collocated actuator/sensor pairs for decentralized active damping with guaranteed stability ; the outer loop consists of a non-collocated HAC based on a model of the actively damped structure. This approach has the following advantages:
> The HAC/LAC approach consist of combining the two approached in a dual-loop control as shown in [Figure 1](#figure--fig:hac-lac-control-architecture). The inner loop uses a set of collocated actuator/sensor pairs for decentralized active damping with guaranteed stability ; the outer loop consists of a non-collocated HAC based on a model of the actively damped structure. This approach has the following advantages:
>
> - The active damping extends outside the bandwidth of the HAC and reduces the settling time of the modes which are outsite the bandwidth
> - The active damping makes it easier to gain-stabilize the modes outside the bandwidth of the output loop (improved gain margin)
@@ -32,5 +32,5 @@ Nice papers:
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Aubrun, J.N. 1980. “Theory of the Control of Structures by Low-Authority Controllers.” <i>Journal of Guidance and Control</i> 3 (5): 44451. doi:<a href="https://doi.org/10.2514/3.56019">10.2514/3.56019</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Preumont, Andre. 2018. <i>Vibration Control of Active Structures - Fourth Edition</i>. Solid Mechanics and Its Applications. Springer International Publishing. doi:<a href="https://doi.org/10.1007/978-3-319-72296-2">10.1007/978-3-319-72296-2</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Williams, T.W.C., and P.J. Antsaklis. 1989. “Limitations of Vibration Suppression in Flexible Space Structures.” In <i>Proceedings of the 28th Ieee Conference on Decision and Control</i>, nil. doi:<a href="https://doi.org/10.1109/cdc.1989.70563">10.1109/cdc.1989.70563</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Williams, T.W.C., and P.J. Antsaklis. 1989. “Limitations of Vibration Suppression in Flexible Space Structures.” In <i>Proceedings of the 28th IEEE Conference on Decision and Control</i>. doi:<a href="https://doi.org/10.1109/cdc.1989.70563">10.1109/cdc.1989.70563</a>.</div>
</div>

View File

@@ -36,7 +36,7 @@ Wireless Accelerometers
- <https://micromega-dynamics.com/products/recovib/miniature-vibration-recorder/>
Several commercial accelerometers are compared in Table [2](#figure--fig:characteristics-accelerometers) (see (<a href="#citeproc_bib_item_1">Collette et al. 2011</a>)).
Several commercial accelerometers are compared in Table [Figure 2](#figure--fig:characteristics-accelerometers) (see (<a href="#citeproc_bib_item_1">Collette et al. 2011</a>)).
<a id="figure--fig:characteristics-accelerometers"></a>
@@ -67,5 +67,5 @@ Several commercial accelerometers are compared in Table [2](#figure--fig:charact
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Collette, C, K Artoos, M Guinchard, S Janssens, P Carmona Fernandez, and C Hauviller. 2011. “Review of Sensors for Low Frequency Seismic Vibration Measurement.” CERN.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” <i>Bulletin of the Seismological Society of America</i> 102 (4): 12891300. doi:<a href="https://doi.org/10.1785/0120110223">10.1785/0120110223</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In <i>International Conference on Noise and Vibration Engineering (Isma)</i>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In <i>International Conference on Noise and Vibration Engineering (ISMA)</i>.</div>
</div>

View File

@@ -16,6 +16,6 @@ This can be done with a [Voice Coil Actuator]({{< relref "voice_coil_actuators.m
## Bibliography {#bibliography}
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Jansen, Bas, Hans Butler, and Ruben Di Filippo. 2019. “Active Damping of Dynamical Structures Using Piezo Self Sensing.” <i>Ifac-Papersonline</i> 52 (15). Elsevier: 54348.</div>
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Jansen, Bas, Hans Butler, and Ruben Di Filippo. 2019. “Active Damping of Dynamical Structures Using Piezo Self Sensing.” <i>IFAC-PapersOnLine</i> 52 (15). Elsevier: 54348.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Verma, Mohit, Vicente Lafarga, and Christophe Collette. 2020. “Perfect Collocation Using Self-Sensing Electromagnetic Actuator: Application to Vibration Control of Flexible Structures.” <i>Sensors and Actuators a: Physical</i> 313: 112210. doi:<a href="https://doi.org/10.1016/j.sna.2020.112210">10.1016/j.sna.2020.112210</a>.</div>
</div>

View File

@@ -32,7 +32,7 @@ Tags
## Effect of Refractive Index - Environmental Units {#effect-of-refractive-index-environmental-units}
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from (<a href="#citeproc_bib_item_5">Thurner et al. 2015</a>)).
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in [Table 1](#table--tab:index-air) (Taken from (<a href="#citeproc_bib_item_5">Thurner et al. 2015</a>)).
<a id="table--tab:index-air"></a>
<div class="table-caption">
@@ -50,7 +50,7 @@ The measured distance is proportional to the refractive index of the air that de
In order to limit the measurement uncertainty due to variation of air parameters, an Environmental Unit can be used that typically measures the temperature, pressure and humidity and compensation for the variation of refractive index in real time.
Typical characteristics of commercial environmental units are shown in Table [2](#table--tab:environmental-units).
Typical characteristics of commercial environmental units are shown in [Table 2](#table--tab:environmental-units).
<a id="table--tab:environmental-units"></a>
<div class="table-caption">
@@ -67,7 +67,7 @@ Typical characteristics of commercial environmental units are shown in Table [2]
## Interferometer Precision {#interferometer-precision}
Figure [1](#figure--fig:position-sensor-interferometer-precision) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from (<a href="#citeproc_bib_item_3">Jang and Kim 2017</a>)).
[Figure 1](#figure--fig:position-sensor-interferometer-precision) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from (<a href="#citeproc_bib_item_3">Jang and Kim 2017</a>)).
<a id="figure--fig:position-sensor-interferometer-precision"></a>
@@ -86,7 +86,7 @@ It includes:
- Pressure: \\(K\_P \approx 0.27 ppm hPa^{-1}\\)
- Humidity: \\(K\_{HR} \approx 0.01 ppm \\% RH^{-1}\\)
- These errors can partially be compensated using an environmental unit.
- Air turbulence (Figure [2](#figure--fig:interferometers-air-turbulence))
- Air turbulence ([Figure 2](#figure--fig:interferometers-air-turbulence))
- Non linearity
<a id="figure--fig:interferometers-air-turbulence"></a>
@@ -100,6 +100,6 @@ It includes:
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Bobroff, N. 1993. “Recent Advances in Displacement Measuring Interferometry.” <i>Measurement Science and Technology</i> 4 (9): 90726. doi:<a href="https://doi.org/10.1088/0957-0233/4/9/001">10.1088/0957-0233/4/9/001</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” doi:<a href="https://doi.org/10.13140/rg.2.2.21044.35205">10.13140/rg.2.2.21044.35205</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” <i>International Journal of Precision Engineering and Manufacturing</i> 18 (12): 188190. doi:<a href="https://doi.org/10.1007/s12541-017-0217-y">10.1007/s12541-017-0217-y</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Loughridge, Russell, and Daniel Y. Abramovitch. 2013. “A Tutorial on Laser Interferometry for Precision Measurements.” In <i>2013 American Control Conference</i>, nil. doi:<a href="https://doi.org/10.1109/acc.2013.6580402">10.1109/acc.2013.6580402</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Loughridge, Russell, and Daniel Y. Abramovitch. 2013. “A Tutorial on Laser Interferometry for Precision Measurements.” In <i>2013 American Control Conference</i>. doi:<a href="https://doi.org/10.1109/acc.2013.6580402">10.1109/acc.2013.6580402</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” <i>Applied Optics</i> 54 (10). Optical Society of America: 305163.</div>
</div>

View File

@@ -13,7 +13,7 @@ Tags
### Model and equation of motion {#model-and-equation-of-motion}
Let's consider Figure [1](#figure--fig:mass-spring-damper-system) where:
Let's consider [Figure 1](#figure--fig:mass-spring-damper-system) where:
- \\(m\\) is the mass in [kg]
- \\(k\\) is the spring stiffness in [N/m]
@@ -86,7 +86,7 @@ Gw = (c*s + k)/(m*s^2 + c*s + k);
### Model and equation of motion {#model-and-equation-of-motion}
Consider the two degrees of freedom mass spring damper system of Figure [4](#figure--fig:mass-spring-damper-2dof).
Consider the two degrees of freedom mass spring damper system of [Figure 4](#figure--fig:mass-spring-damper-2dof).
<a id="figure--fig:mass-spring-damper-2dof"></a>
@@ -154,7 +154,7 @@ G_F1_to_d2 = -m2*s^2/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s +
G_F2_to_d2 = (m1*s^2 + c1*s + k1)/((m1*s^2 + c1*s + k1)*(m2*s^2 + c2*s + k2) + m2*s^2*(c2*s + k2));
```
From Figure [5](#figure--fig:mass-spring-damper-2dof-x0-bode-plots), we can see that:
From [Figure 5](#figure--fig:mass-spring-damper-2dof-x0-bode-plots), we can see that:
- the low frequency transmissibility is equal to one
- the high frequency transmissibility to the second mass is smaller than to the first mass
@@ -163,7 +163,7 @@ From Figure [5](#figure--fig:mass-spring-damper-2dof-x0-bode-plots), we can see
{{< figure src="/ox-hugo/mass_spring_damper_2dof_x0_bode_plots.png" caption="<span class=\"figure-number\">Figure 5: </span>Transfer functions from x0 to x1 and x2 (Transmissibility)" >}}
The transfer function from \\(F\_1\\) to the mass displacements (Figure [6](#figure--fig:mass-spring-damper-2dof-F1-bode-plots)) has the same shape than the transmissibility (Figure [5](#figure--fig:mass-spring-damper-2dof-x0-bode-plots)).
The transfer function from \\(F\_1\\) to the mass displacements ([Figure 6](#figure--fig:mass-spring-damper-2dof-F1-bode-plots)) has the same shape than the transmissibility ([Figure 5](#figure--fig:mass-spring-damper-2dof-x0-bode-plots)).
However, the low frequency gain is now equal to \\(1/k\_1\\).
@@ -171,7 +171,7 @@ However, the low frequency gain is now equal to \\(1/k\_1\\).
{{< figure src="/ox-hugo/mass_spring_damper_2dof_F1_bode_plots.png" caption="<span class=\"figure-number\">Figure 6: </span>Transfer functions from F1 to x1 and x2" >}}
The transfer functions from \\(F\_2\\) to the mass displacements are shown in Figure [7](#figure--fig:mass-spring-damper-2dof-F2-bode-plots):
The transfer functions from \\(F\_2\\) to the mass displacements are shown in [Figure 7](#figure--fig:mass-spring-damper-2dof-F2-bode-plots):
- the motion \\(x\_1\\) is smaller than \\(x\_2\\)

View File

@@ -108,9 +108,9 @@ Nice functions:
## Bibliography {#bibliography}
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Attaway, Stormy. 2018. <i>Matlab : a Practical Introduction to Programming and Problem Solving</i>. Amsterdam: Butterworth-Heinemann.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Hahn, Brian, and Daniel T Valentine. 2016. <i>Essential Matlab for Engineers and Scientists</i>. Academic Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Higham, Desmond. 2017. <i>Matlab Guide</i>. Philadelphia: Society for Industrial and Applied Mathematics.</div>
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Johnson, Richard K. 2010. <i>The Elements of Matlab Style</i>. Cambridge University Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>OverFlow, Stack. 2018. <i>Matlab Notes for Professionals</i>. GoalKicker.com.</div>
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Attaway, Stormy. 2018. <i>MATLAB : a Practical Introduction to Programming and Problem Solving</i>. Amsterdam: Butterworth-Heinemann.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Hahn, Brian, and Daniel T Valentine. 2016. <i>Essential MATLAB for Engineers and Scientists</i>. Academic Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Higham, Desmond. 2017. <i>MATLAB Guide</i>. Philadelphia: Society for Industrial and Applied Mathematics.</div>
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Johnson, Richard K. 2010. <i>The Elements of MATLAB Style</i>. Cambridge University Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>OverFlow, Stack. 2018. <i>MATLAB Notes for Professionals</i>. GoalKicker.com.</div>
</div>

View File

@@ -7,7 +7,7 @@ draft = false
Tags
: [Norms]({{< relref "norms.md" >}})
A very nice book about Multivariable Control is <skogestad07_multiv_feedb_contr>
A very nice book about Multivariable Control is (<a href="#citeproc_bib_item_1">Skogestad and Postlethwaite 2007</a>)
## Transfer functions for Multi-Input Multi-Output systems {#transfer-functions-for-multi-input-multi-output-systems}
@@ -37,4 +37,6 @@ A very nice book about Multivariable Control is <skogestad07_multiv_feedb_contr>
## Bibliography {#bibliography}
<./biblio/references.bib>
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. <i>Multivariable Feedback Control: Analysis and Design - Second Edition</i>. John Wiley.</div>
</div>

View File

@@ -117,11 +117,11 @@ We therefore need to specify:
- \\(\infty\text{-norm}\\) (peak magnitude): \\(\\|e(t)\\|\_\infty\\)
- Power: \\(\\|e(t)\\|\_\text{pow}\\)
We now consider which system norms result from the definition of input classes and output norms (Table [1](#table--tab:system-norms)).
We now consider which system norms result from the definition of input classes and output norms ([Table 1](#table--tab:system-norms)).
<a id="table--tab:system-norms"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:system-norms">Table 1</a></span>:
<span class="table-number"><a href="#table--tab:system-norms">Table 1</a>:</span>
System norms for sets of inputs signals and three different output norms
</div>

View File

@@ -64,7 +64,7 @@ The Amplified Piezo Actuators principle is presented in (<a href="#citeproc_bib_
A model of an amplified piezoelectric actuator is described in (<a href="#citeproc_bib_item_5">Lucinskis and Mangeot 2016</a>).
Typical topology of mechanically amplified piezoelectric actuators are displayed in Figure [1](#figure--fig:ling16-topology-piezo-mechanism-types) (from (<a href="#citeproc_bib_item_3">Ling et al. 2016</a>)).
Typical topology of mechanically amplified piezoelectric actuators are displayed in [Figure 1](#figure--fig:ling16-topology-piezo-mechanism-types) (from (<a href="#citeproc_bib_item_3">Ling et al. 2016</a>)).
<a id="figure--fig:ling16-topology-piezo-mechanism-types"></a>
@@ -158,28 +158,28 @@ For a piezoelectric stack with a displacement of \\(100\\,[\mu m]\\), the resolu
### Electrical Capacitance {#electrical-capacitance}
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#figure--fig:piezoelectric-capacitance-voltage-max)).
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency ([Figure 2](#figure--fig:piezoelectric-capacitance-voltage-max)).
This is due to the fact that voltage amplifier has a limitation on the deliverable current.
[Voltage Amplifier]({{< relref "voltage_amplifier.md" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
<a id="figure--fig:piezoelectric-capacitance-voltage-max"></a>
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="<span class=\"figure-number\">Figure 1: </span>Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="<span class=\"figure-number\">Figure 2: </span>Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [1](#figure--fig:piezoelectric-mass-load)).
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged ([Figure 3](#figure--fig:piezoelectric-mass-load)).
<a id="figure--fig:piezoelectric-mass-load"></a>
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="<span class=\"figure-number\">Figure 1: </span>Motion of a piezoelectric stack actuator under external constant force" >}}
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="<span class=\"figure-number\">Figure 3: </span>Motion of a piezoelectric stack actuator under external constant force" >}}
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [1](#figure--fig:piezoelectric-spring-load)):
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) ([Figure 4](#figure--fig:piezoelectric-spring-load)):
\begin{equation}
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
@@ -187,16 +187,16 @@ Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its
<a id="figure--fig:piezoelectric-spring-load"></a>
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="<span class=\"figure-number\">Figure 1: </span>Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="<span class=\"figure-number\">Figure 4: </span>Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
For piezo actuators, force and displacement are inversely related (Figure [1](#figure--fig:piezoelectric-force-displ-relation)).
For piezo actuators, force and displacement are inversely related ([Figure 5](#figure--fig:piezoelectric-force-displ-relation)).
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
<a id="figure--fig:piezoelectric-force-displ-relation"></a>
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="<span class=\"figure-number\">Figure 1: </span>Relation between the maximum force and displacement" >}}
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="<span class=\"figure-number\">Figure 5: </span>Relation between the maximum force and displacement" >}}
## Piezoelectric stiffness - Electrical Boundaries {#piezoelectric-stiffness-electrical-boundaries}

View File

@@ -12,7 +12,7 @@ Tags
Sometime the controller is not compatible with the encoder protocol.
In that case a PEPU can be used in between the encoder and the controller to convert the encoder value to something readable by the controller.
This is illustrated in [1](#figure--fig:position-jitter-issue).
This is illustrated in [Figure 1](#figure--fig:position-jitter-issue).
<a id="figure--fig:position-jitter-issue"></a>
@@ -31,8 +31,8 @@ Let's choose the following parameters:
- \\(v = 1\\,mm/s\\): the scan velocity
- \\(T\_{s,\text{ctrl}} = 100\\,\mu s\\) the "sampling rate" of the controller
The encoder position as well as the stored value on the PEPU and the position used in the controller are shown in [2](#figure--fig:jitter-error-example), left.
The errors associated with the "jitter" is shown in [2](#figure--fig:jitter-error-example), right.
The encoder position as well as the stored value on the PEPU and the position used in the controller are shown in [Figure 2](#figure--fig:jitter-error-example), left.
The errors associated with the "jitter" is shown in [Figure 2](#figure--fig:jitter-error-example), right.
```matlab
%% Simulation parameters

