diff --git a/content/zettels/analog_to_digital_converters.md b/content/zettels/analog_to_digital_converters.md index 5a4eb6d..d4ace06 100644 --- a/content/zettels/analog_to_digital_converters.md +++ b/content/zettels/analog_to_digital_converters.md @@ -14,7 +14,7 @@ Tags -- Delta Sigma (Baker 2011) +- Delta Sigma - Successive Approximation @@ -84,7 +84,7 @@ The quantization is: {{< youtube b9lxtOJj3yU >}} -Also see (Kester 2005). +Also see . ## Link between required dynamic range and effective number of bits {#link-between-required-dynamic-range-and-effective-number-of-bits} @@ -96,18 +96,26 @@ Also see (Kester 2005). ## Oversampling {#oversampling} -(Lab 2013) + ## Sigma Delta ADC {#sigma-delta-adc} -From (Schmidt, Schitter, and Rankers 2020): +From <&schmidt20_desig_high_perfor_mechat_third_revis_edition>: > The low cost and excellent linearity properties of the Sigma-Delta ADC have replaced other ADC types in many measurement and registration systems, especially where storage of data is more important than real-time measurement. > This has typically been the case in audio recording and reproduction. > The reason why this principle is less applied with real-time measurements is the time delay between the bitstream representing the actual value and the availability of the corresponding value after the decimation filter. > The resulting **latency** amounts with a low cost sigma-delta ADC approximately **twenty times the sampling period of the decimated digital output**. +
+ +A 50kHz decimated sampling frequency has a sample period of 20us, resulting in a total latency of more than 400us. +This would cause almost 180 degrees phase delay for a 1kHz signal frequency, which is not acceptable with high bandwidth motion control systems. +This phenomenon clearly illustrates the necessity to distinguish sample frequency from speed. + +
+ Therefore, even though there are sigma-delta ADC with high precision and sampling rate, they add large latency (i.e. time delay) that are very problematic for feedback systems. > The SAR-ADC (Successive approximation ADCs) is still the mostly applied type for data-acquisition and feedback systems because of its single sample latency. @@ -117,9 +125,4 @@ Therefore, even though there are sigma-delta ADC with high precision and samplin ## Bibliography {#bibliography} -
-
Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” Analog Applications 7.
-
Kester, Walt. 2005. “Taking the Mystery out of the Infamous Formula, $snr = 6.02 N + 1.76 Db$, and Why You Should Care.”
-
Lab, Silicon. 2013. “Improving the ADC Resolution by Oversampling and Averaging.” Silicon Laboratories.
-
Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2020. The Design of High Performance Mechatronics - Third Revised Edition. Ios Press.
-
+<./biblio/references.bib> diff --git a/content/zettels/linear_guides.md b/content/zettels/linear_guides.md index 69ffa5e..cff8ce3 100644 --- a/content/zettels/linear_guides.md +++ b/content/zettels/linear_guides.md @@ -1,6 +1,6 @@ +++ title = "Linear Guides" -author = ["Thomas Dehaeze"] +author = ["Dehaeze Thomas"] draft = false category = "equipment" +++ @@ -15,3 +15,15 @@ Tags |----------------------------------------------------------------------------------------------------------------------------|---------| | [Bosch Rexroth](https://www.boschrexroth.com/en/xc/products/product-groups/linear-motion-technology/topics/linear-guides/) | Germany | | [THK](https://www.thk.com/?q=eng/node/231) | Japan | + + +## Different