Update Content - 2022-03-30
@ -1,12 +1,12 @@
|
||||
+++
|
||||
title = "Acquisition Systems"
|
||||
author = ["Thomas Dehaeze"]
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Analog to Digital Converters]({{<relref "analog_to_digital_converters.md#" >}})
|
||||
: [Analog to Digital Converters]({{< relref "analog_to_digital_converters.md" >}}), [Simulink Real Time Target Machines]({{< relref "simulink_real_time_target_machines.md" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
@ -16,3 +16,9 @@ Tags
|
||||
| [Dewesoft](https://dewesoft.com/) | Slovenia |
|
||||
| [Oros](https://www.oros.com/) | France |
|
||||
| [National Instruments](https://www.ni.com/fr-fr/shop/pc-based-measurement-and-control-system.html) | USA |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
||||
|
19
content/zettels/materials.md
Normal file
@ -0,0 +1,19 @@
|
||||
+++
|
||||
title = "Materials"
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Metals {#metals}
|
||||
|
||||
| Material | Young's Modulus (GPA) | Thermal Expansion (\\(\mu m/m/^oC\\)) | Density | Thermal Conductivity (W/mK) |
|
||||
|-----------------|-----------------------|---------------------------------------|---------|-----------------------------|
|
||||
| Aluminum | 68 | 23.6 | 2.7 | 167 |
|
||||
| Copper | 110 | 20 | 8.53 | 120 |
|
||||
| Invar | 148 | 1.3 | 8 | 10.2 |
|
||||
| Stainless Steel | 190 | 10.8 | 8 | 17 |
|
||||
| Titanium | 108 | 8.6 | 4.5 | 16.3 |
|
31
content/zettels/optical_fibers.md
Normal file
@ -0,0 +1,31 @@
|
||||
+++
|
||||
title = "Optical Fibers"
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Connectors {#connectors}
|
||||
|
||||
<a id="figure--fig:optical-fibers-sc"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/optical_fibers_sc.png" caption="<span class=\"figure-number\">Figure 1: </span>SC Connector (used for instance with Attocube)" >}}
|
||||
|
||||
<a id="figure--fig:optical-fibers-fc"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/optical_fibers_fc.png" caption="<span class=\"figure-number\">Figure 2: </span>FC connector" >}}
|
||||
|
||||
PC connector is used with Fabry-Perot interferometers when we wish to have some reflection at the end of the fiber.
|
||||
Otherwise, APC connectors are used.
|
||||
|
||||
<a id="figure--fig:optical-connector-PC-APC"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/optical_connector_PC_APC.png" caption="<span class=\"figure-number\">Figure 3: </span>PC (usually black) and APC (usually green) connectors" >}}
|
||||
|
||||
|
||||
## Multi-mode and Single-mode fibers {#multi-mode-and-single-mode-fibers}
|
||||
|
||||
If laser is used (fiber interferometer for instance), a single-mode fiber should be used and the wavelength of the mode should be matched with the wavelength of the laser.
|
@ -18,6 +18,7 @@ High precision positioning sensors include:
|
||||
- [LVDT]({{< relref "linear_variable_differential_transformers.md" >}})
|
||||
- [Eddy Current Sensors]({{< relref "eddy_current_sensors.md" >}})
|
||||
- [Encoders]({{< relref "encoders.md" >}})
|
||||
- [Quadrant Photodiodes]({{< relref "quadrant_photodiodes.md" >}})
|
||||
|
||||
|
||||
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
|
||||
|
148
content/zettels/quadrant_photodiodes.md
Normal file
@ -0,0 +1,148 @@
|
||||
+++
|
||||
title = "Quadrant Photodiodes"
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors.md" >}}), [Optics]({{< relref "optics.md" >}})
|
||||
|
||||
Some bibliography (<a href="#citeproc_bib_item_3">Manojlović 2011</a>; <a href="#citeproc_bib_item_4">Wu et al. 2015</a>; <a href="#citeproc_bib_item_2">Li et al. 2019</a>).