View File

@@ -26,7 +26,7 @@ High precision positioning sensors include:
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance (<a href="#citeproc_bib_item_2">Fleming 2013</a>) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor.md" >}}))
- (<a href="#citeproc_bib_item_3">Gao et al. 2015</a>)
Table [1](#table--tab:characteristics-relative-sensor) is taken from (<a href="#citeproc_bib_item_1">Collette et al. 2011</a>).
[Table 1](#table--tab:characteristics-relative-sensor) is taken from (<a href="#citeproc_bib_item_1">Collette et al. 2011</a>).
<a id="table--tab:characteristics-relative-sensor"></a>
<div class="table-caption">
@@ -43,7 +43,7 @@ Table [1](#table--tab:characteristics-relative-sensor) is taken from (<a href="#
| Encoder | DC-1 MHz | 1 nm rms | 7-27 mm | 0,40 °C |
| Bragg Fibers | DC-150 Hz | 0.3 nm rms | 3.5 cm | -30,80 °C |
Table [2](#table--tab:summary-position-sensors) it taken from (<a href="#citeproc_bib_item_2">Fleming 2013</a>).
[Table 2](#table--tab:summary-position-sensors) it taken from (<a href="#citeproc_bib_item_2">Fleming 2013</a>).
<a id="table--tab:summary-position-sensors"></a>
<div class="table-caption">
@@ -64,7 +64,7 @@ Table [2](#table--tab:summary-position-sensors) it taken from (<a href="#citepro
Capacitive Sensors and Eddy-Current sensors are compare [here](https://www.lionprecision.com/comparing-capacitive-and-eddy-current-sensors/).
Figure [1](#figure--fig:position-sensors-thurner15) is taken from (<a href="#citeproc_bib_item_4">Thurner et al. 2015</a>).
[Figure 1](#figure--fig:position-sensors-thurner15) is taken from (<a href="#citeproc_bib_item_4">Thurner et al. 2015</a>).
<a id="figure--fig:position-sensors-thurner15"></a>
@@ -75,7 +75,7 @@ Figure [1](#figure--fig:position-sensors-thurner15) is taken from (<a href="#cit
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Collette, C, K Artoos, M Guinchard, S Janssens, P Carmona Fernandez, and C Hauviller. 2011. “Review of Sensors for Low Frequency Seismic Vibration Measurement.” CERN.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” <i>Sensors and Actuators a: Physical</i> 190 (nil): 10626. doi:<a href="https://doi.org/10.1016/j.sna.2012.10.016">10.1016/j.sna.2012.10.016</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Gao, W., S.W. Kim, H. Bosse, H. Haitjema, Y.L. Chen, X.D. Lu, W. Knapp, A. Weckenmann, W.T. Estler, and H. Kunzmann. 2015. “Measurement Technologies for Precision Positioning.” <i>Cirp Annals</i> 64 (2): 77396. doi:<a href="https://doi.org/10.1016/j.cirp.2015.05.009">10.1016/j.cirp.2015.05.009</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” <i>Sensors and Actuators a: Physical</i> 190: 10626. doi:<a href="https://doi.org/10.1016/j.sna.2012.10.016">10.1016/j.sna.2012.10.016</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Gao, W., S.W. Kim, H. Bosse, H. Haitjema, Y.L. Chen, X.D. Lu, W. Knapp, A. Weckenmann, W.T. Estler, and H. Kunzmann. 2015. “Measurement Technologies for Precision Positioning.” <i>CIRP Annals</i> 64 (2): 77396. doi:<a href="https://doi.org/10.1016/j.cirp.2015.05.009">10.1016/j.cirp.2015.05.009</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” <i>Applied Optics</i> 54 (10). Optical Society of America: 305163.</div>
</div>

View File

@@ -14,43 +14,43 @@ Tags
### Sensors {#sensors}
- Capacitive: <&schroer17_ptynam;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&schropp20_ptynam>
- Capacitive: (<a href="#citeproc_bib_item_8">Schroer et al. 2017</a>; <a href="#citeproc_bib_item_11">Villar et al. 2018</a>; <a href="#citeproc_bib_item_9">Schropp et al. 2020</a>)
- Fiber Interferometers Interferometers:
- Attocube FPS3010 Fabry-Pérot interferometers: <&nazaretski15_pushin_limit;&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul;&nazaretski22_new_kirkp_baez_based_scann>
- Attocube IDS3010 Fabry-Pérot interferometers: <&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&kelly22_delta_robot_long_travel_nano>
- PicoScale SmarAct Michelson interferometers: <&schroer17_ptynam;&schropp20_ptynam;&xu23_high_nsls_ii;&geraldes23_sapot_carnaub_sirius_lnls>
- Attocube FPS3010 Fabry-Pérot interferometers: (<a href="#citeproc_bib_item_7">Nazaretski et al. 2015</a>, <a href="#citeproc_bib_item_6">2022</a>; <a href="#citeproc_bib_item_10">Stankevic et al. 2017</a>; <a href="#citeproc_bib_item_1">Engblom and others 2018</a>)
- Attocube IDS3010 Fabry-Pérot interferometers: (<a href="#citeproc_bib_item_4">Holler et al. 2017</a>, <a href="#citeproc_bib_item_3">2018</a>; <a href="#citeproc_bib_item_5">Kelly et al. 2022</a>)
- PicoScale SmarAct Michelson interferometers: (<a href="#citeproc_bib_item_8">Schroer et al. 2017</a>; <a href="#citeproc_bib_item_9">Schropp et al. 2020</a>; <a href="#citeproc_bib_item_13">Xu et al. 2023</a>; <a href="#citeproc_bib_item_2">Geraldes et al. 2023</a>)
### Actuators {#actuators}
- Piezoelectric: <&nazaretski15_pushin_limit;&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&nazaretski22_new_kirkp_baez_based_scann>
- 3-phase linear motor: <&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul>
- Voice Coil: <&kelly22_delta_robot_long_travel_nano;&geraldes23_sapot_carnaub_sirius_lnls>
- Piezoelectric: (<a href="#citeproc_bib_item_7">Nazaretski et al. 2015</a>, <a href="#citeproc_bib_item_6">2022</a>; <a href="#citeproc_bib_item_4">Holler et al. 2017</a>, <a href="#citeproc_bib_item_3">2018</a>; <a href="#citeproc_bib_item_11">Villar et al. 2018</a>)
- 3-phase linear motor: (<a href="#citeproc_bib_item_10">Stankevic et al. 2017</a>; <a href="#citeproc_bib_item_1">Engblom and others 2018</a>)
- Voice Coil: (<a href="#citeproc_bib_item_5">Kelly et al. 2022</a>; <a href="#citeproc_bib_item_2">Geraldes et al. 2023</a>)
### Bandwidth {#bandwidth}
Rarely specificity.
Usually slow, so that only drifts are compensated.
Only recently, high bandwidth (100Hz) have been reported with the use of voice coil actuators <&kelly22_delta_robot_long_travel_nano;&geraldes23_sapot_carnaub_sirius_lnls>.
Only recently, high bandwidth (100Hz) have been reported with the use of voice coil actuators (<a href="#citeproc_bib_item_5">Kelly et al. 2022</a>; <a href="#citeproc_bib_item_2">Geraldes et al. 2023</a>).
### Degrees of Freedom {#degrees-of-freedom}
- Full rotation for tomography:
- Spindle bellow YZ stage: <&wang12_autom_marker_full_field_hard;&schroer17_ptynam;&schropp20_ptynam;&geraldes23_sapot_carnaub_sirius_lnls>
- Spindle above YZ stage: <&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&engblom18_nanop_resul;&nazaretski22_new_kirkp_baez_based_scann;&xu23_high_nsls_ii>
- Only for mapping: <&nazaretski15_pushin_limit;&kelly22_delta_robot_long_travel_nano>
- Spindle bellow YZ stage: (<a href="#citeproc_bib_item_12">Wang et al. 2012</a>; <a href="#citeproc_bib_item_8">Schroer et al. 2017</a>; <a href="#citeproc_bib_item_9">Schropp et al. 2020</a>; <a href="#citeproc_bib_item_2">Geraldes et al. 2023</a>)
- Spindle above YZ stage: (<a href="#citeproc_bib_item_10">Stankevic et al. 2017</a>; <a href="#citeproc_bib_item_4">Holler et al. 2017</a>, <a href="#citeproc_bib_item_3">2018</a>; <a href="#citeproc_bib_item_11">Villar et al. 2018</a>; <a href="#citeproc_bib_item_1">Engblom and others 2018</a>; <a href="#citeproc_bib_item_6">Nazaretski et al. 2022</a>; <a href="#citeproc_bib_item_13">Xu et al. 2023</a>)
- Only for mapping: (<a href="#citeproc_bib_item_7">Nazaretski et al. 2015</a>; <a href="#citeproc_bib_item_5">Kelly et al. 2022</a>)
**Stroke**:
- &gt; 1mm: <&nazaretski15_pushin_limit;&kelly22_delta_robot_long_travel_nano;&geraldes23_sapot_carnaub_sirius_lnls>
- &gt; 1mm: (<a href="#citeproc_bib_item_7">Nazaretski et al. 2015</a>; <a href="#citeproc_bib_item_5">Kelly et al. 2022</a>; <a href="#citeproc_bib_item_2">Geraldes et al. 2023</a>)
### Payload capabilities {#payload-capabilities}
- Micron scale samples
- Samples up to 500g <&nazaretski22_new_kirkp_baez_based_scann;&kelly22_delta_robot_long_travel_nano>
- Samples up to 500g (<a href="#citeproc_bib_item_6">Nazaretski et al. 2022</a>; <a href="#citeproc_bib_item_5">Kelly et al. 2022</a>)
### Nano Positioning End-Station without online metrology {#nano-positioning-end-station-without-online-metrology}
@@ -65,11 +65,11 @@ Only recently, high bandwidth (100Hz) have been reported with the use of voice c
End-Station with integrated online metrology
</div>
| Architecture | Sensors and measured DoFs | Metrology Use | Stroke, DoF | Samples | Institute, BL | Ref |
|-------------------------------------------------------------------|------------------------------|---------------------|-------------------------|--------------|----------------|----------------------------------------|
| Spindle / **XYZ piezo stage** / Spherical retroreflector / Sample | 3 interferometers: \\(YZ\\) | Characterization | XYZ: 100um, Rz: 180 deg | micron scale | PETRA III, P06 | <&schroer17_ptynam;&schropp20_ptynam> |
| Spindle / Metrology Ring / **XYZ** Stage / Sample | 3 Capacitive: \\(YZR\_x\\) | Post processing | | micron scale | NSLS, X8C | <&wang12_autom_marker_full_field_hard> |
| **XYZ piezo stage** / Spindle / Metrology Ring / Sample | 2 interferometers : \\(YZ\\) | Detector triggering | | micron scale | NSLS, HRX | <&xu23_high_nsls_ii> |
| Architecture | Sensors and measured DoFs | Metrology Use | Stroke, DoF | Samples | Institute, BL | Ref |
|-------------------------------------------------------------------|------------------------------|---------------------|-------------------------|--------------|----------------|------------------------------------------------------------------------------------------------------------------|
| Spindle / **XYZ piezo stage** / Spherical retroreflector / Sample | 3 interferometers: \\(YZ\\) | Characterization | XYZ: 100um, Rz: 180 deg | micron scale | PETRA III, P06 | (<a href="#citeproc_bib_item_8">Schroer et al. 2017</a>; <a href="#citeproc_bib_item_9">Schropp et al. 2020</a>) |
| Spindle / Metrology Ring / **XYZ** Stage / Sample | 3 Capacitive: \\(YZR\_x\\) | Post processing | | micron scale | NSLS, X8C | (<a href="#citeproc_bib_item_12">Wang et al. 2012</a>) |
| **XYZ piezo stage** / Spindle / Metrology Ring / Sample | 2 interferometers : \\(YZ\\) | Detector triggering | | micron scale | NSLS, HRX | (<a href="#citeproc_bib_item_13">Xu et al. 2023</a>) |
<a id="figure--fig:endstation-schroer"></a>
@@ -91,15 +91,15 @@ Only recently, high bandwidth (100Hz) have been reported with the use of voice c
End-Station with integrated feedback loops based on online metrology. Stages used for feedback are indicated in bold font.
</div>
| Architecture | Sensors and measured DoFs | Bandwidth | Stroke, DoF | Samples | Institute, BL | Ref |
|----------------------------------------------------------------------|----------------------------------------|-----------|--------------------------------------|------------|-------------------|-------------------------------------------------------------------------------|
| **XYZ piezo motors** / Mirrors / Sample | 3 interferometers: \\(XYZ\\) | 3 PID | XYZ: 3mm | light | APS | <&nazaretski15_pushin_limit> |
| **Piezo Hexapod** / Spindle / Metrology Ring / Sample | 12 Capacitive: \\(XYZR\_xR\_y\\) | 10Hz | XYZ: 50um, Rx/Ry:500urad, Rz: 180deg | light | ESRF, ID16a | <&villar18_nanop_esrf_id16a_nano_imagin_beaml> |
| **Piezo Tripod** / Spindle / Spherical Reference / Sample | 5 Custom interferometers: \\(YZR\_x\\) | PID | XYZ: 400um, Rz: 365 deg | light | PSI, OMNY | <&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage> |
| **Stacked XYZ linear motors** / Spindle / XY / Cylindrical Reference | 5 interferometers: \\(XYZR\_xR\_y\\) | | XYZ: 400um, Rz: 360 deg | light | Soleil, Nanoprobe | <&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul> |
| **XYZ piezo** / Spindle / Metrology Ring / Sample | 3 interferometers : \\(XYZ\\) | | XYZ: 100um, Rz: 360 deg | up to 500g | NSLS, SRX | <&nazaretski22_new_kirkp_baez_based_scann> |
| **Parallel XYZ voice coil stage** / Sample | 3 interferometers: \\(XYZ\\) | 100Hz | XYZ: 3mm | up to 350g | Diamond, I14 | <&kelly22_delta_robot_long_travel_nano> |
| Rz / **Parallel XYZ voice coil stage** / Sample | 3 interferometers: \\(XYZ\\) | 100Hz | YZ: 3mm, Rz: +-110deg | light | LNLS, CARNAUBA | <&geraldes23_sapot_carnaub_sirius_lnls> |
| Architecture | Sensors and measured DoFs | Bandwidth | Stroke, DoF | Samples | Institute, BL | Ref |
|----------------------------------------------------------------------|----------------------------------------|-----------|--------------------------------------|------------|-------------------|-------------------------------------------------------------------------------------------------------------------------|
| **XYZ piezo motors** / Mirrors / Sample | 3 interferometers: \\(XYZ\\) | 3 PID | XYZ: 3mm | light | APS | (<a href="#citeproc_bib_item_7">Nazaretski et al. 2015</a>) |
| **Piezo Hexapod** / Spindle / Metrology Ring / Sample | 12 Capacitive: \\(XYZR\_xR\_y\\) | 10Hz | XYZ: 50um, Rx/Ry:500urad, Rz: 180deg | light | ESRF, ID16a | (<a href="#citeproc_bib_item_11">Villar et al. 2018</a>) |
| **Piezo Tripod** / Spindle / Spherical Reference / Sample | 5 Custom interferometers: \\(YZR\_x\\) | PID | XYZ: 400um, Rz: 365 deg | light | PSI, OMNY | (<a href="#citeproc_bib_item_4">Holler et al. 2017</a>, <a href="#citeproc_bib_item_3">2018</a>) |
| **Stacked XYZ linear motors** / Spindle / XY / Cylindrical Reference | 5 interferometers: \\(XYZR\_xR\_y\\) | | XYZ: 400um, Rz: 360 deg | light | Soleil, Nanoprobe | (<a href="#citeproc_bib_item_10">Stankevic et al. 2017</a>; <a href="#citeproc_bib_item_1">Engblom and others 2018</a>) |
| **XYZ piezo** / Spindle / Metrology Ring / Sample | 3 interferometers : \\(XYZ\\) | | XYZ: 100um, Rz: 360 deg | up to 500g | NSLS, SRX | (<a href="#citeproc_bib_item_6">Nazaretski et al. 2022</a>) |
| **Parallel XYZ voice coil stage** / Sample | 3 interferometers: \\(XYZ\\) | 100Hz | XYZ: 3mm | up to 350g | Diamond, I14 | (<a href="#citeproc_bib_item_5">Kelly et al. 2022</a>) |
| Rz / **Parallel XYZ voice coil stage** / Sample | 3 interferometers: \\(XYZ\\) | 100Hz | YZ: 3mm, Rz: +-110deg | light | LNLS, CARNAUBA | (<a href="#citeproc_bib_item_2">Geraldes et al. 2023</a>) |
<a id="figure--fig:endstation-nazaretski"></a>
@@ -139,4 +139,18 @@ Only recently, high bandwidth (100Hz) have been reported with the use of voice c
## Bibliography {#bibliography}
<./biblio/references.bib>
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Engblom, C., and others. 2018. “Nanoprobe Results: Metrology &#38; Control in Stacked Closed-Loop Systems.” In <i>Proc. Of International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS17)</i>. JACoW. doi:<a href="https://doi.org/10.18429/JACoW-ICALEPCS2017-WEAPL04">10.18429/JACoW-ICALEPCS2017-WEAPL04</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Geraldes, Renan R., Gabriel B. Z. L. Moreno, Francesco R. Lena, Erik O. Pereira, Matheus H. S. da Silva, Gabriel G. Basílio, Pedro P. R. Proença, et al. 2023. “The High-Dynamic Cryogenic Sample Stage for SAPOTI/CARNAÚBA at Sirius/LNLS.” In <i>PROCEEDINGS of the 15TH INTERNATIONAL CONFERENCE on X-RAY MICROSCOPY - XRM2022</i>, nil. doi:<a href="https://doi.org/10.1063/5.0168438">10.1063/5.0168438</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Holler, M., J. Raabe, A. Diaz, M. Guizar-Sicairos, R. Wepf, M. Odstrcil, F. R. Shaik, et al. 2018. “Omny-a Tomography Nano Cryo Stage.” <i>Review of Scientific Instruments</i> 89 (4): 043706. doi:<a href="https://doi.org/10.1063/1.5020247">10.1063/1.5020247</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Holler, M., J. Raabe, R. Wepf, S. H. Shahmoradian, A. Diaz, B. Sarafimov, T. Lachat, H. Walther, and M. Vitins. 2017. “Omny Pin-a Versatile Sample Holder for Tomographic Measurements at Room and Cryogenic Temperatures.” <i>Review of Scientific Instruments</i> 88 (11): 113701. doi:<a href="https://doi.org/10.1063/1.4996092">10.1063/1.4996092</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>Kelly, Jon, Andrew Male, Nicholas Rubies, David Mahoney, Jessica M. Walker, Miguel A. Gomez-Gonzalez, Guy Wilkin, Julia E. Parker, and Paul D. Quinn. 2022. “The Delta Robot-a Long Travel Nano-Positioning Stage for Scanning X-Ray Microscopy.” <i>Review of Scientific Instruments</i> 93 (4): nil. doi:<a href="https://doi.org/10.1063/5.0084806">10.1063/5.0084806</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_6"></a>Nazaretski, E., D. S. Coburn, W. Xu, J. Ma, H. Xu, R. Smith, X. Huang, et al. 2022. “A New Kirkpatrick-Baez-Based Scanning Microscope for the Submicron Resolution X-Ray Spectroscopy (SRX) Beamline at Nsls-Ii.” <i>Journal of Synchrotron Radiation</i> 29 (5): 128491. doi:<a href="https://doi.org/10.1107/s1600577522007056">10.1107/s1600577522007056</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_7"></a>Nazaretski, E., K. Lauer, H. Yan, N. Bouet, J. Zhou, R. Conley, X. Huang, et al. 2015. “Pushing the Limits: An Instrument for Hard X-Ray Imaging below 20 Nm.” <i>Journal of Synchrotron Radiation</i> 22 (2): 33641. doi:<a href="https://doi.org/10.1107/s1600577514025715">10.1107/s1600577514025715</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_8"></a>Schroer, Christian G., Martin Seyrich, Maik Kahnt, Stephan Botta, Ralph Döhrmann, Gerald Falkenberg, Jan Garrevoet, et al. 2017. “PtyNAMi: Ptychographic Nano-Analytical Microscope at PETRA III: Interferometrically Tracking Positions for 3D X-Ray Scanning Microscopy Using a Ball-Lens Retroreflector.” In <i>X-Ray Nanoimaging: Instruments and Methods III</i>. doi:<a href="https://doi.org/10.1117/12.2273710">10.1117/12.2273710</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_9"></a>Schropp, Andreas, Ralph Döhrmann, Stephan Botta, Dennis Brückner, Maik Kahnt, Mikhail Lyubomirskiy, Christina Ossig, et al. 2020. “Ptynami: Ptychographic Nano-Analytical Microscope.” <i>Journal of Applied Crystallography</i> 53 (4): 95771. doi:<a href="https://doi.org/10.1107/s1600576720008420">10.1107/s1600576720008420</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_10"></a>Stankevic, Tomas, Christer Engblom, Florent Langlois, Filipe Alves, Alain Lestrade, Nicolas Jobert, Gilles Cauchon, Ulrich Vogt, and Stefan Kubsky. 2017. “Interferometric Characterization of Rotation Stages for X-Ray Nanotomography.” <i>Review of Scientific Instruments</i> 88 (5): 053703. doi:<a href="https://doi.org/10.1063/1.4983405">10.1063/1.4983405</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_11"></a>Villar, F., L. Andre, R. Baker, S. Bohic, J. C. da Silva, C. Guilloud, O. Hignette, et al. 2018. “Nanopositioning for the Esrf Id16a Nano-Imaging Beamline.” <i>Synchrotron Radiation News</i> 31 (5): 914. doi:<a href="https://doi.org/10.1080/08940886.2018.1506234">10.1080/08940886.2018.1506234</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_12"></a>Wang, Jun, Yu-chen Karen Chen, Qingxi Yuan, Andrei Tkachuk, Can Erdonmez, Benjamin Hornberger, and Michael Feser. 2012. “Automated Markerless Full Field Hard X-Ray Microscopic Tomography at Sub-50 Nm 3-Dimension Spatial Resolution.” <i>Applied Physics Letters</i> 100 (14): 143107. doi:<a href="https://doi.org/10.1063/1.3701579">10.1063/1.3701579</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_13"></a>Xu, Weihe, Huijuan Xu, Dmitri Gavrilov, Xiaojing Huang, Hanfei Yan, Yong S. Chu, and Evgeny Nazaretski. 2023. “High-Speed Fly-Scan Capabilities for X-Ray Microscopy Systems at NSLS-II.” In <i>X-Ray Nanoimaging: Instruments and Methods VI</i>, nil. doi:<a href="https://doi.org/10.1117/12.2675940">10.1117/12.2675940</a>.</div>
</div>

