Update Content - 2024-06-04

This commit is contained in:
Thomas Dehaeze 2024-06-04 14:04:43 +02:00
parent 1b3cc10771
commit 1ee78ad780
11 changed files with 244 additions and 20 deletions

View File

@ -14,7 +14,7 @@ Tags
<https://dewesoft.com/daq/types-of-adc-converters> <https://dewesoft.com/daq/types-of-adc-converters>
- Delta Sigma (<a href="#citeproc_bib_item_1">Baker 2011</a>) - Delta Sigma <baker11_how_delta_sigma_adcs_work_part>
- Successive Approximation - Successive Approximation
@ -84,7 +84,7 @@ The quantization is:
{{< youtube b9lxtOJj3yU >}} {{< youtube b9lxtOJj3yU >}}
Also see (<a href="#citeproc_bib_item_2">Kester 2005</a>). Also see <kester05_takin>.
## Link between required dynamic range and effective number of bits {#link-between-required-dynamic-range-and-effective-number-of-bits} ## Link between required dynamic range and effective number of bits {#link-between-required-dynamic-range-and-effective-number-of-bits}
@ -96,18 +96,26 @@ Also see (<a href="#citeproc_bib_item_2">Kester 2005</a>).
## Oversampling {#oversampling} ## Oversampling {#oversampling}
(<a href="#citeproc_bib_item_3">Lab 2013</a>) <lab13_improv_adc>
## Sigma Delta ADC {#sigma-delta-adc} ## Sigma Delta ADC {#sigma-delta-adc}
From (<a href="#citeproc_bib_item_4">Schmidt, Schitter, and Rankers 2020</a>): From <&schmidt20_desig_high_perfor_mechat_third_revis_edition>:
> The low cost and excellent linearity properties of the Sigma-Delta ADC have replaced other ADC types in many measurement and registration systems, especially where storage of data is more important than real-time measurement. > The low cost and excellent linearity properties of the Sigma-Delta ADC have replaced other ADC types in many measurement and registration systems, especially where storage of data is more important than real-time measurement.
> This has typically been the case in audio recording and reproduction. > This has typically been the case in audio recording and reproduction.
> The reason why this principle is less applied with real-time measurements is the time delay between the bitstream representing the actual value and the availability of the corresponding value after the decimation filter. > The reason why this principle is less applied with real-time measurements is the time delay between the bitstream representing the actual value and the availability of the corresponding value after the decimation filter.
> The resulting **latency** amounts with a low cost sigma-delta ADC approximately **twenty times the sampling period of the decimated digital output**. > The resulting **latency** amounts with a low cost sigma-delta ADC approximately **twenty times the sampling period of the decimated digital output**.
<div class="exampl">
A 50kHz decimated sampling frequency has a sample period of 20us, resulting in a total latency of more than 400us.
This would cause almost 180 degrees phase delay for a 1kHz signal frequency, which is not acceptable with high bandwidth motion control systems.
This phenomenon clearly illustrates the necessity to distinguish sample frequency from speed.
</div>
Therefore, even though there are sigma-delta ADC with high precision and sampling rate, they add large latency (i.e. time delay) that are very problematic for feedback systems. Therefore, even though there are sigma-delta ADC with high precision and sampling rate, they add large latency (i.e. time delay) that are very problematic for feedback systems.
> The SAR-ADC (Successive approximation ADCs) is still the mostly applied type for data-acquisition and feedback systems because of its single sample latency. > The SAR-ADC (Successive approximation ADCs) is still the mostly applied type for data-acquisition and feedback systems because of its single sample latency.
@ -117,9 +125,4 @@ Therefore, even though there are sigma-delta ADC with high precision and samplin
## Bibliography {#bibliography} ## Bibliography {#bibliography}
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body"> <./biblio/references.bib>
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” <i>Analog Applications</i> 7.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Kester, Walt. 2005. “Taking the Mystery out of the Infamous Formula, $snr = 6.02 N + 1.76 Db$, and Why You Should Care.”</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Lab, Silicon. 2013. “Improving the ADC Resolution by Oversampling and Averaging.” Silicon Laboratories.</div>
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2020. <i>The Design of High Performance Mechatronics - Third Revised Edition</i>. Ios Press.</div>
</div>