Technologies {#different-technologies} + +{{< figure src="/ox-hugo/linear_bearing_comp.png" caption="Figure 1: Comparison of different linear guides" >}} + +{{< figure src="/ox-hugo/linear_bearing_cross_section.png" caption="Figure 2: Cross section of considered linear guides" >}} + + +## Bibliography {#bibliography} + +<./biblio/references.bib> diff --git a/content/zettels/stewart_platforms.md b/content/zettels/stewart_platforms.md index 782b4d3..0fdc049 100644 --- a/content/zettels/stewart_platforms.md +++ b/content/zettels/stewart_platforms.md @@ -57,6 +57,170 @@ Main advantage of flexure jointed Stewart platforms over conventional (long stro - Easier to decouple the dynamics that works for all the stroke +## Built Stewart PLatforms {#built-stewart-platforms} + + + +**Actuators**: + +- Short Stroke: PZT, Voice Coil, Magnetostrictive +- Long Stroke: DC, AC, Servo + Ball Screw, Inchworm + +**Joints**: + +- Flexible: usually for short stroke +- Conventional + +**Sensors**: + +- Force Sensors +- Relative Motion Sensors: Encoders, LVDT +- Strain Gauge +- Inertial Sensors (Geophone, Accelerometer) +- External Metrology + + +### Short Stroke {#short-stroke} + + + +| University | Figure | Configuration | Joints | Actuators | Sensors | Application | Link to bibliography | +|----------------|-------------------------|-------------------|-------------|--------------------------|------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| +| JPL | | Cubic | Flexible | Voice Coil (0.5 mm) | Force (collocated) | | , Vibration Isolation (Space) | +| Washinton, JPL | | Cubic | Elastomers | Voice Coil (10 mm) | Force, LVDT, Geophones | Isolation + Pointing (Space) | , , | +| Wyoming | | Cubic (CoM=CoK) | Flexible | Voice Coil | Force | | , , , , | +| Brussels | | Cubic | Flexible | Voice Coil | Force | Vibration Isolation | , | +| SRDC | | Not Cubic | Ball joints | Voice Coil (10 mm) | | | | +| SRDC | | Non-Cubic | Flexible | Voice Coil | Accelerometers, External metrology: Eddy Current + optical | Pointing | | +| Harbin (China) | | Cubic | Flexible | Voice Coil | Accelerometer in each leg | | , , | +| Einhoven | | Almost cubic | Flexible | Voice Coil | Force Sensor + Accelerometer | Vibration Isolation | , | +| JPL | | Cubic (6-UPU) | Flexible | Magnetostrictive | Force (collocated), Accelerometers | Vibration Isolation | , , | +| China | | Non-cubic | Flexible | Magnetostrictive | Inertial | | | +| Brussels | | Cubic | Flexible | Piezoelectric, Amplified | Piezo Force | Active Damping | | +| SRDC | | Cubic | | Piezoelectric (50 um) | Geophone | Vibration | | +| Taiwan | | Cubic | Flexible | Piezoelectric (120 um) | External capacitive | | , | +| Taiwan | | Non-Cubic | Flexible | Piezoelectric (160 um) | External capacitive (LION) | | | +| Harbin (China) | | 6-SPS (Optimized) | Flexible | Piezoelectric | Strain Gauge | | | +| Japan | | Non-Cubic | Flexible | Piezoelectric (16 um) | Eddy Current Displacement Sensors | Cutting machine | | +| China | | 6-UPS (Cubic?) | Flexible | Piezoelectric | Force, Position | | | +| Shangai | | Cubic | Flexible | Piezoelectric | Force Sensor + Accelerometer | | | +| Matra (France) | | Cubic | Flexible | Piezoelectric (25 um) | Piezo force sensors | Vibration control | | +| Japan | | Non-Cubic | Flexible | Inchworm | | | | +| Netherlands | | Non-Cubic | Flexible | 3-phase rotary motor | Rotary Encoders | | <&naves20_desig;&naves20_t_flex> | + + + +{{< figure src="figs/stewart_naves.jpg" caption="Figure 1: T-flex <&naves20_desig>" >}} + + + +{{< figure src="figs/stewart_naval.jpg" caption="Figure 2: <&taranti01_effic_algor_vibrat_suppr>" >}} + + + +{{< figure src="figs/stewart_mais.jpg" caption="Figure 3: <&defendini00_techn>" >}} + + + +{{< figure src="figs/stewart_geng.jpg" caption="Figure 4: <&geng94_six_degree_of_freed_activ>" >}} + + + +{{< figure src="figs/stewart_jpl.jpg" caption="Figure 5: <&spanos95_soft_activ_vibrat_isolat>" >}} + + + +{{< figure src="figs/stewart_furutani.jpg" caption="Figure 6: <&furutani04_nanom_cuttin_machin_using_stewar>" >}} + + + +{{< figure src="figs/stewart_torii.jpg" caption="Figure 7: <&torii12_small_size_self_propel_stewar_platf>" >}} + + + +{{< figure src="figs/stewart_wang16.jpg" caption="Figure 8: <&wang16_inves_activ_vibrat_isolat_stewar>" >}} + + + +{{< figure src="figs/stewart_beijen.jpg" caption="Figure 9: <&beijen18_self_tunin_mimo_distur_feedf>" >}} + + + +{{< figure src="figs/stewart_zhang11.jpg" caption="Figure 10: <&zhang11_six_dof>" >}} + + + +{{< figure src="figs/stewart_yang19.jpg" caption="Figure 11: <&yang19_dynam_model_decoup_contr_flexib>" >}} + + + +{{< figure src="figs/stewart_du14.jpg" caption="Figure 12: <&du14_piezo_actuat_high_precis_flexib>" >}} + + + +{{< figure src="figs/stewart_tang18.jpg" caption="Figure 13: <&tang18_decen_vibrat_contr_voice_coil>" >}} + + + +{{< figure src="figs/stewart_nanoscale.jpg" caption="Figure 14: <&ting06_desig_stewar_nanos_platf>" >}} + + + +{{< figure src="figs/stewart_ting07.jpg" caption="Figure 15: <&ting07_measur_calib_stewar_microm_system>" >}} + + + +{{< figure src="figs/stewart_ht_uw.jpg" caption="Figure 16: Hood Technology Corporation (HT) and the University of Washington (UW) have designed and tested a unique hexapod design for spaceborne interferometry missions <&thayer02_six_axis_vibrat_isolat_system>" >}} + + + +{{< figure src="figs/stewart_uw_gsp.jpg" caption="Figure 17: UW GSP: Mutually Orthogonal Stewart Geometry <&li01_simul_fault_vibrat_isolat_point>" >}} + + + +{{< figure src="figs/stewart_pph.jpg" caption="Figure 18: Precision Pointing Hexapod (PPH) <&chen03_payload_point_activ_vibrat_isolat>" >}} + + + +{{< figure src="figs/stewart_uqp.jpg" caption="Figure 19: Ultra Quiet Platform (UQP) <&agrawal04_algor_activ_vibrat_isolat_spacec>" >}} + + + +{{< figure src="figs/stewart_ulb_pz.jpg" caption="Figure 20: ULB - Piezoelectric <&abu02_stiff_soft_stewar_platf_activ>" >}} + + + +{{< figure src="figs/stewart_ulb_vc.jpg" caption="Figure 21: ULB - Voice Coil <&hanieh03_activ_stewar>" >}} + + +### Long Stroke {#long-stroke} + + + +| University | Figure | Configuration | Joints | Actuators | Sensors | Link to bibliography | +|----------------|----------------------|---------------|--------------|-------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------| +| Japan | | 6-UPS | Conventional | DC, gear + rack pinion | Encoder, 7um res | | +| Seoul | | Non-Cubic | Conventional | Hydraulic | LVDT | | +| Xidian (China) | | Non-Cubic | Conventional | Servo Motor + Screwball | Encoder | | +| Czech | | 6-UPS | Conventional | DC, Ball Screw | Absolute Linear position | , , | + + + +{{< figure src="figs/stewart_cleary.jpg" caption="Figure 22: <&cleary91_protot_paral_manip>" >}} + + + +{{< figure src="figs/stewart_kim00.jpg" caption="Figure 23: <&kim01_six>" >}} + + + +{{< figure src="figs/stewart_su04.jpg" caption="Figure 24: <&su04_distur_rejec_high_precis_motion>" >}} + + + +{{< figure src="figs/stewart_czech.jpg" caption="Figure 25: Stewart platform from Brno