View File

@@ -9,7 +9,7 @@ Tags
Tutorial about Power Spectral Density is accessible [here](https://research.tdehaeze.xyz/spectral-analysis/).
A good article about how to use the `pwelch` function with Matlab <schmid12_how_to_use_fft_matlab>.
A good article about how to use the `pwelch` function with Matlab (<a href="#citeproc_bib_item_1">Schmid 2012</a>).
## Parseval's Theorem - Linking the Frequency and Time domain {#parseval-s-theorem-linking-the-frequency-and-time-domain}
@@ -109,7 +109,7 @@ Sxx_t = Pxx/d_f;
Sxx_o = 2*Sxx_t(1:L/2+1);
```
The result is shown in Figure [1](#figure--fig:psd-manual-example).
The result is shown in [Figure 1](#figure--fig:psd-manual-example).
<a id="figure--fig:psd-manual-example"></a>
@@ -122,7 +122,7 @@ This can also be done using the `pwelch` function which integrated a "window" th
[pxx, f] = pwelch(x, hanning(ceil(5/T_s)), [], [], 1/T_s);
```
The comparison of the two method is shown in Figure [2](#figure--fig:psd-comp-pwelch-manual-example).
The comparison of the two method is shown in [Figure 2](#figure--fig:psd-comp-pwelch-manual-example).
<a id="figure--fig:psd-comp-pwelch-manual-example"></a>
@@ -131,4 +131,6 @@ The comparison of the two method is shown in Figure [2](#figure--fig:psd-comp-pw
## Bibliography {#bibliography}
<./biblio/references.bib>
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Schmid, Hanspeter. 2012. “How to Use the Fft and Matlabs Pwelch Function for Signal and Noise Simulations and Measurements.” <i>Institute of Microelectronics</i>.</div>
</div>

View File

@@ -25,11 +25,11 @@ Tags
## Bibliography {#bibliography}
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Ewins, DJ. 2000. <i>Modal Testing: Theory, Practice and Application</i>. <i>Research Studies Pre, 2nd Ed., Isbn-13</i>. Baldock, Hertfordshire, England Philadelphia, PA: Wiley-Blackwell.</div>
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Ewins, DJ. 2000. <i>Modal Testing: Theory, Practice and Application</i>. <i>Research Studies Pre, 2nd Ed., ISBN-13</i>. Baldock, Hertfordshire, England Philadelphia, PA: Wiley-Blackwell.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Horowitz, Paul. 2015. <i>The Art of Electronics - Third Edition</i>. New York, NY, USA: Cambridge University Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Leach, Richard. 2014. <i>Fundamental Principles of Engineering Nanometrology</i>. Elsevier. doi:<a href="https://doi.org/10.1016/c2012-0-06010-3">10.1016/c2012-0-06010-3</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Leach, Richard, and Stuart T. Smith. 2018. <i>Basics of Precision Engineering - 1st Edition</i>. CRC Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>Lurie, B. J. 2012. <i>Classical Feedback Control : with Matlab and Simulink</i>. Boca Raton, FL: CRC Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>Lurie, B. J. 2012. <i>Classical Feedback Control : with MATLAB and Simulink</i>. Boca Raton, FL: CRC Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_6"></a>Preumont, Andre. 2018. <i>Vibration Control of Active Structures - Fourth Edition</i>. Solid Mechanics and Its Applications. Springer International Publishing. doi:<a href="https://doi.org/10.1007/978-3-319-72296-2">10.1007/978-3-319-72296-2</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_7"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. <i>The Design of High Performance Mechatronics - 2nd Revised Edition</i>. Ios Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_8"></a>Steinbuch, Maarten, and Tom Oomen. 2016. “Model-Based Control for High-Tech Mechatronics Systems.” CRC Press/Taylor &#38; Francis.</div>

View File

@@ -16,7 +16,7 @@ A technique to estimate the sensor noise in such case is proposed in (<a href="#
The idea is to mount two inertial sensors closely together such that they should measure the same quantity.
This is represented in Figure [1](#figure--fig:huddle-test-setup) where two identical sensors are measuring the same motion \\(x(t)\\).
This is represented in [Figure 1](#figure--fig:huddle-test-setup) where two identical sensors are measuring the same motion \\(x(t)\\).
<a id="figure--fig:huddle-test-setup"></a>
@@ -75,7 +75,7 @@ Now suppose that:
- sensor noises are modelled as input noises \\(n\_1(t)\\) and \\(n\_2(s)\\)
- sensor noises are uncorrelated and each are uncorrelated with \\(x(t)\\)
Then, the system can be represented by the block diagram in Figure [2](#figure--fig:huddle-test-block-diagram), and we can write:
Then, the system can be represented by the block diagram in [Figure 2](#figure--fig:huddle-test-block-diagram), and we can write:
\begin{align}
P\_{y\_1y\_1}(\omega) &= |H\_1(\omega)|^2 ( P\_{x}(\omega) + P\_{n\_1}(\omega) ) \\\\

View File

@@ -1,5 +1,6 @@
+++
title = "Signal to Noise Ratio"
author = ["Dehaeze Thomas"]
draft = false
+++