|
||||
|
||||
|
||||
## Working principle {#working-principle}
|
||||
|
||||
<a id="figure--fig:quadrant-photodiode-schematic"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/quadrant_photodiode_schematic.png" caption="<span class=\"figure-number\">Figure 1: </span>Schematic of the Quadrant Photodiode" >}}
|
||||
|
||||
The \\([x,y]\\) position of the beam on the quadrant photodiode can be estimated using the following equations:
|
||||
|
||||
\begin{align}
|
||||
\sigma\_x &= \frac{(I\_B + I\_D) - (I\_A + I\_C)}{I\_A + I\_B + I\_C + I\_D} = \frac{I\_B + I\_D}{I\_A + I\_B + I\_C + I\_D} - 1 \\\\
|
||||
\sigma\_y &= \frac{(I\_A + I\_B) - (I\_C + I\_D)}{I\_A + I\_B + I\_C + I\_D} = \frac{I\_A + I\_B}{I\_A + I\_B + I\_C + I\_D} - 1
|
||||
\end{align}
|
||||
|
||||
<a id="figure--fig:quadrant-photodiode-spot-size"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/quadrant_photodiode_relation_meas.png" caption="<span class=\"figure-number\">Figure 2: </span>Relation between the X position of the spot and the estimated measurement \\(\sigma\_x\\)" >}}
|
||||
|
||||
This is true when the spot is near the center of the four quadrants (linear region).
|
||||
|
||||
<a id="figure--fig:quadrant-photodiode-spot-size"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/quadrant_photodiode_spot_size.jpg" caption="<span class=\"figure-number\">Figure 3: </span>Effect of the spot size on the sensitibility and measurement range" >}}
|
||||
|
||||
Basic requirements (taken from [here](https://www.aptechnologies.co.uk/home/support/photodiodes)):
|
||||
|
||||
- detector gap < spot size < detector size
|
||||
- positional range < spot size
|
||||
- positional range is proportional to the spot size
|
||||
- positional resolution is inversely proportional to the spot size
|
||||
|
||||
Estimation of the linear region.
|
||||
|
||||
The relation between the spot size and the quadrant photodiode sensitivity is well explained in (<a href="#citeproc_bib_item_1">Lee et al. 2010</a>).
|
||||
|
||||
Usually, single mode laser are used such that the beam profile can well be approximated by a Gaussian distribution.
|
||||
The irradiance distribution is then:
|
||||
|
||||
\begin{equation}
|
||||
I( r) = \frac{P}{\pi w^2} e^{-\frac{r^2}{w^2}}
|
||||
\end{equation}
|
||||
|
||||
with:
|
||||
|
||||
- \\(r\\) the radius
|
||||
- \\(P\\) the overall light source optical power
|
||||
- \\(w\\) the light spot radius for which the irradiance drops to the \\(1/e\\) value of its central value
|
||||
|
||||
|
||||
## Estimation of photodiode gain {#estimation-of-photodiode-gain}
|
||||
|
||||
It is function of:
|
||||
|
||||
- the spot size
|
||||
- the gain size
|
||||
|
||||
|
||||
## Electrical Readout {#electrical-readout}
|
||||
|
||||
[Transimpedance Amplifiers]({{< relref "transimpedance_amplifiers.md" >}}) amplifiers are required (schematic shown in Figure [4](#figure--fig:quadrant-transresistance-amplifier)).
|
||||
|
||||
- Trade-off between gain / noise / bandwidth (see [The art of electronics - third edition]({{< relref "horowitz15_art_of_elect_third_edition.md" >}}), chapter 8.11.4).
|
||||
|
||||
The amplifier in Figure [4](#figure--fig:quadrant-transresistance-amplifier) produces a voltage:
|
||||
|
||||
\begin{equation}
|
||||
V\_{\text{out}} = -I\_{\text{sig}} R\_f
|
||||
\end{equation}
|
||||
|
||||
So the gain of the amplifier is simply \\(-R\_f\\) in [V/A].
|
||||
|
||||
The feedback resistor creates a Johnson noise that corresponds to a current noise:
|
||||
|
||||
\begin{equation}
|
||||
i\_{n} = \sqrt{4kT/R\_f} \quad [A/\sqrt{Hz}]
|
||||
\end{equation}
|
||||
|
||||
This is usually larger than the amplifier input current noise.
|
||||
|
||||
<a id="figure--fig:quadrant-transresistance-amplifier"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/quadrant_transresistance_amplifier.png" caption="<span class=\"figure-number\">Figure 4: </span>Transimpedance Amplifier; Current in, Voltage out" >}}
|
||||
|
||||
|
||||
## Angle Measurement {#angle-measurement}
|
||||
|
||||
|
||||
### Working Principle {#working-principle}
|
||||
|
||||
Combined with a lens, a quadrant photodiode can become an angular sensor is well located at the focal plane of the lens (see Figure [5](#figure--fig:quandrant-diode-angle-schematic)).