University (Czech) <&brezina08_ni_labview_matlab_simmec_stewar_platf_desig>" >}} + + ## Bibliography {#bibliography} <./biblio/references.bib> diff --git a/content/zettels/synchrotron_radiation_facilities.md b/content/zettels/synchrotron_radiation_facilities.md new file mode 100644 index 0000000..7889432 --- /dev/null +++ b/content/zettels/synchrotron_radiation_facilities.md @@ -0,0 +1,41 @@ ++++ +title = "Synchrotron Radiation Facilities" +author = ["Dehaeze Thomas"] +draft = false ++++ + +Tags +: + + +## List of Synchrotrons {#list-of-synchrotrons} + +| Name | Country | Gen | Status | Energy | Brightness | Emittance | Current | +|---------------------------------------------------------------------------------------------|----------------------|----------------|-----------------|---------|------------|--------------------|---------| +| [ESRF](https://www.esrf.fr/about/upgrade) | France, Grenoble | 4th | In operation | 6GeV | | 110pm.rad, 5pm.rad | 200mA | +| [Soleil II](https://www.synchrotron-soleil.fr/fr) | France, Paris | 3rd => 4th | Upgrade planned | 2.75GeV | | 83pm.rad | 500mA | +| [Diamond II](https://www.diamond.ac.uk/Home/About/Vision/Diamond-II.html) | UK, Oxfordshire | 3rd => 4th | Upgrade planned | 3GeV | | 3nm.rad, 8pm.rad | 300mA | +| [ALS-U](https://als.lbl.gov/als-u/als-u-approach/) | US, Berkeley | 3rd => 4th | Ongoing upgrade | 2Gev | | | 500mA | +| [SLAC](https://www-ssrl.slac.stanford.edu/content/spear3/photon-source-parameters) | US, Standford | 3rd | | 3GeV | | 10nm.rad, 14pm.rad | 500mA | +| [APS](https://www.aps.anl.gov/About/Overview) | US, Lemont | 4th | In operation | 7GeV | | | | +| [NSLS II](https://www.bnl.gov/nsls2/) | US, New York | 3rd | | 3GeV | 10^21 | 0.5nm.rad, 8pm.rad | | +| [Alba](https://www.cells.es/en/about/welcome) | Spain, Barcelona | 3rd | | 3GeV | | | | +| [PSI, SLS](https://www.psi.ch/en/sls/about-sls) | Switzerland | 3rd => 4th | Ongoing upgrade | 2.4GeV | | | | +| [Elettra 2.0](https://www.elettra.eu/lightsources/elettra/machine.html) | Italy, Triestre | 3rd => 4th | Upgrade planned | 2.4GeV | | 0.2nm.rad | | +| [Max IV](https://www.maxiv.lu.se/beamlines-accelerators/accelerators/) | Sweden, Lund | 4th | In operation | 3GeV | | 0.2nm.rad, 2pm.rad | 500mA | +| [DESY, PETRA IV](https://petra4.desy.de/index_eng.html) | Germany, Hamburg | 3rd => 4th | Upgrade planned | 6GeV | | 10pm.rad, 10pm.rad | 100mA | +| [BESSY II](https://www.helmholtz-berlin.de/forschung/quellen/bessy/bessy-in-zahlen_en.html) | Germany, Berlin | 3rd => 4th | Upgrade planned | 1.7GeV | | | | +| [SESAME](https://www.sesame.org.jo/accelerators) | Jordan | 3rd | | 2.5GeV | | | | +| [LNLS, Sirius](https://lnls.cnpem.br/accelerators/) | Brazil | 4th | In operation | 3Gev | | 0.25nm.rad | 100mA | +| [HEPS](http://english.ihep.cas.cn/heps/nae/nh/) | China, Huairou | 4th | In operation | 6GeV | 10^22 | 60pm.rad | 200mA | +| [NSRL](https://en.nsrl.ustc.edu.cn/2015/0128/c10878a117870/page.htm) | China, Hefei | 3rd | | 0.8Gev | | | 300mA | +| [SSRF](https://lssf.cas.cn/en/facilities-view.jsp?id=ff8080814ff56599014ff599b8550033) | China, Shangai | 3rd | | 3.5GeV | | 4nm.rad | 300mA | +| [Spring-8 II](http://www.spring8.or.jp/en/) | Japan, Himeji | 3rd => 4th | Upgrade planned | 6Gev | | 50pm.rad | 200mA | +| [NanoTerasu](https://www.qst.go.jp/site/3gev-eng/) | Japan | 4th | In operation | 3GeV | | 1nm.rad | 400mA | +| [Australian Synchrotron](https://www.ansto.gov.au/facilities/australian-synchrotron) | Australia, Clayton | 3rd | | 3GeV | | 16nm.rad | 200mA | +| [Canadian Light Source](https://www.lightsource.ca/index.php) | Canada, Saskatchewan | 3rd | | 3GeV | | 18nm.rad | 220mA | + + +## Bibliography {#bibliography} + +<./biblio/references.bib> diff --git a/content/zettels/transconductance_amplifiers.md b/content/zettels/transconductance_amplifiers.md index a749d3f..54a5670 100644 --- a/content/zettels/transconductance_amplifiers.md +++ b/content/zettels/transconductance_amplifiers.md @@ -208,7 +208,7 @@ W_stop = 0.0025 [W] ## Basic Circuits {#basic-circuits} -<&okyay16_mechat_desig_dynam_contr_metrol>, Appendix A +{{< figure src="/ox-hugo/okyay16_current_amplifier_schematic.png" caption="Figure 1: From <&okyay16_mechat_desig_dynam_contr_metrol>, Appendix A" >}} ## Estimation of the required current noise {#estimation-of-the-required-current-noise} diff --git a/content/zettels/tuned_mass_damper.md b/content/zettels/tuned_mass_damper.md index 97262a3..b89830a 100644 --- a/content/zettels/tuned_mass_damper.md +++ b/content/zettels/tuned_mass_damper.md @@ -7,7 +7,7 @@ draft = false Tags : [Passive Damping]({{< relref "passive_damping.md" >}}), [Mass Spring Damper Systems]({{< relref "mass_spring_damper_systems.md" >}}) -Review: (Elias and Matsagar 2017), (Verbaan 2015) +Review: , <&verbaan15_robus> ## Working Principle {#working-principle} @@ -149,11 +149,15 @@ Possible damping sources: - Viscous fluid - Elastomer ([example](https://www.dspe.nl/knowledge/dppm-cases/tuned-mass-damper-with-damped-mass-far-away-from-point-of-interest/)) -| Fuild | Reference | -|----------------------|---------------------------------------------------| -| Rocol Kilopoise 0868 | (Verbaan 2015) | +| Fuild | Reference | +|----------------------|--------------------| +| Rocol Kilopoise 0868 | <&verbaan15_robus> | -
-
Elias, Said, and Vasant Matsagar. 2017. “Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers.” Annual Reviews in Control 44: 129–56. doi:10.1016/j.arcontrol.2017.09.015.
-
Verbaan, C.A.M. 2015. “Robust mass damper design for bandwidth increase of motion stages.” Mechanical Engineering; Technische Universiteit Eindhoven.
-
+ +## Review of existing TMD {#review-of-existing-tmd} + +{{< figure src="/ox-hugo/tmd_ligo.png" caption="Figure 5: Tuned Mass Damper used at LIGO" >}} + +{{< figure src="/ox-hugo/tmd_smac.jpg" caption="Figure 6: Commercial product from [SMAC](https://smac-sas.com/en/tuned-mass-damper/)" >}} + +<./biblio/references.bib> diff --git a/static/ox-hugo/linear_bearing_comp.png b/static/ox-hugo/linear_bearing_comp.png new file mode 100644 index 0000000..6576928 Binary files /dev/null and b/static/ox-hugo/linear_bearing_comp.png differ diff --git a/static/ox-hugo/linear_bearing_cross_section.png b/static/ox-hugo/linear_bearing_cross_section.png new file mode 100644 index 0000000..8893e1c Binary files /dev/null and b/static/ox-hugo/linear_bearing_cross_section.png differ diff --git a/static/ox-hugo/okyay16_current_amplifier_schematic.png b/static/ox-hugo/okyay16_current_amplifier_schematic.png new file mode 100644 index 0000000..c29a7b7 Binary files /dev/null and b/static/ox-hugo/okyay16_current_amplifier_schematic.png differ diff --git a/static/ox-hugo/tmd_ligo.png b/static/ox-hugo/tmd_ligo.png new file mode 100644 index 0000000..48de7de Binary files /dev/null and b/static/ox-hugo/tmd_ligo.png differ diff --git a/static/ox-hugo/tmd_smac.jpg b/static/ox-hugo/tmd_smac.jpg new file mode 100644 index 0000000..787a703 Binary files /dev/null and b/static/ox-hugo/tmd_smac.jpg differ