View File

@@ -61,29 +61,29 @@ Tags
<span class="org-target" id="org-target--sec-built-short-stroke"></span>
| University | Figure | Configuration | Joints | Actuators | Sensors | Application | Link to bibliography |
|----------------|--------------------------------------|-------------------|-------------|--------------------------|------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JPL | [5](#figure--fig:stewart-jpl) | Cubic | Flexible | Voice Coil (0.5 mm) | Force (collocated) | | <spanos95_soft_activ_vibrat_isolat>, <rahman98_multiax> Vibration Isolation (Space) |
| Washinton, JPL | [16](#figure--fig:stewart-ht-uw) | Cubic | Elastomers | Voice Coil (10 mm) | Force, LVDT, Geophones | Isolation + Pointing (Space) | <thayer98_stewar>, <thayer02_six_axis_vibrat_isolat_system>, <hauge04_sensor_contr_space_based_six> |
| Wyoming | [17](#figure--fig:stewart-uw-gsp) | Cubic (CoM=CoK) | Flexible | Voice Coil | Force | | <mcinroy99_dynam>, <mcinroy99_precis_fault_toler_point_using_stewar_platf>, <mcinroy00_desig_contr_flexur_joint_hexap>, <li01_simul_vibrat_isolat_point_contr>, <jafari03_orthog_gough_stewar_platf_microm> |
| Brussels | [21](#figure--fig:stewart-ulb-vc) | Cubic | Flexible | Voice Coil | Force | Vibration Isolation | <hanieh03_activ_stewar>, <preumont07_six_axis_singl_stage_activ> |
| SRDC | [2](#figure--fig:stewart-naval) | Not Cubic | Ball joints | Voice Coil (10 mm) | | | <taranti01_effic_algor_vibrat_suppr> |
| SRDC | [18](#figure--fig:stewart-pph) | Non-Cubic | Flexible | Voice Coil | Accelerometers, External metrology: Eddy Current + optical | Pointing | <chen03_payload_point_activ_vibrat_isolat> |
| Harbin (China) | [13](#figure--fig:stewart-tang18) | Cubic | Flexible | Voice Coil | Accelerometer in each leg | | <chi15_desig_exper_study_vcm_based>, <tang18_decen_vibrat_contr_voice_coil>, <jiao18_dynam_model_exper_analy_stewar> |
| Einhoven | [9](#figure--fig:stewart-beijen) | Almost cubic | Flexible | Voice Coil | Force Sensor + Accelerometer | Vibration Isolation | <beijen18_self_tunin_mimo_distur_feedf>, <tjepkema12_activ_ph> |
| JPL | [4](#figure--fig:stewart-geng) | Cubic (6-UPU) | Flexible | Magnetostrictive | Force (collocated), Accelerometers | Vibration Isolation | <geng93_six_degree_of_freed_activ>, <geng94_six_degree_of_freed_activ>, <geng95_intel_contr_system_multip_degree> |
| China | [10](#figure--fig:stewart-zhang11) | Non-cubic | Flexible | Magnetostrictive | Inertial | | <zhang11_six_dof> |
| Brussels | [20](#figure--fig:stewart-ulb-pz) | Cubic | Flexible | Piezoelectric, Amplified | Piezo Force | Active Damping | <abu02_stiff_soft_stewar_platf_activ> |
| SRDC | [19](#figure--fig:stewart-uqp) | Cubic | | Piezoelectric (50 um) | Geophone | Vibration | <agrawal04_algor_activ_vibrat_isolat_spacec> |
| Taiwan | [14](#figure--fig:stewart-nanoscale) | Cubic | Flexible | Piezoelectric (120 um) | External capacitive | | <ting06_desig_stewar_nanos_platf>, <ting13_compos_contr_desig_stewar_nanos_platf> |
| Taiwan | [15](#figure--fig:stewart-ting07) | Non-Cubic | Flexible | Piezoelectric (160 um) | External capacitive (LION) | | <ting07_measur_calib_stewar_microm_system> |
| Harbin (China) | [12](#figure--fig:stewart-du14) | 6-SPS (Optimized) | Flexible | Piezoelectric | Strain Gauge | | <du14_piezo_actuat_high_precis_flexib> |
| Japan | [6](#figure--fig:stewart-furutani) | Non-Cubic | Flexible | Piezoelectric (16 um) | Eddy Current Displacement Sensors | Cutting machine | <furutani04_nanom_cuttin_machin_using_stewar> |
| China | [11](#figure--fig:stewart-yang19) | 6-UPS (Cubic?) | Flexible | Piezoelectric | Force, Position | | <yang19_dynam_model_decoup_contr_flexib> |
| Shangai | [8](#figure--fig:stewart-wang16) | Cubic | Flexible | Piezoelectric | Force Sensor + Accelerometer | | <wang16_inves_activ_vibrat_isolat_stewar> |
| Matra (France) | [3](#figure--fig:stewart-mais) | Cubic | Flexible | Piezoelectric (25 um) | Piezo force sensors | Vibration control | <defendini00_techn> |
| Japan | [7](#figure--fig:stewart-torii) | Non-Cubic | Flexible | Inchworm | | | <torii12_small_size_self_propel_stewar_platf> |
| Netherlands | [1](#figure--fig:stewart-naves) | Non-Cubic | Flexible | 3-phase rotary motor | Rotary Encoders | | <&naves20_desig;&naves20_t_flex> |
| University | Figure | Configuration | Joints | Actuators | Sensors | Application | Link to bibliography |
|----------------|---------------------------------------------|-------------------|-------------|--------------------------|------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JPL | [Figure 5](#figure--fig:stewart-jpl) | Cubic | Flexible | Voice Coil (0.5 mm) | Force (collocated) | | (<a href="#citeproc_bib_item_60">Spanos, Rahman, and Blackwood 1995</a>), (<a href="#citeproc_bib_item_59">Rahman, Spanos, and Laskin 1998</a>) Vibration Isolation (Space) |
| Washinton, JPL | [Figure 16](#figure--fig:stewart-ht-uw) | Cubic | Elastomers | Voice Coil (10 mm) | Force, LVDT, Geophones | Isolation + Pointing (Space) | (<a href="#citeproc_bib_item_65">Thayer and Vagners 1998</a>), (<a href="#citeproc_bib_item_66">Thayer et al. 2002</a>), (<a href="#citeproc_bib_item_30">Hauge and Campbell 2004</a>) |
| Wyoming | [Figure 17](#figure--fig:stewart-uw-gsp) | Cubic (CoM=CoK) | Flexible | Voice Coil | Force | | (<a href="#citeproc_bib_item_44">McInroy 1999</a>), (<a href="#citeproc_bib_item_47">McInroy, OBrien, and Neat 1999</a>), (<a href="#citeproc_bib_item_46">McInroy and Hamann 2000</a>), (<a href="#citeproc_bib_item_43">Li, Hamann, and McInroy 2001</a>), (<a href="#citeproc_bib_item_34">Jafari and McInroy 2003</a>) |
| Brussels | [Figure 21](#figure--fig:stewart-ulb-vc) | Cubic | Flexible | Voice Coil | Force | Vibration Isolation | (<a href="#citeproc_bib_item_29">Hanieh 2003</a>), (<a href="#citeproc_bib_item_56">Preumont et al. 2007</a>) |
| SRDC | [Figure 2](#figure--fig:stewart-naval) | Not Cubic | Ball joints | Voice Coil (10 mm) | | | (<a href="#citeproc_bib_item_64">Taranti, Agrawal, and Cristi 2001</a>) |
| SRDC | [Figure 18](#figure--fig:stewart-pph) | Non-Cubic | Flexible | Voice Coil | Accelerometers, External metrology: Eddy Current + optical | Pointing | (<a href="#citeproc_bib_item_14">Chen, Bishop, and Agrawal 2003</a>) |
| Harbin (China) | [Figure 13](#figure--fig:stewart-tang18) | Cubic | Flexible | Voice Coil | Accelerometer in each leg | | (<a href="#citeproc_bib_item_15">Chi et al. 2015</a>), (<a href="#citeproc_bib_item_63">Tang, Cao, and Yu 2018</a>), (<a href="#citeproc_bib_item_37">Jiao et al. 2018</a>) |
| Einhoven | [Figure 9](#figure--fig:stewart-beijen) | Almost cubic | Flexible | Voice Coil | Force Sensor + Accelerometer | Vibration Isolation | (<a href="#citeproc_bib_item_6">Beijen et al. 2018</a>), (<a href="#citeproc_bib_item_70">Tjepkema 2012</a>) |
| JPL | [Figure 4](#figure--fig:stewart-geng) | Cubic (6-UPU) | Flexible | Magnetostrictive | Force (collocated), Accelerometers | Vibration Isolation | (<a href="#citeproc_bib_item_25">Geng and Haynes 1993</a>), (<a href="#citeproc_bib_item_26">Geng and Haynes 1994</a>), (<a href="#citeproc_bib_item_27">Geng et al. 1995</a>) |
| China | [Figure 10](#figure--fig:stewart-zhang11) | Non-cubic | Flexible | Magnetostrictive | Inertial | | (<a href="#citeproc_bib_item_80">Zhang et al. 2011</a>) |
| Brussels | [Figure 20](#figure--fig:stewart-ulb-pz) | Cubic | Flexible | Piezoelectric, Amplified | Piezo Force | Active Damping | (<a href="#citeproc_bib_item_2">Abu Hanieh, Horodinca, and Preumont 2002</a>) |
| SRDC | [Figure 19](#figure--fig:stewart-uqp) | Cubic | | Piezoelectric (50 um) | Geophone | Vibration | (<a href="#citeproc_bib_item_4">Agrawal and Chen 2004</a>) |
| Taiwan | [Figure 14](#figure--fig:stewart-nanoscale) | Cubic | Flexible | Piezoelectric (120 um) | External capacitive | | (<a href="#citeproc_bib_item_67">Ting, Jar, and Li 2006</a>), (<a href="#citeproc_bib_item_69">Ting, Li, and Nguyen 2013</a>) |
| Taiwan | [Figure 15](#figure--fig:stewart-ting07) | Non-Cubic | Flexible | Piezoelectric (160 um) | External capacitive (LION) | | (<a href="#citeproc_bib_item_68">Ting, Jar, and Li 2007</a>) |
| Harbin (China) | [Figure 12](#figure--fig:stewart-du14) | 6-SPS (Optimized) | Flexible | Piezoelectric | Strain Gauge | | (<a href="#citeproc_bib_item_22">Du, Shi, and Dong 2014</a>) |
| Japan | [Figure 6](#figure--fig:stewart-furutani) | Non-Cubic | Flexible | Piezoelectric (16 um) | Eddy Current Displacement Sensors | Cutting machine | (<a href="#citeproc_bib_item_24">Furutani, Suzuki, and Kudoh 2004</a>) |
| China | [Figure 11](#figure--fig:stewart-yang19) | 6-UPS (Cubic?) | Flexible | Piezoelectric | Force, Position | | (<a href="#citeproc_bib_item_77">Yang et al. 2019</a>) |
| Shangai | [Figure 8](#figure--fig:stewart-wang16) | Cubic | Flexible | Piezoelectric | Force Sensor + Accelerometer | | (<a href="#citeproc_bib_item_74">Wang et al. 2016</a>) |
| Matra (France) | [Figure 3](#figure--fig:stewart-mais) | Cubic | Flexible | Piezoelectric (25 um) | Piezo force sensors | Vibration control | (<a href="#citeproc_bib_item_18">Defendini et al. 2000</a>) |
| Japan | [Figure 7](#figure--fig:stewart-torii) | Non-Cubic | Flexible | Inchworm | | | (<a href="#citeproc_bib_item_72">Torii et al. 2012</a>) |
| Netherlands | [Figure 1](#figure--fig:stewart-naves) | Non-Cubic | Flexible | 3-phase rotary motor | Rotary Encoders | | (<a href="#citeproc_bib_item_51">Naves 2020</a>; <a href="#citeproc_bib_item_52">Naves et al. 2020</a>) |
<a id="figure--fig:stewart-naves"></a>
@@ -174,12 +174,12 @@ Tags
<span class="org-target" id="org-target--sec-built-long-stroke"></span>
| University | Figure | Configuration | Joints | Actuators | Sensors | Link to bibliography |
|----------------|-----------------------------------|---------------|--------------|-------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Japan | [22](#figure--fig:stewart-cleary) | 6-UPS | Conventional | DC, gear + rack pinion | Encoder, 7um res | <cleary91_protot_paral_manip> |
| Seoul | [23](#figure--fig:stewart-kim00) | Non-Cubic | Conventional | Hydraulic | LVDT | <kim00_robus_track_contr_desig_dof_paral_manip> |
| Xidian (China) | [24](#figure--fig:stewart-su04) | Non-Cubic | Conventional | Servo Motor + Screwball | Encoder | <su04_distur_rejec_high_precis_motion> |
| Czech | [25](#figure--fig:stewart-czech) | 6-UPS | Conventional | DC, Ball Screw | Absolute Linear position | <brezina08_ni_labview_matlab_simmec_stewar_platf_desig>, <houska10_desig_implem_absol_linear_posit>, <brezina10_contr_desig_stewar_platf_linear_actuat> |
| University | Figure | Configuration | Joints | Actuators | Sensors | Link to bibliography |
|----------------|------------------------------------------|---------------|--------------|-------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Japan | [Figure 22](#figure--fig:stewart-cleary) | 6-UPS | Conventional | DC, gear + rack pinion | Encoder, 7um res | (<a href="#citeproc_bib_item_16">Cleary and Arai 1991</a>) |
| Seoul | [Figure 23](#figure--fig:stewart-kim00) | Non-Cubic | Conventional | Hydraulic | LVDT | (<a href="#citeproc_bib_item_38">Kim, Kang, and Lee 2000</a>) |
| Xidian (China) | [Figure 24](#figure--fig:stewart-su04) | Non-Cubic | Conventional | Servo Motor + Screwball | Encoder | (<a href="#citeproc_bib_item_61">Su et al. 2004</a>) |
| Czech | [Figure 25](#figure--fig:stewart-czech) | 6-UPS | Conventional | DC, Ball Screw | Absolute Linear position | (<a href="#citeproc_bib_item_10">Březina, Andrš, and Březina 2008</a>), (<a href="#citeproc_bib_item_32">Houška, Březina, and Březina 2010</a>), (<a href="#citeproc_bib_item_11">Březina and Březina 2010</a>) |
<a id="figure--fig:stewart-cleary"></a>
@@ -198,6 +198,414 @@ Tags
{{< figure src="/ox-hugo/stewart_czech.jpg" caption="<span class=\"figure-number\">Figure 25: </span>Stewart platform from Brno University (Czech) <&brezina08_ni_labview_matlab_simmec_stewar_platf_desig>" >}}
## Articles - Design Related {#articles-design-related}
<span class="org-target" id="org-target--sec-design"></span>
- Flexible joints (Section )
- Specific geometry to have good decoupling properties (Section )
- Alternative architectures for 6DoF parallel mechanisms (Section )
- Workspace (Section )
- Modelling (Section )
### Flexures {#flexures}
<span class="org-target" id="org-target--sec-design-flexure"></span>
From (<a href="#citeproc_bib_item_30">Hauge and Campbell 2004</a>):
> Elastomer flexures, rather than steel, reduce lateral stiffness and improve passive performance at payload resonance (damping) and at frequencies greater than 100 Hz.
| Main Object | Link to bibliography |
|--------------------|----------------------------------------------------|
| Effect of flexures | (<a href="#citeproc_bib_item_45">McInroy 2002</a>) |
### Decoupling {#decoupling}
<span class="org-target" id="org-target--sec-design-decoupling"></span>
| Main Object | Link to bibliography |
|------------------------------------|---------------------------------------------------------------|
| Geometry for decoupling (CoM, CoK) | (<a href="#citeproc_bib_item_46">McInroy and Hamann 2000</a>) |
| | (<a href="#citeproc_bib_item_3">Afzali-Far 2016</a>) |
### Alternative Architectures {#alternative-architectures}
<span class="org-target" id="org-target--sec-design-architecture"></span>
| Figure | Link to bibliography |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| [Figure 26](#figure--fig:stewart-dong07) | (<a href="#citeproc_bib_item_20">Dong, Sun, and Du 2008</a>), (<a href="#citeproc_bib_item_21">Dong, Sun, and Du 2007</a>) |
| | (<a href="#citeproc_bib_item_39">Kim and Cho 2009</a>) |
| | (<a href="#citeproc_bib_item_79">Yun and Li 2010</a>) |
| | (NO_ITEM_DATA:gao02_necw_kinem_struc_paral_manip_desig) |
| | (<a href="#citeproc_bib_item_31">Horin and Shoham 2006</a>) |
<a id="figure--fig:stewart-dong07"></a>
{{< figure src="/ox-hugo/stewart_dong07.jpg" caption="<span class=\"figure-number\">Figure 26: </span><&dong07_desig_precis_compl_paral_posit>" >}}
### Workspace {#workspace}
<span class="org-target" id="org-target--sec-design-workspace"></span>
| Main Object | Link to bibliography |
|------------------------------------------------------|----------------------------------------------------------------|
| Compute orientation | (<a href="#citeproc_bib_item_9">Bonev and Ryu 2001</a>) |
| Reachable Workspace | (<a href="#citeproc_bib_item_55">Pernkopf and Husty 2006</a>) |
| Determination of the max. singularity free workspace | (<a href="#citeproc_bib_item_35">Jiang and Gosselin 2009a</a>) |
| Orientation Workspace | (<a href="#citeproc_bib_item_36">Jiang and Gosselin 2009b</a>) |
### Modelling {#modelling}
<span class="org-target" id="org-target--sec-design-modelling"></span>
#### Multi Body {#multi-body}
#### Analytical {#analytical}
#### Lumped {#lumped}
## Control {#control}
<span class="org-target" id="org-target--sec-control"></span>
Different control objectives:
- Vibration Control (Section )
- Position Control (Section )
Sometimes, the two objectives are simultaneous, in that case multiple sensors needs to be combined in the control architecture (Section ).