|
||||
|
||||
The relation between the position \\([y,z]\\) of the quadrant photodiode and the angle of the incident light \\([R\_y, R\_z]\\) is:
|
||||
|
||||
\begin{align}
|
||||
y &= f \cdot R\_z\\\\
|
||||
z &= -f \cdot R\_y
|
||||
\end{align}
|
||||
|
||||
<a id="figure--fig:quandrant-diode-angle-schematic"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/quandrant_diode_angle_schematic.png" caption="<span class=\"figure-number\">Figure 5: </span>Optical schematic of combination of a quandrant photodiode with a lens" >}}
|
||||
|
||||
|
||||
### Sensitivity of beam translation {#sensitivity-of-beam-translation}
|
||||
|
||||
The sensitivity to translation of the beam depends on how well the quadrant photodiode is located at the focal plane of the lens.
|
||||
If we note \\(\Delta x\\) the distance between the focal plane and the quadrant plane, the sensitivity to a \\(\Delta z\\) motion of the beam is:
|
||||
|
||||
\begin{equation}
|
||||
z = \Delta x \cdot \Delta z
|
||||
\end{equation}
|
||||
|
||||
Therefore, the ratio \\(f/\Delta x\\) gives the ratio of the sensitivity to beam angle to the sensitivity of beam translation.
|
||||
|
||||
<div class="exampl">
|
||||
|
||||
Take a lens with focal of \\(f = 500\\,mm\\) and say the quadrant photodiode is positioned at the focal plane with an accuracy of \\(\Delta x = 1\\,mm\\):
|
||||
|
||||
\begin{equation}
|
||||
\frac{f}{\Delta x} = 500
|
||||
\end{equation}
|
||||
|
||||
This means that \\(1\\,mm\\) of vertical motion of the beam will give the same output than \\(500\\,mrad\\) of rotation of the beam.
|
||||
|
||||
</div>
|
||||
|
||||
<div class="exampl">
|
||||
|
||||
Say be want to determine with which precision the quadrant photodiode should be positioned.
|
||||
We now that the maximum translation of the beam is \\(\Delta z = 1\\,mm\\) and this should have less effect than a beam rotation of \\(R\_y = 10\\,\mu rad\\), then the quadrant photodiode should be position with an accuracy \\(\Delta x\\) of:
|
||||
|
||||
\begin{equation}
|
||||
\Delta x = f \frac{R\_y}{\Delta z} = 1\\,mm, \quad \text{with } f = 0.1\\,m
|
||||
\end{equation}
|
||||
|
||||
</div>
|
@ -6,7 +6,7 @@ category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
: [Acquisition Systems]({{< relref "acquisition_systems.md" >}}), [Acquisition Systems]({{< relref "acquisition_systems.md" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
@ -13,7 +13,7 @@ Tags
|
||||
|
||||
A transimpedance amplifier is a "current to voltage converter" and is also named a current controlled voltage source.
|
||||
|
||||
It is generally used to interface a sensor which outputs a current proportional to the measurement parameter (photodiode for instance).
|
||||
It is generally used to interface a sensor which outputs a current proportional to the measurement parameter ([Quadrant Photodiodes]({{< relref "quadrant_photodiodes.md" >}}) for instance).
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
Before Width: | Height: | Size: 11 KiB After Width: | Height: | Size: 11 KiB |
BIN
static/ox-hugo/optical_connector_PC_APC.png
Normal file
After Width: | Height: | Size: 69 KiB |
BIN
static/ox-hugo/optical_fibers_fc.png
Normal file
After Width: | Height: | Size: 45 KiB |
BIN
static/ox-hugo/optical_fibers_sc.png
Normal file
After Width: | Height: | Size: 40 KiB |
BIN
static/ox-hugo/quadrant_photodiode_relation_meas.png
Normal file
After Width: | Height: | Size: 8.2 KiB |
BIN
static/ox-hugo/quadrant_photodiode_schematic.png
Normal file
After Width: | Height: | Size: 20 KiB |
BIN
static/ox-hugo/quadrant_photodiode_spot_size.jpg
Normal file
After Width: | Height: | Size: 55 KiB |
BIN
static/ox-hugo/quadrant_transresistance_amplifier.png
Normal file
After Width: | Height: | Size: 16 KiB |
BIN
static/ox-hugo/quandrant_diode_angle_schematic.png
Normal file
After Width: | Height: | Size: 12 KiB |