View File

@ -1,6 +1,6 @@
+++ +++
title = "Linear Guides" title = "Linear Guides"
author = ["Thomas Dehaeze"] author = ["Dehaeze Thomas"]
draft = false draft = false
category = "equipment" category = "equipment"
+++ +++
@ -15,3 +15,15 @@ Tags
|----------------------------------------------------------------------------------------------------------------------------|---------| |----------------------------------------------------------------------------------------------------------------------------|---------|
| [Bosch Rexroth](https://www.boschrexroth.com/en/xc/products/product-groups/linear-motion-technology/topics/linear-guides/) | Germany | | [Bosch Rexroth](https://www.boschrexroth.com/en/xc/products/product-groups/linear-motion-technology/topics/linear-guides/) | Germany |
| [THK](https://www.thk.com/?q=eng/node/231) | Japan | | [THK](https://www.thk.com/?q=eng/node/231) | Japan |
## Different Technologies {#different-technologies}
{{< figure src="/ox-hugo/linear_bearing_comp.png" caption="<span class=\"figure-number\">Figure 1: </span>Comparison of different linear guides" >}}
{{< figure src="/ox-hugo/linear_bearing_cross_section.png" caption="<span class=\"figure-number\">Figure 2: </span>Cross section of considered linear guides" >}}
## Bibliography {#bibliography}
<./biblio/references.bib>