Stewart platform, being 6DoF parallel mechanisms, have a coupled dynamics.
In order to ease the control design, decoupling is generally required.
Several approaches can be used (Section ).
### Vibration Control and Active Damping {#vibration-control-and-active-damping}
<span class="org-target" id="org-target--sec-control-isolation"></span>
From (<a href="#citeproc_bib_item_30">Hauge and Campbell 2004</a>):
> In general, force sensors such as load cells, work well to measure vibration, but have difficulty with cross-axis dynamics.
> Inertial sensors, on the other hand, do not have this cross-axis limitation, but are usually more sensitive to payload and base dynamics and are more difficult to control due to the non-collocated nature of the sensor and actuator.
> Force sensors typically work well because they are not as sensitive to payload and base dynamics, but are limited in performance by a low-frequency zero pair resulting from the cross-axial stiffness.
> This zero pair has confused many researchers because it is very sensitive, occasionally becoming non-minimum phase.
> The zero pair is the current limitation in performance using load cell sensors.
#### Integral Force Feedback {#integral-force-feedback}
| University | Actuators | Sensors | Control | Main Object | Link to bibliography |
|------------|------------------|------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JPL | Magnetostrictive | Force (collocated), Accelerometers | Two layers: Decentralized IFF, Robust Adaptive Control | Two layer control for active damping and vibration isolation | (<a href="#citeproc_bib_item_27">Geng et al. 1995</a>) |
| JPL | Voice Coil | Force (collocated) | Decentralized IFF | Decentralized force feedback to reduce the transmissibility | (<a href="#citeproc_bib_item_60">Spanos, Rahman, and Blackwood 1995</a>), (<a href="#citeproc_bib_item_59">Rahman, Spanos, and Laskin 1998</a>) |
| Washinton | Voice Coil | Force, LVDT, Geophones | LQG, Force + geophones for vibration, LVDT for pointing | Centralized control is no better than decentralized. Geophone + Force MISO control is good | (<a href="#citeproc_bib_item_65">Thayer and Vagners 1998</a>), (<a href="#citeproc_bib_item_66">Thayer et al. 2002</a>) |
| Wyoming | Voice Coil | Force | Centralized (cartesian) IFF | Difficult to decouple in practice | (<a href="#citeproc_bib_item_53">OBrien et al. 1998</a>) |
| Wyoming | Voice Coil | Force | IFF, centralized (decouple) + decentralized (coupled) | Specific geometry: decoupled force plant. Better perf with centralized IFF | (<a href="#citeproc_bib_item_44">McInroy 1999</a>), (<a href="#citeproc_bib_item_47">McInroy, OBrien, and Neat 1999</a>), (<a href="#citeproc_bib_item_46">McInroy and Hamann 2000</a>) |
| Brussels | APA | Piezo force sensor | Decentralized IFF | | (<a href="#citeproc_bib_item_2">Abu Hanieh, Horodinca, and Preumont 2002</a>) |
| Brussels | Voice Coil | Force Sensor | Decentralized IFF | Effect of flexible joints | (<a href="#citeproc_bib_item_56">Preumont et al. 2007</a>) |
| Shangai | Piezoelectric | Force Sensor + Accelerometer | Vibration isolation, HAC-LAC (IFF + FxLMS) | Dynamic Model + Vibration Control | (<a href="#citeproc_bib_item_74">Wang et al. 2016</a>) |
| China | | | Decentralized IFF | Design cubic configuration to have same modal frequencies: optimal damping of all modes | (<a href="#citeproc_bib_item_78">Yang et al. 2017</a>) |
| Washinton | Voice Coil | Force | Decentralized IFF | Comparison of force sensor and inertial sensors. Issue on non-minimum phase zero | (<a href="#citeproc_bib_item_30">Hauge and Campbell 2004</a>) |
| China | Piezoelectric | Force, Position | Vibration isolation, Model-Based, Modal control: 6x PI controllers | Stiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space | (<a href="#citeproc_bib_item_77">Yang et al. 2019</a>) |
#### Sky-Hood Damping {#sky-hood-damping}
| University | Actuators | Sensors | Control | Main Object | Link to bibliography |
|----------------|------------|---------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Wyoming | Voice Coil | Accelerometer (collocated), ext. Rx/Ry sensors | Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) | Decoupling, both vibration + pointing control | (<a href="#citeproc_bib_item_43">Li, Hamann, and McInroy 2001</a>) |
| China | Voice Coil | Geophone + Eddy Current (Struts, collocated) | Decentralized (Sky Hook) + Centralized (modal) Control | | (<a href="#citeproc_bib_item_58">Pu et al. 2011</a>) |
| China | Voice Coil | Accelerometer in each leg | Centralized Vibration Control, PI, Skyhook | | (<a href="#citeproc_bib_item_1">Abbas and Hai 2014</a>) |
| Einhoven | Voice Coil | 6dof Accelerometers on mobile and fixed platforms | Self learning feedforward (FIR), Centralized MIMO feedback (sky hood damping) | | (<a href="#citeproc_bib_item_6">Beijen et al. 2018</a>) |
| Harbin (China) | Voice Coil | Accelerometer in each leg | Decentralized vibration control | Vibration Control with VCM and Decentralized control | (<a href="#citeproc_bib_item_63">Tang, Cao, and Yu 2018</a>) |
| Washinton | Voice Coil | Geophones | Decentralized Inertial Feedback | Centralized control is no better than decentralized. Geophone + Force MISO control is good | (<a href="#citeproc_bib_item_66">Thayer et al. 2002</a>) |
| Washinton | Voice Coil | Geophones | Decentralized Sky Hood Damping | Comparison of force sensor and inertial sensors | (<a href="#citeproc_bib_item_30">Hauge and Campbell 2004</a>) |
| Harbin (China) | Voice Coil | Accelerometers | MIMO H-Infinity, active damping | Model + active damping with flexible hinges | (<a href="#citeproc_bib_item_37">Jiao et al. 2018</a>) |
#### Vibration Control of Narrowband Disturbances {#vibration-control-of-narrowband-disturbances}
| University | Actuators | Sensors | Control | Main Object | Link to bibliography |
|------------|------------------|------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| JPL | Magnetostrictive | Force, Accelerometers | Robust Adaptive Filter | Hardware implementation | (<a href="#citeproc_bib_item_25">Geng and Haynes 1993</a>), (<a href="#citeproc_bib_item_26">Geng and Haynes 1994</a>) |
| SRDC | | | LMS with FIR (feedforward), disturbance rejection, Decentralized (struts) PID | Rejection of narrowband periodic disturbances | (<a href="#citeproc_bib_item_14">Chen, Bishop, and Agrawal 2003</a>) |
| Wyoming | Voice Coil | | Adaptive sinusoidal disturbance (Phase Lock Loop) | | (<a href="#citeproc_bib_item_41">Lin and McInroy 2003</a>) |
| SRDC | Piezo | Geophone (collocated) | "multiple error LMS" (require measured disturbance) vs "clear box" | | (<a href="#citeproc_bib_item_4">Agrawal and Chen 2004</a>) |
| China | Magnetostrictive | Inertial | Sinusoidal vibration, adaptive filters (LMS) | Design and Control of flexure joint Hexapods | (<a href="#citeproc_bib_item_80">Zhang et al. 2011</a>) |
| Shangai | Piezoelectric | Force Sensor + Accelerometer | Vibration isolation, HAC-LAC (IFF + FxLMS) | Dynamic Model + Vibration Control | (<a href="#citeproc_bib_item_74">Wang et al. 2016</a>) |
### Position Control {#position-control}
<span class="org-target" id="org-target--sec-control-position"></span>
Here, the objective is to _position_ the mobile platform with respect to an external metrology or internal metrology.
Control Strategy:
- Decentralized P, PI or PID
- LQR, LQG
- H-Infinity
- Two Layer
| University | Actuators | Sensors | Control | Modelling | Main Object | Link to bibliography |
|----------------|---------------|------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Washinton | Voice Coil | Force, LVDT, Geophones | LQG, Force + geophones for vibration, LVDT for pointing | FEM =&gt; State Space | Centralized control is no better than decentralized. Geophone + Force MISO control is good | (<a href="#citeproc_bib_item_65">Thayer and Vagners 1998</a>), (<a href="#citeproc_bib_item_66">Thayer et al. 2002</a>) |
| Wyoming | Voice Coil | Force, LVDT | IFF, centralized (decouple) + decentralized (coupled) | Lumped | Specific geometry: decoupled force plant. Better perf with centralized IFF | (<a href="#citeproc_bib_item_44">McInroy 1999</a>), (<a href="#citeproc_bib_item_47">McInroy, OBrien, and Neat 1999</a>), (<a href="#citeproc_bib_item_46">McInroy and Hamann 2000</a>) |
| Seoul | Hydraulic | LVDT | Decentralized (strut) vs Centralized (cartesian) | | | (<a href="#citeproc_bib_item_38">Kim, Kang, and Lee 2000</a>) |
| Wyoming | Voice Coil | Accelerometer (collocated), ext. Rx/Ry sensors | Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) | Analytical equations | Decoupling, both vibration + pointing control | (<a href="#citeproc_bib_item_43">Li, Hamann, and McInroy 2001</a>) |
| Japan | APA | Eddy current displacement | Decentralized (struts) PI + LPF control | | | (<a href="#citeproc_bib_item_24">Furutani, Suzuki, and Kudoh 2004</a>) |
| China | Voice Coil | Geophone + Eddy Current (Struts, collocated) | Decentralized (Sky Hook) + Centralized (modal) Control | | | (<a href="#citeproc_bib_item_58">Pu et al. 2011</a>) |
| Harbin (China) | PZT Piezo | Strain Gauge | Decentralized position feedback | | Workspace, Stiffness analyzed | (<a href="#citeproc_bib_item_22">Du, Shi, and Dong 2014</a>) |
| China | Piezoelectric | Leg length | Tracking control, ADRC, State observer | Analytical | Use of ADRC for tracking control of cubic hexapod | (<a href="#citeproc_bib_item_49">Min, Huang, and Su 2019</a>) |
| China | Piezoelectric | Force, Position | Vibration isolation, Model-Based, Modal control: 6x PI controllers | Solid/Flexible | Stiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space | (<a href="#citeproc_bib_item_77">Yang et al. 2019</a>) |
From: (<a href="#citeproc_bib_item_77">Yang et al. 2019</a>):
> On the other hand, the traditional modal decoupled control strategy cannot deal with the flexible Stewart platform governed by Eq. (34) because it is impossible to achieve simultaneous diagonalization of the mass, damping and stiffness matrices.
> To make the six-DOF system decoupled into six single-DOF isolators, we design a new controller based on the legs force and position feedback.
> The idea is to synthesize the control force that can compensate the parasitic bending and torsional torques of the flexible joints and simultaneously achieve diagonalization of the matrices M, C and K.
### Multi Sensor Control {#multi-sensor-control}
<span class="org-target" id="org-target--sec-control-multi-sensor"></span>
Improvement by the use of several sensors:
- HAC-LAC
- Two sensor control
- Sensor Fusion
Comparison between "two sensor control" and "sensor fusion" is given in (<a href="#citeproc_bib_item_7">Beijen, Tjepkema, and van Dijk 2014</a>).
#### Two sensor control {#two-sensor-control}
| University | Actuators | Sensors | Control | Main Object | Link to bibliography |
|-------------|------------|--------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Washinton | Voice Coil | Force and Inertial | LQG, Decentralized, Sensor Fusion | Combine force/inertial sensors. Comparison of force sensor and inertial sensors. Issue on non-minimum phase zero | (<a href="#citeproc_bib_item_30">Hauge and Campbell 2004</a>) |
| Netherlands | Voice Coil | | Sensor Fusion, Two Sensor Control | | (<a href="#citeproc_bib_item_70">Tjepkema 2012</a>) |
#### HAC-LAC {#hac-lac}
| University | Actuators | Sensors | Control | Main Object | Link to bibliography |
|------------|------------------|---------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|
| JPL | Magnetostrictive | Force (collocated), Accelerometers | Two layers: Decentralized IFF, Robust Adaptive Control | Two layer control for active damping and vibration isolation | (<a href="#citeproc_bib_item_27">Geng et al. 1995</a>) |
| Shangai | Piezoelectric | Force Sensor + Accelerometer | Vibration isolation, HAC-LAC (IFF + FxLMS) | Dynamic Model + Vibration Control | (<a href="#citeproc_bib_item_74">Wang et al. 2016</a>) |
| Wyoming | Voice Coil | Accelerometer (collocated), ext. Rx/Ry sensors | Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) | Decoupling, both vibration + pointing control | (<a href="#citeproc_bib_item_43">Li, Hamann, and McInroy 2001</a>) |
| China | Voice Coil | Geophone + Eddy Current (Struts, collocated) | Decentralized (Sky Hook) + Centralized (modal) Control | | (<a href="#citeproc_bib_item_58">Pu et al. 2011</a>) |
| China | Voice Coil | Force sensors (strus) + accelerometer (cartesian) | Decentralized Force Feedback + Centralized H2 control based on accelerometers | | (<a href="#citeproc_bib_item_75">Xie, Wang, and Zhang 2017</a>) |
#### Sensor Fusion {#sensor-fusion}
| University | Actuators | Sensors | Control | Main Object | Link to bibliography |
|-------------|------------|------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Netherlands | Voice Coil | Force (HF) and Inertial (LF) | Sensor Fusion, Two Sensor Control | | (<a href="#citeproc_bib_item_70">Tjepkema 2012</a>), (<a href="#citeproc_bib_item_71">Tjepkema, van Dijk, and Soemers 2012</a>) |
| Washinton | Voice Coil | Force (HF) and Inertial (LF) | LQG, Decentralized, Sensor Fusion | Combine force/inertial sensors. Comparison of force sensor and inertial sensors. Issue on non-minimum phase zero | (<a href="#citeproc_bib_item_30">Hauge and Campbell 2004</a>) |
#### Other Strategies {#other-strategies}
| University | Actuators | Sensors | Control | Main Object | Link to bibliography |
|------------|---------------|------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| China | Piezoelectric | Force, Position | Vibration isolation, Model-Based, Modal control: 6x PI controllers | Stiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space | (<a href="#citeproc_bib_item_77">Yang et al. 2019</a>) |
| Washinton | Voice Coil | Force, LVDT, Geophones | LQG, Force + geophones for vibration, LVDT for pointing | Centralized control is no better than decentralized. Geophone + Force MISO control is good | (<a href="#citeproc_bib_item_65">Thayer and Vagners 1998</a>), (<a href="#citeproc_bib_item_66">Thayer et al. 2002</a>) |
| Wyoming | Voice Coil | Force | IFF, centralized (decouple) + decentralized (coupled) | Specific geometry: decoupled force plant. Better perf with centralized IFF | (<a href="#citeproc_bib_item_44">McInroy 1999</a>), (<a href="#citeproc_bib_item_47">McInroy, OBrien, and Neat 1999</a>), (<a href="#citeproc_bib_item_46">McInroy and Hamann 2000</a>) |
### Decoupling Strategies {#decoupling-strategies}
Different strategies:
- Jacobian decoupling: in the cartesian frame or in the frame of the struts
- Modal decoupling
- SVD decoupling
Identify Jacobian for better decoupling: (<a href="#citeproc_bib_item_13">Cheng, Ren, and Dai 2004</a>), (<a href="#citeproc_bib_item_28">Gexue et al. 2004</a>).
<span class="org-target" id="org-target--sec-control-decoupling"></span>
#### Jacobian - Struts {#jacobian-struts}
| Japan | APA | Eddy current displacement | Decentralized (struts) PI + LPF control | (<a href="#citeproc_bib_item_24">Furutani, Suzuki, and Kudoh 2004</a>) |
|----------------|-----------|---------------------------|-----------------------------------------|------------------------------------------------------------------------|
| Harbin (China) | PZT Piezo | Strain Gauge | Decentralized position feedback | (<a href="#citeproc_bib_item_22">Du, Shi, and Dong 2014</a>) |
#### Jacobian - Cartesian {#jacobian-cartesian}
| Wyoming | Voice Coil | Force | Cartesian frame decoupling | (<a href="#citeproc_bib_item_53">OBrien et al. 1998</a>) |
|---------|------------|------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wyoming | Voice Coil | Force | IFF, Cartesian Frame, Jacobians | (<a href="#citeproc_bib_item_44">McInroy 1999</a>), (<a href="#citeproc_bib_item_47">McInroy, OBrien, and Neat 1999</a>), (<a href="#citeproc_bib_item_46">McInroy and Hamann 2000</a>) |
| Seoul | Hydraulic | LVDT | Decentralized (strut) vs Centralized (cartesian) | (<a href="#citeproc_bib_item_38">Kim, Kang, and Lee 2000</a>) |
| Wyoming | Voice Coil | Accelerometer (collocated), ext. Rx/Ry sensors | Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) | (<a href="#citeproc_bib_item_43">Li, Hamann, and McInroy 2001</a>) |
| China | Voice Coil | Accelerometer in each leg | Centralized Vibration Control, PI, Skyhook | (<a href="#citeproc_bib_item_1">Abbas and Hai 2014</a>) |
#### Modal Decoupling {#modal-decoupling}
| China | Voice Coil | Geophone + Eddy Current (Struts, collocated) | Decentralized (Sky Hook) + Centralized (modal) Control | (<a href="#citeproc_bib_item_58">Pu et al. 2011</a>) |
|-------|---------------|----------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|
| China | Piezoelectric | Force, Position | Vibration isolation, Model-Based, Modal control: 6x PI controllers | (<a href="#citeproc_bib_item_77">Yang et al. 2019</a>) |
#### Multivariable Control {#multivariable-control}
From (<a href="#citeproc_bib_item_66">Thayer et al. 2002</a>):
> Experimental closed-loopcontrol results using the hexapod have shown that controllers designed using a decentralized single-strut design work well when compared to full multivariable methodologies.
| China | PZT | Geophone (struts) | H-Infinity and mu-synthesis | (<a href="#citeproc_bib_item_40">Lei and Benli 2008</a>) |
|----------------|------------|---------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|
| China | Voice Coil | Force sensors (strus) + accelerometer (cartesian) | Decentralized Force Feedback + Centralized H2 control based on accelerometers | (<a href="#citeproc_bib_item_75">Xie, Wang, and Zhang 2017</a>) |
| Harbin (China) | Voice Coil | Accelerometers | MIMO H-Infinity, active damping | (<a href="#citeproc_bib_item_37">Jiao et al. 2018</a>) |
### Long Stroke Stewart Platforms {#long-stroke-stewart-platforms}
<span class="org-target" id="org-target--sec-control-long-stroke"></span>
| Link to bibliography | University | Actuators | Sensors | Control | Main Object |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|------------------|--------------------------------------------------|--------------------------------------------|
| (<a href="#citeproc_bib_item_16">Cleary and Arai 1991</a>) | Japan | DC, gear + rack pinion | Encoder, 7um res | Decentralized (struts), PID control | Singular configuration analysis, workspace |
| (<a href="#citeproc_bib_item_61">Su et al. 2004</a>) | Xidian (China) | | | | |
| (<a href="#citeproc_bib_item_33">Huang and Fu 2005</a>) | Taiwan | | | | |
| (<a href="#citeproc_bib_item_10">Březina, Andrš, and Březina 2008</a>), (<a href="#citeproc_bib_item_32">Houška, Březina, and Březina 2010</a>) | Czech | DC | | | Modeling with sim-mechanics |
| (<a href="#citeproc_bib_item_50">Molina, Rosario, and Sanchez 2008</a>) | Brazil | | | | Simulation with Matlab/Simulink |
| (<a href="#citeproc_bib_item_76">Yang et al. 2010</a>) | China | | | Decentralized PID | Simulation with Simulink/SimMechanics |
| (<a href="#citeproc_bib_item_38">Kim, Kang, and Lee 2000</a>) | Seoul | Hydraulic | LVDT | Decentralized (strut) vs Centralized (cartesian) | |
## Main Bibliography {#main-bibliography}
### Books {#books}
- (NO_ITEM_DATA:merlet06_paral_robot)
- (<a href="#citeproc_bib_item_62">Taghirad 2013</a>)
- (<a href="#citeproc_bib_item_57">Preumont 2018</a>)
- (<a href="#citeproc_bib_item_5">Arakelian 2018</a>)
### PhD Thesis {#phd-thesis}
- (<a href="#citeproc_bib_item_42">Li 2001</a>)
- (<a href="#citeproc_bib_item_8">Bishop Jr 2002</a>)
- (<a href="#citeproc_bib_item_29">Hanieh 2003</a>)
- (<a href="#citeproc_bib_item_73">Vivas 2004</a>)
- (<a href="#citeproc_bib_item_3">Afzali-Far 2016</a>)
- (<a href="#citeproc_bib_item_19">Deng 2017</a>)
- (<a href="#citeproc_bib_item_51">Naves 2020</a>)
### Articles - Reviews {#articles-reviews}
- (<a href="#citeproc_bib_item_17">Dasgupta and Mruthyunjaya 2000</a>)
- (<a href="#citeproc_bib_item_48">Merlet 2002</a>)
- (<a href="#citeproc_bib_item_54">Patel and George 2012</a>)
- (<a href="#citeproc_bib_item_12">Buzurovic 2012</a>)
- (<a href="#citeproc_bib_item_23">Furqan, Suhaib, and Ahmad 2017</a>)
## Bibliography {#bibliography}
<./biblio/references.bib>
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Abbas, Hussain, and Huang Hai. 2014. “Vibration Isolation Concepts for Non-Cubic Stewart Platform Using Modal Control.” In <i>Proceedings of 2014 11th International Bhurban Conference on Applied Sciences &#38; Technology (IBCAST) Islamabad, Pakistan, 14th - 18th January, 2014</i>. doi:<a href="https://doi.org/10.1109/ibcast.2014.6778139">10.1109/ibcast.2014.6778139</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Abu Hanieh, Ahmed, Mihaita Horodinca, and Andre Preumont. 2002. “Stiff and Soft Stewart Platforms for Active Damping and Active Isolation of Vibrations.” In <i>Actuator 2002, 8th International Conference on New Actuators</i>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Afzali-Far, Behrouz. 2016. “Vibrations and Dynamic Isotropy in Hexapods-Analytical Studies.” Lund University.</div>
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Agrawal, Brij N, and Hong-Jen Chen. 2004. “Algorithms for Active Vibration Isolation on Spacecraft Using a Stewart Platform.” <i>Smart Materials and Structures</i> 13 (4): 87380. doi:<a href="https://doi.org/10.1088/0964-1726/13/4/025">10.1088/0964-1726/13/4/025</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>Arakelian, V. 2018. <i>Dynamic Decoupling of Robot Manipulators</i>. Mechanisms and Machine Science. Springer International Publishing. doi:<a href="https://doi.org/10.1007/978-3-319-74363-9">10.1007/978-3-319-74363-9</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_6"></a>Beijen, M.A., M.F. Heertjes, J. Van Dijk, and W.B.J. Hakvoort. 2018. “Self-Tuning Mimo Disturbance Feedforward Control for Active Hard-Mounted Vibration Isolators.” <i>Control Engineering Practice</i> 72: 90103. doi:<a href="https://doi.org/10.1016/j.conengprac.2017.11.008">10.1016/j.conengprac.2017.11.008</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_7"></a>Beijen, Michiel A., Dirk Tjepkema, and Johannes van Dijk. 2014. “Two-Sensor Control in Active Vibration Isolation Using Hard Mounts.” <i>Control Engineering Practice</i> 26: 8290. doi:<a href="https://doi.org/10.1016/j.conengprac.2013.12.015">10.1016/j.conengprac.2013.12.015</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_8"></a>Bishop Jr, Ronald M. 2002. “Development of Precision Pointing Controllers with and without Vibration Suppression for the NPS Precision Pointing Hexapod.” Naval Postgraduate School, Monterey, California.</div>
<div class="csl-entry"><a id="citeproc_bib_item_9"></a>Bonev, Ilian A., and Jeha Ryu. 2001. “A New Approach to Orientation Workspace Analysis of 6-Dof Parallel Manipulators.” <i>Mechanism and Machine Theory</i> 36 (1): 1528. doi:<a href="https://doi.org/10.1016/s0094-114x(00)00032-x">10.1016/s0094-114x(00)00032-x</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_10"></a>Březina, Lukáš, Ondřej Andrš, and Tomáš Březina. 2008. “Ni Labview-Matlab Simmechanics Stewart Platform Design.” <i>Applied and Computational Mechanics</i>. University of West Bohemia.</div>
<div class="csl-entry"><a id="citeproc_bib_item_11"></a>Březina, T., and L. Březina. 2010. “Controller Design of the Stewart Platform Linear Actuator.” In <i>Recent Advances in Mechatronics</i>, 34146. Recent Advances in Mechatronics. Springer Berlin Heidelberg. doi:<a href="https://doi.org/10.1007/978-3-642-05022-0_58">10.1007/978-3-642-05022-0_58</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_12"></a>Buzurovic, Ivan. 2012. “Advanced Control Methodologies in Parallel Robotic Systems.” <i>Advances in Robotics &#38; Automation</i> 01 (s6). doi:<a href="https://doi.org/10.4172/2168-9695.s6-e001">10.4172/2168-9695.s6-e001</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_13"></a>Cheng, Yuan, Gexue Ren, and ShiLiang Dai. 2004. “The Multi-Body System Modelling of the Gough-Stewart Platform for Vibration Control.” <i>Journal of Sound and Vibration</i> 271 (3-5): 599614. doi:<a href="https://doi.org/10.1016/s0022-460x(03)00283-9">10.1016/s0022-460x(03)00283-9</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_14"></a>Chen, Hong-Jen, Ronald Bishop, and Brij Agrawal. 2003. “Payload Pointing and Active Vibration Isolation Using Hexapod Platforms.” In <i>44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference</i>. doi:<a href="https://doi.org/10.2514/6.2003-1643">10.2514/6.2003-1643</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_15"></a>Chi, Weichao, Dengqing Cao, Dongwei Wang, Jie Tang, Yifan Nie, and Wenhu Huang. 2015. “Design and Experimental Study of a Vcm-Based Stewart Parallel Mechanism Used for Active Vibration Isolation.” <i>Energies</i> 8 (8): 800119. doi:<a href="https://doi.org/10.3390/en8088001">10.3390/en8088001</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_16"></a>Cleary, K., and T. Arai. 1991. “A Prototype Parallel Manipulator: Kinematics, Construction, Software, Workspace Results, and Singularity Analysis.” In <i>Proceedings. 1991 IEEE International Conference on Robotics and Automation</i>. doi:<a href="https://doi.org/10.1109/robot.1991.131641">10.1109/robot.1991.131641</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_17"></a>Dasgupta, Bhaskar, and T.S. Mruthyunjaya. 2000. “The Stewart Platform Manipulator: A Review.” <i>Mechanism and Machine Theory</i> 35 (1): 1540. doi:<a href="https://doi.org/10.1016/s0094-114x(99)00006-3">10.1016/s0094-114x(99)00006-3</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_18"></a>Defendini, A, L Vaillon, F Trouve, Th Rouze, B Sanctorum, G Griseri, P Spanoudakis, and M von Alberti. 2000. “Technology Predevelopment for Active Control of Vibration and Very High Accuracy Pointing Systems.” In <i>Spacecraft Guidance, Navigation and Control Systems</i>, 425:385.</div>
<div class="csl-entry"><a id="citeproc_bib_item_19"></a>Deng, R. 2017. “Integrated 6-DoF Lorentz Actuator with Gravity Compensation for Vibration Isolation in in-Line Surface Metrology.” TU Delft.</div>
<div class="csl-entry"><a id="citeproc_bib_item_20"></a>Dong, Wei, Lining Sun, and Zhijiang Du. 2008. “Stiffness Research on a High-Precision, Large-Workspace Parallel Mechanism with Compliant Joints.” <i>Precision Engineering</i> 32 (3): 22231. doi:<a href="https://doi.org/10.1016/j.precisioneng.2007.08.002">10.1016/j.precisioneng.2007.08.002</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_21"></a>Dong, W., L.N. Sun, and Z.J. Du. 2007. “Design of a Precision Compliant Parallel Positioner Driven by Dual Piezoelectric Actuators.” <i>Sensors and Actuators a: Physical</i> 135 (1): 25056. doi:<a href="https://doi.org/10.1016/j.sna.2006.07.011">10.1016/j.sna.2006.07.011</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_22"></a>Du, Zhijiang, Ruochong Shi, and Wei Dong. 2014. “A Piezo-Actuated High-Precision Flexible Parallel Pointing Mechanism: Conceptual Design, Development, and Experiments.” <i>IEEE Transactions on Robotics</i> 30 (1): 13137. doi:<a href="https://doi.org/10.1109/tro.2013.2288800">10.1109/tro.2013.2288800</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_23"></a>Furqan, Mohd, Mohd Suhaib, and Nazeer Ahmad. 2017. “Studies on Stewart Platform Manipulator: A Review.” <i>Journal of Mechanical Science and Technology</i> 31 (9): 445970. doi:<a href="https://doi.org/10.1007/s12206-017-0846-1">10.1007/s12206-017-0846-1</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_24"></a>Furutani, Katsushi, Michio Suzuki, and Ryusei Kudoh. 2004. “Nanometre-Cutting Machine Using a Stewart-Platform Parallel Mechanism.” <i>Measurement Science and Technology</i> 15 (2): 46774. doi:<a href="https://doi.org/10.1088/0957-0233/15/2/022">10.1088/0957-0233/15/2/022</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_25"></a>Geng, Zheng, and Leonard S. Haynes. 1993. “Six-Degree-of-Freedom Active Vibration Isolation Using a Stewart Platform Mechanism.” <i>Journal of Robotic Systems</i> 10 (5): 72544. doi:<a href="https://doi.org/10.1002/rob.4620100510">10.1002/rob.4620100510</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_26"></a>Geng, Z.J., and L.S. Haynes. 1994. “Six Degree-of-Freedom Active Vibration Control Using the Stewart Platforms.” <i>IEEE Transactions on Control Systems Technology</i> 2 (1): 4553. doi:<a href="https://doi.org/10.1109/87.273110">10.1109/87.273110</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_27"></a>Geng, Z. Jason, George G. Pan, Leonard S. Haynes, Ben K. Wada, and John A. Garba. 1995. “An Intelligent Control System for Multiple Degree-of-Freedom Vibration Isolation.” <i>Journal of Intelligent Material Systems and Structures</i> 6 (6): 787800. doi:<a href="https://doi.org/10.1177/1045389x9500600607">10.1177/1045389x9500600607</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_28"></a>Gexue, Ren, Lu Qiuhai, Hu Ning, Nan Rendong, and Peng Bo. 2004. “On Vibration Control with Stewart Parallel Mechanism.” <i>Mechatronics</i> 14 (1): 113. doi:<a href="https://doi.org/10.1016/s0957-4158(02)00092-2">10.1016/s0957-4158(02)00092-2</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_29"></a>Hanieh, Ahmed Abu. 2003. “Active Isolation and Damping of Vibrations via Stewart Platform.” Université Libre de Bruxelles, Brussels, Belgium.</div>