View File

@ -57,6 +57,170 @@ Main advantage of flexure jointed Stewart platforms over conventional (long stro
- Easier to decouple the dynamics that works for all the stroke - Easier to decouple the dynamics that works for all the stroke
## Built Stewart PLatforms {#built-stewart-platforms}
<span class="org-target" id="org-target--sec-built"></span>
**Actuators**:
- Short Stroke: PZT, Voice Coil, Magnetostrictive
- Long Stroke: DC, AC, Servo + Ball Screw, Inchworm
**Joints**:
- Flexible: usually for short stroke
- Conventional
**Sensors**:
- Force Sensors
- Relative Motion Sensors: Encoders, LVDT
- Strain Gauge
- Inertial Sensors (Geophone, Accelerometer)
- External Metrology
### Short Stroke {#short-stroke}
<span class="org-target" id="org-target--sec-built-short-stroke"></span>
| University | Figure | Configuration | Joints | Actuators | Sensors | Application | Link to bibliography |
|----------------|-------------------------|-------------------|-------------|--------------------------|------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JPL | <fig:stewart_jpl> | Cubic | Flexible | Voice Coil (0.5 mm) | Force (collocated) | | <spanos95_soft_activ_vibrat_isolat>, <rahman98_multiax> Vibration Isolation (Space) |
| Washinton, JPL | <fig:stewart_ht_uw> | Cubic | Elastomers | Voice Coil (10 mm) | Force, LVDT, Geophones | Isolation + Pointing (Space) | <thayer98_stewar>, <thayer02_six_axis_vibrat_isolat_system>, <hauge04_sensor_contr_space_based_six> |
| Wyoming | <fig:stewart_uw_gsp> | Cubic (CoM=CoK) | Flexible | Voice Coil | Force | | <mcinroy99_dynam>, <mcinroy99_precis_fault_toler_point_using_stewar_platf>, <mcinroy00_desig_contr_flexur_joint_hexap>, <li01_simul_vibrat_isolat_point_contr>, <jafari03_orthog_gough_stewar_platf_microm> |
| Brussels | <fig:stewart_ulb_vc> | Cubic | Flexible | Voice Coil | Force | Vibration Isolation | <hanieh03_activ_stewar>, <preumont07_six_axis_singl_stage_activ> |
| SRDC | <fig:stewart_naval> | Not Cubic | Ball joints | Voice Coil (10 mm) | | | <taranti01_effic_algor_vibrat_suppr> |
| SRDC | <fig:stewart_pph> | Non-Cubic | Flexible | Voice Coil | Accelerometers, External metrology: Eddy Current + optical | Pointing | <chen03_payload_point_activ_vibrat_isolat> |
| Harbin (China) | <fig:stewart_tang18> | Cubic | Flexible | Voice Coil | Accelerometer in each leg | | <chi15_desig_exper_study_vcm_based>, <tang18_decen_vibrat_contr_voice_coil>, <jiao18_dynam_model_exper_analy_stewar> |
| Einhoven | <fig:stewart_beijen> | Almost cubic | Flexible | Voice Coil | Force Sensor + Accelerometer | Vibration Isolation | <beijen18_self_tunin_mimo_distur_feedf>, <tjepkema12_activ_ph> |
| JPL | <fig:stewart_geng> | Cubic (6-UPU) | Flexible | Magnetostrictive | Force (collocated), Accelerometers | Vibration Isolation | <geng93_six_degree_of_freed_activ>, <geng94_six_degree_of_freed_activ>, <geng95_intel_contr_system_multip_degree> |
| China | <fig:stewart_zhang11> | Non-cubic | Flexible | Magnetostrictive | Inertial | | <zhang11_six_dof> |
| Brussels | <fig:stewart_ulb_pz> | Cubic | Flexible | Piezoelectric, Amplified | Piezo Force | Active Damping | <abu02_stiff_soft_stewar_platf_activ> |
| SRDC | <fig:stewart_uqp> | Cubic | | Piezoelectric (50 um) | Geophone | Vibration | <agrawal04_algor_activ_vibrat_isolat_spacec> |
| Taiwan | <fig:stewart_nanoscale> | Cubic | Flexible | Piezoelectric (120 um) | External capacitive | | <ting06_desig_stewar_nanos_platf>, <ting13_compos_contr_desig_stewar_nanos_platf> |
| Taiwan | <fig:stewart_ting07> | Non-Cubic | Flexible | Piezoelectric (160 um) | External capacitive (LION) | | <ting07_measur_calib_stewar_microm_system> |
| Harbin (China) | <fig:stewart_du14> | 6-SPS (Optimized) | Flexible | Piezoelectric | Strain Gauge | | <du14_piezo_actuat_high_precis_flexib> |
| Japan | <fig:stewart_furutani> | Non-Cubic | Flexible | Piezoelectric (16 um) | Eddy Current Displacement Sensors | Cutting machine | <furutani04_nanom_cuttin_machin_using_stewar> |
| China | <fig:stewart_yang19> | 6-UPS (Cubic?) | Flexible | Piezoelectric | Force, Position | | <yang19_dynam_model_decoup_contr_flexib> |
| Shangai | <fig:stewart_wang16> | Cubic | Flexible | Piezoelectric | Force Sensor + Accelerometer | | <wang16_inves_activ_vibrat_isolat_stewar> |
| Matra (France) | <fig:stewart_mais> | Cubic | Flexible | Piezoelectric (25 um) | Piezo force sensors | Vibration control | <defendini00_techn> |
| Japan | <fig:stewart_torii> | Non-Cubic | Flexible | Inchworm | | | <torii12_small_size_self_propel_stewar_platf> |
| Netherlands | <fig:stewart_naves> | Non-Cubic | Flexible | 3-phase rotary motor | Rotary Encoders | | <&naves20_desig;&naves20_t_flex> |