<div class="csl-entry"><a id="citeproc_bib_item_30"></a>Hauge, G.S., and M.E. Campbell. 2004. “Sensors and Control of a Space-Based Six-Axis Vibration Isolation System.” <i>Journal of Sound and Vibration</i> 269 (3-5): 91331. doi:<a href="https://doi.org/10.1016/s0022-460x(03)00206-2">10.1016/s0022-460x(03)00206-2</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_31"></a>Horin, P. Ben, and M. Shoham. 2006. “Singularity Condition of Six-Degree-of-Freedom Three-Legged Parallel Robots Based on Grassmann-Cayley Algebra.” <i>IEEE Transactions on Robotics</i> 22 (4): 57790. doi:<a href="https://doi.org/10.1109/tro.2006.878958">10.1109/tro.2006.878958</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_32"></a>Houška, P., T. Březina, and L. Březina. 2010. “Design and Implementation of the Absolute Linear Position Sensor for the Stewart Platform.” In <i>Recent Advances in Mechatronics</i>, 34752. Recent Advances in Mechatronics. Springer Berlin Heidelberg. doi:<a href="https://doi.org/10.1007/978-3-642-05022-0_59">10.1007/978-3-642-05022-0_59</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_33"></a>Huang, Chin I, and Li-Chen Fu. 2005. “Smooth Sliding Mode Tracking Control of the Stewart Platform.” In <i>Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005.</i> doi:<a href="https://doi.org/10.1109/cca.2005.1507098">10.1109/cca.2005.1507098</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_34"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” <i>IEEE Transactions on Robotics and Automation</i> 19 (4). Institute of Electrical and Electronics Engineers (IEEE): 595603. doi:<a href="https://doi.org/10.1109/tra.2003.814506">10.1109/tra.2003.814506</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_35"></a>Jiang, Qimi, and Clément M. Gosselin. 2009a. “Determination of the Maximal Singularity-Free Orientation Workspace for the Gough-Stewart Platform.” <i>Mechanism and Machine Theory</i> 44 (6): 128193. doi:<a href="https://doi.org/10.1016/j.mechmachtheory.2008.07.005">10.1016/j.mechmachtheory.2008.07.005</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_36"></a>———. 2009b. “Evaluation and Representation of the Theoretical Orientation Workspace of the Gough-Stewart Platform.” <i>Journal of Mechanisms and Robotics</i> 1 (2). doi:<a href="https://doi.org/10.1115/1.3046137">10.1115/1.3046137</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_37"></a>Jiao, Jian, Ying Wu, Kaiping Yu, and Rui Zhao. 2018. “Dynamic Modeling and Experimental Analyses of Stewart Platform with Flexible Hinges.” <i>Journal of Vibration and Control</i> 25 (1): 15171. doi:<a href="https://doi.org/10.1177/1077546318772474">10.1177/1077546318772474</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_38"></a>Kim, Dong Hwan, Ji-Yoon Kang, and Kyo-Il Lee. 2000. “Robust Tracking Control Design for a 6 Dof Parallel Manipulator.” <i>Journal of Robotic Systems</i> 17 (10): 52747. doi:<a href="https://doi.org/10.1002/1097-4563(200010)17:10$<$527::AID-ROB2>3.0.CO;2-A">10.1002/1097-4563(200010)17:10$&#60;$527:AID-ROB2&#62;3.0.CO;2-A</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_39"></a>Kim, Hwa Soo, and Young Man Cho. 2009. “Design and Modeling of a Novel 3-Dof Precision Micro-Stage.” <i>Mechatronics</i> 19 (5): 598608. doi:<a href="https://doi.org/10.1016/j.mechatronics.2009.01.004">10.1016/j.mechatronics.2009.01.004</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_40"></a>Lei, Liu, and Wang Benli. 2008. “Multi Objective Robust Active Vibration Control for Flexure Jointed Struts of Stewart Platforms via $H_\Infty$ and $\Mu$ Synthesis.” <i>Chinese Journal of Aeronautics</i> 21 (2): 12533. doi:<a href="https://doi.org/10.1016/s1000-9361(08)60016-3">10.1016/s1000-9361(08)60016-3</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_41"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” <i>IEEE Transactions on Control Systems Technology</i> 11 (2): 26772. doi:<a href="https://doi.org/10.1109/tcst.2003.809248">10.1109/tcst.2003.809248</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_42"></a>Li, Xiaochun. 2001. “Simultaneous, Fault-Tolerant Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” University of Wyoming.</div>
<div class="csl-entry"><a id="citeproc_bib_item_43"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In <i>Smart Structures and Materials 2001: Smart Structures and Integrated Systems</i>. doi:<a href="https://doi.org/10.1117/12.436521">10.1117/12.436521</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_44"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In <i>Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)</i>. doi:<a href="https://doi.org/10.1109/cca.1999.806694">10.1109/cca.1999.806694</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_45"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” <i>IEEE/ASME Transactions on Mechatronics</i> 7 (1): 9599. doi:<a href="https://doi.org/10.1109/3516.990892">10.1109/3516.990892</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_46"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” <i>IEEE Transactions on Robotics and Automation</i> 16 (4): 37281. doi:<a href="https://doi.org/10.1109/70.864229">10.1109/70.864229</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_47"></a>McInroy, J.E., J.F. OBrien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” <i>IEEE/ASME Transactions on Mechatronics</i> 4 (1): 9195. doi:<a href="https://doi.org/10.1109/3516.752089">10.1109/3516.752089</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_48"></a>Merlet, Jean-Pierre. 2002. “Still a Long Way to Go on the Road for Parallel Mechanisms.” In <i>Proc. ASME 2002 DETC Conf., Montreal</i>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_49"></a>Min, Da, Deqing Huang, and Hu Su. 2019. “High-Precision Tracking of Cubic Stewart Platform Using Active Disturbance Rejection Control.” In <i>2019 Chinese Control Conference (CCC)</i>. doi:<a href="https://doi.org/10.23919/chicc.2019.8866606">10.23919/chicc.2019.8866606</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_50"></a>Molina, Fabian Andres Lara, Joao Mauricio Rosario, and Oscar Fernando Aviles Sanchez. 2008. “Simulation Environment Proposal, Analysis and Control of a Stewart Platform Manipulator.” In <i>7th Brazilian Conference on Dynamics, Control &#38; Applications</i>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_51"></a>Naves, Mark. 2020. “Design and Optimization of Large Stroke Flexure Mechanisms.” Univeristy of Twente.</div>
<div class="csl-entry"><a id="citeproc_bib_item_52"></a>Naves, M, WBJ Hakvoort, M Nijenhuis, and DM Brouwer. 2020. “T-Flex: A Large Range of Motion Fully Flexure-Based 6-DOF Hexapod.” In <i>20th EUSPEN International Conference &#38; Exhibition, EUSPEN 2020</i>, 2058. EUSPEN.</div>
<div class="csl-entry"><a id="citeproc_bib_item_53"></a>OBrien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots through Experiments on a 6 Legged Platform.” In <i>Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)</i>. doi:<a href="https://doi.org/10.1109/acc.1998.703532">10.1109/acc.1998.703532</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_54"></a>Patel, Y. D., and P. M. George. 2012. “Parallel Manipulators Applications-a Survey.” <i>Modern Mechanical Engineering</i> 02 (03). Scientific Research Publishing, Inc,: 5764. doi:<a href="https://doi.org/10.4236/mme.2012.23008">10.4236/mme.2012.23008</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_55"></a>Pernkopf, F, and M L Husty. 2006. “Workspace Analysis of Stewart-Gough-Type Parallel Manipulators.” <i>Proceedings of the Institution of Mechanical Engineers, Part c: Journal of Mechanical Engineering Science</i> 220 (7): 101932. doi:<a href="https://doi.org/10.1243/09544062jmes194">10.1243/09544062jmes194</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_56"></a>Preumont, A., M. Horodinca, I. Romanescu, B. de Marneffe, M. Avraam, A. Deraemaeker, F. Bossens, and A. Abu Hanieh. 2007. “A Six-Axis Single-Stage Active Vibration Isolator Based on Stewart Platform.” <i>Journal of Sound and Vibration</i> 300 (3-5): 64461. doi:<a href="https://doi.org/10.1016/j.jsv.2006.07.050">10.1016/j.jsv.2006.07.050</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_57"></a>Preumont, Andre. 2018. <i>Vibration Control of Active Structures - Fourth Edition</i>. Solid Mechanics and Its Applications. Springer International Publishing. doi:<a href="https://doi.org/10.1007/978-3-319-72296-2">10.1007/978-3-319-72296-2</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_58"></a>Pu, H, X Chen, Z Zhou, and X Luo. 2011. “Six-Degree-of-Freedom Active Vibration Isolation System with Decoupled Collocated Control.” <i>Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture</i> 226 (2): 31325. doi:<a href="https://doi.org/10.1177/0954405411414336">10.1177/0954405411414336</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_59"></a>Rahman, Zahidul H., John T. Spanos, and Robert A. Laskin. 1998. “Multiaxis Vibration Isolation, Suppression, and Steering System for Space Observational Applications.” In <i>Telescope Control Systems III</i>. doi:<a href="https://doi.org/10.1117/12.308821">10.1117/12.308821</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_60"></a>Spanos, J., Z. Rahman, and G. Blackwood. 1995. “A Soft 6-Axis Active Vibration Isolator.” In <i>Proceedings of 1995 American Control Conference - ACC95</i>. doi:<a href="https://doi.org/10.1109/acc.1995.529280">10.1109/acc.1995.529280</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_61"></a>Su, Y.X., B.Y. Duan, C.H. Zheng, Y.F. Zhang, G.D. Chen, and J.W. Mi. 2004. “Disturbance-Rejection High-Precision Motion Control of a Stewart Platform.” <i>IEEE Transactions on Control Systems Technology</i> 12 (3): 36474. doi:<a href="https://doi.org/10.1109/tcst.2004.824315">10.1109/tcst.2004.824315</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_62"></a>Taghirad, Hamid. 2013. <i>Parallel Robots : Mechanics and Control</i>. Boca Raton, FL: CRC Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_63"></a>Tang, Jie, Dengqing Cao, and Tianhu Yu. 2018. “Decentralized Vibration Control of a Voice Coil Motor-Based Stewart Parallel Mechanism: Simulation and Experiments.” <i>Proceedings of the Institution of Mechanical Engineers, Part c: Journal of Mechanical Engineering Science</i> 233 (1): 13245. doi:<a href="https://doi.org/10.1177/0954406218756941">10.1177/0954406218756941</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_64"></a>Taranti, Christian, Brij Agrawal, and Roberto Cristi. 2001. “An Efficient Algorithm for Vibration Suppression to Meet Pointing Requirements of Optical Payloads.” In <i>AIAA Guidance, Navigation, and Control Conference and Exhibit</i>, 4094.</div>
<div class="csl-entry"><a id="citeproc_bib_item_65"></a>Thayer, D., and J. Vagners. 1998. “A Look at the Pole/Zero Structure of a Stewart Platform Using Special Coordinate Basis.” In <i>Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)</i>. doi:<a href="https://doi.org/10.1109/acc.1998.703595">10.1109/acc.1998.703595</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_66"></a>Thayer, Doug, Mark Campbell, Juris Vagners, and Andrew von Flotow. 2002. “Six-Axis Vibration Isolation System Using Soft Actuators and Multiple Sensors.” <i>Journal of Spacecraft and Rockets</i> 39 (2): 20612. doi:<a href="https://doi.org/10.2514/2.3821">10.2514/2.3821</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_67"></a>Ting, Yung, H.-C. Jar, and Chun-Chung Li. 2006. “Design of a 6DOF Stewart-Type Nanoscale Platform.” In <i>2006 Sixth IEEE Conference on Nanotechnology</i>. doi:<a href="https://doi.org/10.1109/nano.2006.247808">10.1109/nano.2006.247808</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_68"></a>Ting, Yung, Ho-Chin Jar, and Chun-Chung Li. 2007. “Measurement and Calibration for Stewart Micromanipulation System.” <i>Precision Engineering</i> 31 (3): 22633. doi:<a href="https://doi.org/10.1016/j.precisioneng.2006.09.004">10.1016/j.precisioneng.2006.09.004</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_69"></a>Ting, Yung, Chun-Chung Li, and Tho Van Nguyen. 2013. “Composite Controller Design for a 6dof Stewart Nanoscale Platform.” <i>Precision Engineering</i> 37 (3): 67183. doi:<a href="https://doi.org/10.1016/j.precisioneng.2013.01.012">10.1016/j.precisioneng.2013.01.012</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_70"></a>Tjepkema, D. 2012. “Active Hard Mount Vibration Isolation for Precision Equipment [Ph. D. Thesis].”</div>
<div class="csl-entry"><a id="citeproc_bib_item_71"></a>Tjepkema, D., J. van Dijk, and H.M.J.R. Soemers. 2012. “Sensor Fusion for Active Vibration Isolation in Precision Equipment.” <i>Journal of Sound and Vibration</i> 331 (4): 73549. doi:<a href="https://doi.org/10.1016/j.jsv.2011.09.022">10.1016/j.jsv.2011.09.022</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_72"></a>Torii, Akihiro, Masaaki Banno, Akiteru Ueda, and Kae Doki. 2012. “A Small-Size Self-Propelled Stewart Platform.” <i>Electrical Engineering in Japan</i> 181 (2): 3746. doi:<a href="https://doi.org/10.1002/eej.21261">10.1002/eej.21261</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_73"></a>Vivas, Oscar Andrés. 2004. “Contribution À Lidentification et À La Commande Des Robots Parallèles.” Université Montpellier II-Sciences et Techniques du Languedoc.</div>
<div class="csl-entry"><a id="citeproc_bib_item_74"></a>Wang, Chaoxin, Xiling Xie, Yanhao Chen, and Zhiyi Zhang. 2016. “Investigation on Active Vibration Isolation of a Stewart Platform with Piezoelectric Actuators.” <i>Journal of Sound and Vibration</i> 383 (November). Elsevier BV: 119. doi:<a href="https://doi.org/10.1016/j.jsv.2016.07.021">10.1016/j.jsv.2016.07.021</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_75"></a>Xie, Xiling, Chaoxin Wang, and Zhiyi Zhang. 2017. “Modeling and Control of a Hybrid Passive/Active Stewart Vibration Isolation Platform.” In <i>INTER-NOISE and NOISE-CON Congress and Conference Proceedings</i>, 255:184453. 6. Institute of Noise Control Engineering.</div>
<div class="csl-entry"><a id="citeproc_bib_item_76"></a>Yang, Chifu, Zhengmao Ye, O. Ogbobe Peter, and Junwei Han. 2010. “Modeling and Simulation of Spatial 6-DOF Parallel Robots Using Simulink and SimMechanics.” In <i>2010 3rd International Conference on Computer Science and Information Technology</i>. doi:<a href="https://doi.org/10.1109/iccsit.2010.5563824">10.1109/iccsit.2010.5563824</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_77"></a>Yang, XiaoLong, HongTao Wu, Bai Chen, ShengZheng Kang, and ShiLi Cheng. 2019. “Dynamic Modeling and Decoupled Control of a Flexible Stewart Platform for Vibration Isolation.” <i>Journal of Sound and Vibration</i> 439 (January). Elsevier BV: 398412. doi:<a href="https://doi.org/10.1016/j.jsv.2018.10.007">10.1016/j.jsv.2018.10.007</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_78"></a>Yang, XiaoLong, HongTao Wu, Yao Li, and Bai Chen. 2017. “Dynamic Isotropic Design and Decentralized Active Control of a Six-Axis Vibration Isolator via Stewart Platform.” <i>Mechanism and Machine Theory</i> 117: 24452. doi:<a href="https://doi.org/10.1016/j.mechmachtheory.2017.07.017">10.1016/j.mechmachtheory.2017.07.017</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_79"></a>Yun, Yuan, and Yangmin Li. 2010. “Design and Analysis of a Novel 6-Dof Redundant Actuated Parallel Robot with Compliant Hinges for High Precision Positioning.” <i>Nonlinear Dynamics</i> 61 (4): 82945. doi:<a href="https://doi.org/10.1007/s11071-010-9690-x">10.1007/s11071-010-9690-x</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_80"></a>Zhang, Zhen, J Liu, Jq Mao, Yx Guo, and Yh Ma. 2011. “Six DOF Active Vibration Control Using Stewart Platform with Non-Cubic Configuration.” In <i>2011 6th IEEE Conference on Industrial Electronics and Applications</i>. doi:<a href="https://doi.org/10.1109/iciea.2011.5975679">10.1109/iciea.2011.5975679</a>.</div>
<div class="csl-entry">NO_ITEM_DATA:gao02_necw_kinem_struc_paral_manip_desig</div>
<div class="csl-entry">NO_ITEM_DATA:merlet06_paral_robot</div>
</div>