<a id="figure--fig:stewart-naves"></a>
{{< figure src="figs/stewart_naves.jpg" caption="<span class=\"figure-number\">Figure 1: </span>T-flex <&naves20_desig>" >}}
<a id="figure--fig:stewart-naval"></a>
{{< figure src="figs/stewart_naval.jpg" caption="<span class=\"figure-number\">Figure 2: </span><&taranti01_effic_algor_vibrat_suppr>" >}}
<a id="figure--fig:stewart-mais"></a>
{{< figure src="figs/stewart_mais.jpg" caption="<span class=\"figure-number\">Figure 3: </span><&defendini00_techn>" >}}
<a id="figure--fig:stewart-geng"></a>
{{< figure src="figs/stewart_geng.jpg" caption="<span class=\"figure-number\">Figure 4: </span><&geng94_six_degree_of_freed_activ>" >}}
<a id="figure--fig:stewart-jpl"></a>
{{< figure src="figs/stewart_jpl.jpg" caption="<span class=\"figure-number\">Figure 5: </span><&spanos95_soft_activ_vibrat_isolat>" >}}
<a id="figure--fig:stewart-furutani"></a>
{{< figure src="figs/stewart_furutani.jpg" caption="<span class=\"figure-number\">Figure 6: </span><&furutani04_nanom_cuttin_machin_using_stewar>" >}}
<a id="figure--fig:stewart-torii"></a>
{{< figure src="figs/stewart_torii.jpg" caption="<span class=\"figure-number\">Figure 7: </span><&torii12_small_size_self_propel_stewar_platf>" >}}
<a id="figure--fig:stewart-wang16"></a>
{{< figure src="figs/stewart_wang16.jpg" caption="<span class=\"figure-number\">Figure 8: </span><&wang16_inves_activ_vibrat_isolat_stewar>" >}}
<a id="figure--fig:stewart-beijen"></a>
{{< figure src="figs/stewart_beijen.jpg" caption="<span class=\"figure-number\">Figure 9: </span><&beijen18_self_tunin_mimo_distur_feedf>" >}}
<a id="figure--fig:stewart-zhang11"></a>
{{< figure src="figs/stewart_zhang11.jpg" caption="<span class=\"figure-number\">Figure 10: </span><&zhang11_six_dof>" >}}
<a id="figure--fig:stewart-yang19"></a>
{{< figure src="figs/stewart_yang19.jpg" caption="<span class=\"figure-number\">Figure 11: </span><&yang19_dynam_model_decoup_contr_flexib>" >}}
<a id="figure--fig:stewart-du14"></a>
{{< figure src="figs/stewart_du14.jpg" caption="<span class=\"figure-number\">Figure 12: </span><&du14_piezo_actuat_high_precis_flexib>" >}}
<a id="figure--fig:stewart-tang18"></a>
{{< figure src="figs/stewart_tang18.jpg" caption="<span class=\"figure-number\">Figure 13: </span><&tang18_decen_vibrat_contr_voice_coil>" >}}
<a id="figure--fig:stewart-nanoscale"></a>
{{< figure src="figs/stewart_nanoscale.jpg" caption="<span class=\"figure-number\">Figure 14: </span><&ting06_desig_stewar_nanos_platf>" >}}
<a id="figure--fig:stewart-ting07"></a>
{{< figure src="figs/stewart_ting07.jpg" caption="<span class=\"figure-number\">Figure 15: </span><&ting07_measur_calib_stewar_microm_system>" >}}
<a id="figure--fig:stewart-ht-uw"></a>
{{< figure src="figs/stewart_ht_uw.jpg" caption="<span class=\"figure-number\">Figure 16: </span>Hood Technology Corporation (HT) and the University of Washington (UW) have designed and tested a unique hexapod design for spaceborne interferometry missions <&thayer02_six_axis_vibrat_isolat_system>" >}}
<a id="figure--fig:stewart-uw-gsp"></a>
{{< figure src="figs/stewart_uw_gsp.jpg" caption="<span class=\"figure-number\">Figure 17: </span>UW GSP: Mutually Orthogonal Stewart Geometry <&li01_simul_fault_vibrat_isolat_point>" >}}
<a id="figure--fig:stewart-pph"></a>
{{< figure src="figs/stewart_pph.jpg" caption="<span class=\"figure-number\">Figure 18: </span>Precision Pointing Hexapod (PPH) <&chen03_payload_point_activ_vibrat_isolat>" >}}
<a id="figure--fig:stewart-uqp"></a>
{{< figure src="figs/stewart_uqp.jpg" caption="<span class=\"figure-number\">Figure 19: </span>Ultra Quiet Platform (UQP) <&agrawal04_algor_activ_vibrat_isolat_spacec>" >}}
<a id="figure--fig:stewart-ulb-pz"></a>
{{< figure src="figs/stewart_ulb_pz.jpg" caption="<span class=\"figure-number\">Figure 20: </span>ULB - Piezoelectric <&abu02_stiff_soft_stewar_platf_activ>" >}}
<a id="figure--fig:stewart-ulb-vc"></a>
{{< figure src="figs/stewart_ulb_vc.jpg" caption="<span class=\"figure-number\">Figure 21: </span>ULB - Voice Coil <&hanieh03_activ_stewar>" >}}
### Long Stroke {#long-stroke}
<span class="org-target" id="org-target--sec-built-long-stroke"></span>
| University | Figure | Configuration | Joints | Actuators | Sensors | Link to bibliography |
|----------------|----------------------|---------------|--------------|-------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Japan | <fig:stewart_cleary> | 6-UPS | Conventional | DC, gear + rack pinion | Encoder, 7um res | <cleary91_protot_paral_manip> |
| Seoul | <fig:stewart_kim00> | Non-Cubic | Conventional | Hydraulic | LVDT | <kim00_robus_track_contr_desig_dof_paral_manip> |
| Xidian (China) | <fig:stewart_su04> | Non-Cubic | Conventional | Servo Motor + Screwball | Encoder | <su04_distur_rejec_high_precis_motion> |
| Czech | <fig:stewart_czech> | 6-UPS | Conventional | DC, Ball Screw | Absolute Linear position | <brezina08_ni_labview_matlab_simmec_stewar_platf_desig>, <houska10_desig_implem_absol_linear_posit>, <brezina10_contr_desig_stewar_platf_linear_actuat> |
<a id="figure--fig:stewart-cleary"></a>
{{< figure src="figs/stewart_cleary.jpg" caption="<span class=\"figure-number\">Figure 22: </span><&cleary91_protot_paral_manip>" >}}
<a id="figure--fig:stewart-kim00"></a>
{{< figure src="figs/stewart_kim00.jpg" caption="<span class=\"figure-number\">Figure 23: </span><&kim01_six>" >}}
<a id="figure--fig:stewart-su04"></a>
{{< figure src="figs/stewart_su04.jpg" caption="<span class=\"figure-number\">Figure 24: </span><&su04_distur_rejec_high_precis_motion>" >}}
<a id="figure--fig:stewart-czech"></a>
{{< figure src="figs/stewart_czech.jpg" caption="<span class=\"figure-number\">Figure 25: </span>Stewart platform from Brno University (Czech) <&brezina08_ni_labview_matlab_simmec_stewar_platf_desig>" >}}
## Bibliography {#bibliography} ## Bibliography {#bibliography}
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -0,0 +1,41 @@
+++
title = "Synchrotron Radiation Facilities"
author = ["Dehaeze Thomas"]
draft = false
+++
Tags
:
## List of Synchrotrons {#list-of-synchrotrons}
| Name | Country | Gen | Status | Energy | Brightness | Emittance | Current |
|---------------------------------------------------------------------------------------------|----------------------|----------------|-----------------|---------|------------|--------------------|---------|
| [ESRF](https://www.esrf.fr/about/upgrade) | France, Grenoble | 4th | In operation | 6GeV | | 110pm.rad, 5pm.rad | 200mA |
| [Soleil II](https://www.synchrotron-soleil.fr/fr) | France, Paris | 3rd =&gt; 4th | Upgrade planned | 2.75GeV | | 83pm.rad | 500mA |
| [Diamond II](https://www.diamond.ac.uk/Home/About/Vision/Diamond-II.html) | UK, Oxfordshire | 3rd =&gt; 4th | Upgrade planned | 3GeV | | 3nm.rad, 8pm.rad | 300mA |
| [ALS-U](https://als.lbl.gov/als-u/als-u-approach/) | US, Berkeley | 3rd =&gt; 4th | Ongoing upgrade | 2Gev | | | 500mA |
| [SLAC](https://www-ssrl.slac.stanford.edu/content/spear3/photon-source-parameters) | US, Standford | 3rd | | 3GeV | | 10nm.rad, 14pm.rad | 500mA |
| [APS](https://www.aps.anl.gov/About/Overview) | US, Lemont | 4th | In operation | 7GeV | | | |
| [NSLS II](https://www.bnl.gov/nsls2/) | US, New York | 3rd | | 3GeV | 10^21 | 0.5nm.rad, 8pm.rad | |
| [Alba](https://www.cells.es/en/about/welcome) | Spain, Barcelona | 3rd | | 3GeV | | | |
| [PSI, SLS](https://www.psi.ch/en/sls/about-sls) | Switzerland | 3rd =&gt; 4th | Ongoing upgrade | 2.4GeV | | | |
| [Elettra 2.0](https://www.elettra.eu/lightsources/elettra/machine.html) | Italy, Triestre | 3rd =&gt; 4th | Upgrade planned | 2.4GeV | | 0.2nm.rad | |
| [Max IV](https://www.maxiv.lu.se/beamlines-accelerators/accelerators/) | Sweden, Lund | 4th | In operation | 3GeV | | 0.2nm.rad, 2pm.rad | 500mA |
| [DESY, PETRA IV](https://petra4.desy.de/index_eng.html) | Germany, Hamburg | 3rd =&gt; 4th | Upgrade planned | 6GeV | | 10pm.rad, 10pm.rad | 100mA |
| [BESSY II](https://www.helmholtz-berlin.de/forschung/quellen/bessy/bessy-in-zahlen_en.html) | Germany, Berlin | 3rd =&gt; 4th | Upgrade planned | 1.7GeV | | | |
| [SESAME](https://www.sesame.org.jo/accelerators) | Jordan | 3rd | | 2.5GeV | | | |
| [LNLS, Sirius](https://lnls.cnpem.br/accelerators/) | Brazil | 4th | In operation | 3Gev | | 0.25nm.rad | 100mA |
| [HEPS](http://english.ihep.cas.cn/heps/nae/nh/) | China, Huairou | 4th | In operation | 6GeV | 10^22 | 60pm.rad | 200mA |
| [NSRL](https://en.nsrl.ustc.edu.cn/2015/0128/c10878a117870/page.htm) | China, Hefei | 3rd | | 0.8Gev | | | 300mA |
| [SSRF](https://lssf.cas.cn/en/facilities-view.jsp?id=ff8080814ff56599014ff599b8550033) | China, Shangai | 3rd | | 3.5GeV | | 4nm.rad | 300mA |
| [Spring-8 II](http://www.spring8.or.jp/en/) | Japan, Himeji | 3rd =&gt; 4th | Upgrade planned | 6Gev | | 50pm.rad | 200mA |
| [NanoTerasu](https://www.qst.go.jp/site/3gev-eng/) | Japan | 4th | In operation | 3GeV | | 1nm.rad | 400mA |
| [Australian Synchrotron](https://www.ansto.gov.au/facilities/australian-synchrotron) | Australia, Clayton | 3rd | | 3GeV | | 16nm.rad | 200mA |
| [Canadian Light Source](https://www.lightsource.ca/index.php) | Canada, Saskatchewan | 3rd | | 3GeV | | 18nm.rad | 220mA |
## Bibliography {#bibliography}
<./biblio/references.bib>