View File

@@ -14,7 +14,7 @@ Tags
### Problem Definition {#problem-definition}
The goal of a system identification is to extract a model (usually a LTI transfer function) from experimental data.
The system is represented in Figure <fig:siso_identification_schematic_simplier> with one input \\(u\\) and one output \\(y\_m\\) affected by some disturbances and noise \\(d\\).
The system is represented in [Figure 1](#figure--fig:siso-identification-schematic-simplier) with one input \\(u\\) and one output \\(y\_m\\) affected by some disturbances and noise \\(d\\).
<a id="figure--fig:siso-identification-schematic-simplier"></a>
@@ -48,7 +48,7 @@ The sampling time of the recorded digital signal is 1ms.
### Open-loop identification {#open-loop-identification}
In open-loop identification (Figure <fig:siso_identification_schematic_simplier_open_loop>), a test signal \\(u\\) is used to _excite_ the system in the frequency range of interest.
In open-loop identification ([Figure 2](#figure--fig:siso-identification-schematic-simplier-open-loop)), a test signal \\(u\\) is used to _excite_ the system in the frequency range of interest.
The signal \\(u\\) can typically be a swept sine, noise or multi-sine.
<a id="figure--fig:siso-identification-schematic-simplier-open-loop"></a>
@@ -70,7 +70,7 @@ Noverlap = floor(Nfft/2); % Overlap of 50%
[Gm, f] = tfestimate(data.du, data.y, win, Noverlap, Nfft, 1/Ts);
```
Then, the bode plot of the obtained transfer function is compared against the plant model including a 1.5 sample time delay (Figure <fig:system_identification_ol_comp_plant>).
Then, the bode plot of the obtained transfer function is compared against the plant model including a 1.5 sample time delay ([Figure 3](#figure--fig:system-identification-ol-comp-plant)).
<a id="figure--fig:system-identification-ol-comp-plant"></a>
@@ -85,7 +85,7 @@ In order to assess the quality of the obtained FRF, the _coherence_ can be compu
[coh, f] = mscohere(data.du, data.y, win, Noverlap, Nfft, 1/Ts);
```
The result for the example is shown in Figure <fig:system_identification_ol_coh>.
The result for the example is shown in [Figure 4](#figure--fig:system-identification-ol-coh).
At high frequency, the measurement noise dominates and the coherence is poor.
<a id="figure--fig:system-identification-ol-coh"></a>
@@ -96,7 +96,7 @@ At high frequency, the measurement noise dominates and the coherence is poor.
### Closed-Loop identification {#closed-loop-identification}
If the open-loop system is unstable, a first simple controller needs to be designed to stabilizes the system.
Then, the plant can be identified from closed-loop system identification (Figure <fig:siso_identification_schematic_simplier_closed_loop>).
Then, the plant can be identified from closed-loop system identification ([Figure 5](#figure--fig:siso-identification-schematic-simplier-closed-loop)).
<a id="figure--fig:siso-identification-schematic-simplier-closed-loop"></a>
@@ -131,7 +131,7 @@ T = 1 - S;
### Multi-Input Multi-Output Plant {#multi-input-multi-output-plant}
This can be generalized to a MIMO plant (Figure <fig:siso_identification_schematic_simplier_closed_loop>).
This can be generalized to a MIMO plant ([Figure 5](#figure--fig:siso-identification-schematic-simplier-closed-loop)).
<a id="figure--fig:siso-identification-schematic-simplier-closed-loop"></a>
@@ -174,7 +174,7 @@ There are several choices for excitation signals:
- Random noise, Periodic signals (PRBS)
- Multi-Sine
A good review is given in <&pintelon12_system_ident> (chapter 5).
A good review is given in (<a href="#citeproc_bib_item_1">Pintelon and Schoukens 2012</a>) (chapter 5).
### Random noise with specific ASD {#random-noise-with-specific-asd}
@@ -300,7 +300,7 @@ u = generate_multisine(Fs, Ns, ...
'type', 'schroeder');
```
The ASD of the generated signal is exactly as expected (Figure <fig:system_identification_multi_sine_asd>)
The ASD of the generated signal is exactly as expected ([Figure 7](#figure--fig:system-identification-multi-sine-asd))
```matlab
[pxx, f] = pwelch(u, ones(Ns,1), [], Ns, Fs);
@@ -310,7 +310,7 @@ The ASD of the generated signal is exactly as expected (Figure <fig:system_ident
{{< figure src="/ox-hugo/system_identification_multi_sine_asd.png" caption="<span class=\"figure-number\">Figure 7: </span>Amplitude Spectral Density of the multi-sine signal" >}}
In the time domain, it is shown in Figure <fig:system_identification_multi_sine_time>.
In the time domain, it is shown in [Figure 8](#figure--fig:system-identification-multi-sine-time).
<a id="figure--fig:system-identification-multi-sine-time"></a>
@@ -324,7 +324,7 @@ Only the first period (here of 1s) is discarded to remove transient effects.
[Gm, f] = tfestimate(data.du(Ns:end), data.y(Ns:end), ones(Ns,1), [], Ns, Fs);
```
The obtained FRF is shown in Figure <fig:system_identification_multi_sine_frf>.
The obtained FRF is shown in [Figure 9](#figure--fig:system-identification-multi-sine-frf).
The quality of the obtained FRF is only good in the defined range.
<a id="figure--fig:system-identification-multi-sine-frf"></a>
@@ -334,7 +334,7 @@ The quality of the obtained FRF is only good in the defined range.
### `generatemultisine` - Matlab Function {#generatemultisine-matlab-function}
The synthesis of multi-sine with minimal "crest factor" is taken from <&schroeder70_synth_low_peak_factor_signal>.
The synthesis of multi-sine with minimal "crest factor" is taken from (<a href="#citeproc_bib_item_3">Schroeder 1970</a>).
The Matlab code is adapted from [here](https://bholmesqub.github.io/thesis/chapters/identification-design/multi-sine/).
@@ -424,10 +424,14 @@ end
## Reference Books {#reference-books}
- <pintelon12_system_ident>
- <schoukens12_master>
- (<a href="#citeproc_bib_item_1">Pintelon and Schoukens 2012</a>)
- (<a href="#citeproc_bib_item_2">Schoukens, Pintelon, and Rolain 2012</a>)
## Bibliography {#bibliography}
<./biblio/references.bib>
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Pintelon, Rik, and Johan Schoukens. 2012. <i>System Identification : a Frequency Domain Approach</i>. Hoboken, N.J. Piscataway, NJ: Wiley IEEE Press. doi:<a href="https://doi.org/10.1002/9781118287422">10.1002/9781118287422</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Schoukens, Johan, Rik Pintelon, and Yves Rolain. 2012. <i>Mastering System Identification in 100 Exercises</i>. John Wiley &#38; Sons.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Schroeder, Manfred. 1970. “Synthesis of Low-Peak-Factor Signals and Binary Sequences with Low Autocorrelation (Corresp.).” <i>IEEE Transactions on Information Theory</i> 16 (1). IEEE: 8589.</div>
</div>

View File

@@ -11,7 +11,7 @@ draft = false
You can make words **bold**, _italic_, <span class="underline">underlined</span>, `verbatim` and `code`, and, if you must, ~~strike-through~~.
Here is some inline code Matlab code: `[K,CL,gamma] = mixsyn(G,W1,[],W3);`.
Here is some inline code Matlab code: <span class="inline-src language-matlab" data-lang="matlab">`[K,CL,gamma] = mixsyn(G,W1,[],W3);`</span>.
### Links to Footnotes {#links-to-footnotes}
@@ -78,9 +78,9 @@ Sed aliquam
Here is a list of links to:
- Figure [3](#figure--fig:general-control-names)
- Table [3](#table--tab:table-with-equations)
- Listing [1](#code-snippet--lst:matlab-figure)
- [Figure 3](#figure--fig:general-control-names)
- [Table 3](#table--tab:table-with-equations)
- Listing [Code Snippet 1](#code-snippet--lst:matlab-figure)
- Specific [line of code](#org-coderef--967846-4)
- Equation <eq:numbered>
- Section
@@ -112,7 +112,7 @@ Using the `align` environment Equations <eq:align_1> and <eq:align_2>.
Below is a verse.
<p class="verse">
<div class="verse">
Great clouds overhead<br />
Tiny black birds rise and fall<br />
@@ -120,7 +120,7 @@ Snow covers Emacs<br />
<br />
&nbsp;&nbsp;&nbsp;---AlexSchroeder<br />
</p>
</div>
Below is a quote.
@@ -158,7 +158,7 @@ Some text.
## Headlines {#headlines}
<span class="org-target" id="org-target--sec:headlines"></span>
<span class="org-target" id="org-target--sec-headlines"></span>
### Second level Headline with tags <span class="tag"><span class="_home">@home</span><span class="_work">@work</span></span> {#second-level-headline-with-tags}
@@ -310,7 +310,7 @@ Cras non mauris ex. Morbi ut eros eu tellus egestas dapibus et et est. Aenean so
<a id="table--tab:table-name"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:table-name">Table 1</a></span>:
<span class="table-number"><a href="#table--tab:table-name">Table 1</a>:</span>
Table caption
</div>
@@ -353,7 +353,7 @@ y =
### Caption and Reference {#caption-and-reference}
Captions can be added to code blocks.
Moreover, we can link to specific bode blocks (Listing [1](#code-snippet--lst:matlab-figure) or [2](#code-snippet--lst:matlab-svd)).
Moreover, we can link to specific bode blocks (Listing [Code Snippet 1](#code-snippet--lst:matlab-figure) or [Code Snippet 2](#code-snippet--lst:matlab-svd)).
<a id="code-snippet--lst:matlab-figure"></a>
```matlab
@@ -361,9 +361,8 @@ Moreover, we can link to specific bode blocks (Listing [1](#code-snippet--lst:ma
[X,Y,Z] = peaks;
contour(X,Y,Z,20)
```
<div class="src-block-caption">
<span class="src-block-number"><a href="#code-snippet--lst:matlab-figure">Code Snippet 1</a></span>:
<span class="src-block-number"><a href="#code-snippet--lst:matlab-figure">Code Snippet 1</a>:</span>
Code to produce a nice contour plot
</div>
@@ -376,9 +375,8 @@ Moreover, we can link to specific bode blocks (Listing [1](#code-snippet--lst:ma
A = [1 2; 3 4; 5 6; 7 8]
[U,S,V] = svd(A)
```
<div class="src-block-caption">
<span class="src-block-number"><a href="#code-snippet--lst:matlab-svd">Code Snippet 2</a></span>:
<span class="src-block-number"><a href="#code-snippet--lst:matlab-svd">Code Snippet 2</a>:</span>
Code to compute the Singular Value Decomposition
</div>
@@ -408,28 +406,26 @@ V =
### Source Blocks with Line Numbers {#source-blocks-with-line-numbers}
The Listing [3](#code-snippet--lst:matlab-line-numbers) has line numbers as the `-n` option was used.
The Listing [Code Snippet 3](#code-snippet--lst:matlab-line-numbers) has line numbers as the `-n` option was used.
Specific lines of codes can be referenced.
For instance, the code used to specify the wanted the vertical label is on line [4](#org-coderef--967846-4).
<a id="code-snippet--lst:matlab-line-numbers"></a>
{{< highlight matlab "linenos=table, linenostart=1, anchorlinenos=true, lineanchors=org-coderef--967846" >}}
```matlab { linenos=true, linenostart=1, anchorlinenos=true, lineanchors=org-coderef--967846 }
figure;
plot(t, x)
xlabel('Time [s]');
ylabel('Output [V]');
{{< /highlight >}}
```
<div class="src-block-caption">
<span class="src-block-number"><a href="#code-snippet--lst:matlab-line-numbers">Code Snippet 3</a></span>:
<span class="src-block-number"><a href="#code-snippet--lst:matlab-line-numbers">Code Snippet 3</a>:</span>
Specify Labels
</div>
Numbering can be continued by using `+n` option as shown below.
```matlab { linenos=table, linenostart=5 }
```matlab { linenos=true, linenostart=5 }
figure;
plot(t, u)
xlabel('Time [s]');
@@ -442,7 +438,7 @@ Numbering can be continued by using `+n` option as shown below.
### Normal Image {#normal-image}
Figure [3](#figure--fig:general-control-names) shows the results of the Tikz code of listing [4](#code-snippet--lst:tikz-test).
[Figure 3](#figure--fig:general-control-names) shows the results of the Tikz code of listing [Code Snippet 4](#code-snippet--lst:tikz-test).
<a id="code-snippet--lst:tikz-test"></a>
```latex
@@ -466,10 +462,9 @@ Figure [3](#figure--fig:general-control-names) shows the results of the Tikz cod
\draw[->] (outputv) -- ++(0.8, 0) |- node[right, near start, align=left]{sensed output\\$v$} (K.east);
\end{tikzpicture}
```
<div class="src-block-caption">
<span class="src-block-number"><a href="#code-snippet--lst:tikz-test">Code Snippet 4</a></span>:
Tikz code that is used to generate Figure <a href="#org905963f">3</a>
<span class="src-block-number"><a href="#code-snippet--lst:tikz-test">Code Snippet 4</a>:</span>
Tikz code that is used to generate <a href="#orgdb5d7d3">3</a>
</div>
<a id="figure--fig:general-control-names"></a>
@@ -510,7 +505,7 @@ Fusce blandit mauris dui, sed lobortis sapien tincidunt ac. Maecenas vitae moles
### Sub Images {#sub-images}
Link to subfigure [2](#org-target--fig:general_control_names_1).
Link to sub[ 2](#org-target--fig-general-control-names-1).
```md
#+name: fig:subfigure
@@ -522,22 +517,22 @@ Link to subfigure [2](#org-target--fig:general_control_names_1).
<a id="table--fig:subfigure"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--fig:subfigure">Table 2</a></span>:
<span class="table-number"><a href="#table--fig:subfigure">Table 2</a>:</span>
Subfigure Caption
</div>
| ![](figs/general_control_names.png) | ![](figs/general_control_names.png) |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| <span class="org-target" id="org-target--fig:general_control_names_1"></span> sub figure caption | <span class="org-target" id="org-target--fig:general_control_names_2"></span> sub figure caption |
| <span class="org-target" id="org-target--fig-general-control-names-1"></span> sub figure caption | <span class="org-target" id="org-target--fig-general-control-names-2"></span> sub figure caption |
## Tables {#tables}
Table [3](#table--tab:table-with-equations) shows a table with some mathematics inside.
[Table 3](#table--tab:table-with-equations) shows a table with some mathematics inside.
<a id="table--tab:table-with-equations"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:table-with-equations">Table 3</a></span>:
<span class="table-number"><a href="#table--tab:table-with-equations">Table 3</a>:</span>
A Simple table with included math
</div>
@@ -549,7 +544,7 @@ Table [3](#table--tab:table-with-equations) shows a table with some mathematics
<a id="table--tab:table-without-head"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:table-without-head">Table 4</a></span>:
<span class="table-number"><a href="#table--tab:table-without-head">Table 4</a>:</span>
Table without Head
</div>
@@ -563,7 +558,7 @@ Table [3](#table--tab:table-with-equations) shows a table with some mathematics
<a id="table--tab:table-multiple-heads"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:table-multiple-heads">Table 5</a></span>:
<span class="table-number"><a href="#table--tab:table-multiple-heads">Table 5</a>:</span>
Table with multiples groups
</div>
@@ -596,7 +591,7 @@ Almost anything can be put here for instance this table below.
<a id="table--tab:table-with-equations-bis"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:table-with-equations-bis">Table 6</a></span>:
<span class="table-number"><a href="#table--tab:table-with-equations-bis">Table 6</a>:</span>
A Simple table with included math
</div>
@@ -636,5 +631,5 @@ It is approximately **12,742 km**
## Bibliography {#bibliography}
[^fn:1]: A long foot note. Lorem ipsum dolor sit amet, consectetur adipiscing elit. With a reference to Figure [3](#figure--fig:general-control-names).
[^fn:1]: A long foot note. Lorem ipsum dolor sit amet, consectetur adipiscing elit. With a reference to [Figure 3](#figure--fig:general-control-names).
[^fn:2]: An other footnote.

View File

@@ -56,7 +56,7 @@ Such amplifier is used to control motors (e.g. voice coil, BLDC, stepper motors,
## Required properties {#required-properties}
Main required properties are (taken from <schmidt20_desig_high_perfor_mechat_third_revis_edition>):
Main required properties are (taken from (<a href="#citeproc_bib_item_2">Schmidt, Schitter, and Rankers 2020</a>)):
- **Power delivery capability**
- **Dynamic properties**
@@ -211,9 +211,9 @@ W_stop = 0.0025 [W]
### Howland Current Sources {#howland-current-sources}
See Section 4.2.5 in <&horowitz15_art_of_elect_third_edition>.
See Section 4.2.5 in (<a href="#citeproc_bib_item_1">Horowitz 2015</a>).
Howland current source is shown in Figure <fig:art_electronics_current_source>.
Howland current source is shown in [Figure 1](#figure--fig:art-electronics-current-source).
> The output current is sourced through a sense resistor \\(R\_s\\) whose value you can choose independently of the matched resistor array (with resistor pairs \\(R\_1\\) and \\(R\_2\\)).
> The best way to understand this circuit is to think of \\(IC\_1\\) as a difference amplifier whose output sense and reference connections sample the drop across \\(R\_s\\) (i.e., the current); the latter is buffered by follower IC2 so there is no current error.
@@ -342,4 +342,7 @@ In = 2.4e-06 [A/sqrt(Hz)]
## Bibliography {#bibliography}
<./biblio/references.bib>
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Horowitz, Paul. 2015. <i>The Art of Electronics - Third Edition</i>. New York, NY, USA: Cambridge University Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2020. <i>The Design of High Performance Mechatronics - Third Revised Edition</i>. Ios Press.</div>
</div>

View File

@@ -18,7 +18,7 @@ It is generally used to interface a sensor which outputs a current proportional
## Basic Circuit {#basic-circuit}
A basic transimpedance amplifier circuit is shown in Figure [1](#figure--fig:transimpedance-amplifier-schematic).
A basic transimpedance amplifier circuit is shown in [Figure 1](#figure--fig:transimpedance-amplifier-schematic).
It produces an output voltage \\(V\_{\text{out}}\\) proportional to the input current \\(I\_{\text{sig}}\\):

View File

@@ -1,5 +1,6 @@
+++
title = "Voice Coil Actuators"
author = ["Dehaeze Thomas"]
draft = false
category = "equipment"
+++
@@ -52,7 +53,7 @@ As the force is proportional to the current, a [Transconductance Amplifiers]({{<
## Voice Coil for Vertical payload {#voice-coil-for-vertical-payload}
Let's consider a spring-mass system with a force actuator (Figure [1](#figure--fig:voice-coil-vertical-mass-spring)).
Let's consider a spring-mass system with a force actuator ([Figure 1](#figure--fig:voice-coil-vertical-mass-spring)).
Parameters are:
- `m`: the mass payload in [kg]
@@ -131,11 +132,11 @@ Dg = m * g ./ k; % [m]
<a id="figure--fig:voice-coil-resonance-fct-stroke"></a>
{{< figure src="/ox-hugo/voice_coil_resonance_fct_stroke.png" caption="<span class=\"figure-number\">Figure 1: </span>Resonance frequency and deflection due to gravity as a function of the wanted stroke (Max voice coil force is 50N and payload mass is 5kg)" >}}
{{< figure src="/ox-hugo/voice_coil_resonance_fct_stroke.png" caption="<span class=\"figure-number\">Figure 3: </span>Resonance frequency and deflection due to gravity as a function of the wanted stroke (Max voice coil force is 50N and payload mass is 5kg)" >}}
<a id="figure--fig:voice-coil-stiffness-fct-stroke"></a>
{{< figure src="/ox-hugo/voice_coil_stiffness_fct_stroke.png" caption="<span class=\"figure-number\">Figure 1: </span>Resonance frequency and deflection due to gravity as a function of the wanted stroke (Max voice coil force is 50N and payload mass is 5kg)" >}}
{{< figure src="/ox-hugo/voice_coil_stiffness_fct_stroke.png" caption="<span class=\"figure-number\">Figure 4: </span>Resonance frequency and deflection due to gravity as a function of the wanted stroke (Max voice coil force is 50N and payload mass is 5kg)" >}}
## Bibliography {#bibliography}