View File

@ -208,7 +208,7 @@ W_stop = 0.0025 [W]
## Basic Circuits {#basic-circuits} ## Basic Circuits {#basic-circuits}
<&okyay16_mechat_desig_dynam_contr_metrol>, Appendix A {{< figure src="/ox-hugo/okyay16_current_amplifier_schematic.png" caption="<span class=\"figure-number\">Figure 1: </span>From <&okyay16_mechat_desig_dynam_contr_metrol>, Appendix A" >}}
## Estimation of the required current noise {#estimation-of-the-required-current-noise} ## Estimation of the required current noise {#estimation-of-the-required-current-noise}

View File

@ -7,7 +7,7 @@ draft = false
Tags Tags
: [Passive Damping]({{< relref "passive_damping.md" >}}), [Mass Spring Damper Systems]({{< relref "mass_spring_damper_systems.md" >}}) : [Passive Damping]({{< relref "passive_damping.md" >}}), [Mass Spring Damper Systems]({{< relref "mass_spring_damper_systems.md" >}})
Review: (<a href="#citeproc_bib_item_1">Elias and Matsagar 2017</a>), (<a href="#citeproc_bib_item_2">Verbaan 2015</a>) Review: <elias17_resear_devel_vibrat_contr_struc>, <&verbaan15_robus>
## Working Principle {#working-principle} ## Working Principle {#working-principle}
@ -150,10 +150,14 @@ Possible damping sources:
- Elastomer ([example](https://www.dspe.nl/knowledge/dppm-cases/tuned-mass-damper-with-damped-mass-far-away-from-point-of-interest/)) - Elastomer ([example](https://www.dspe.nl/knowledge/dppm-cases/tuned-mass-damper-with-damped-mass-far-away-from-point-of-interest/))
| Fuild | Reference | | Fuild | Reference |
|----------------------|---------------------------------------------------| |----------------------|--------------------|
| Rocol Kilopoise 0868 | (<a href="#citeproc_bib_item_2">Verbaan 2015</a>) | | Rocol Kilopoise 0868 | <&verbaan15_robus> |
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Elias, Said, and Vasant Matsagar. 2017. “Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers.” <i>Annual Reviews in Control</i> 44: 12956. doi:<a href="https://doi.org/10.1016/j.arcontrol.2017.09.015">10.1016/j.arcontrol.2017.09.015</a>.</div> ## Review of existing TMD {#review-of-existing-tmd}
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Verbaan, C.A.M. 2015. “Robust mass damper design for bandwidth increase of motion stages.” Mechanical Engineering; Technische Universiteit Eindhoven.</div>
</div> {{< figure src="/ox-hugo/tmd_ligo.png" caption="<span class=\"figure-number\">Figure 5: </span>Tuned Mass Damper used at LIGO" >}}
{{< figure src="/ox-hugo/tmd_smac.jpg" caption="<span class=\"figure-number\">Figure 6: </span>Commercial product from [SMAC](https://smac-sas.com/en/tuned-mass-damper/)" >}}
<./biblio/references.bib>

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

BIN
static/ox-hugo/tmd_ligo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 365 KiB

BIN
static/ox-hugo/tmd_smac.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB