Update many files
PhDthesis were categorized as articles. Add "fron matter" to specify zettels category
This commit is contained in:
@@ -2,10 +2,11 @@
|
||||
title = "Acquisition Systems"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Analog to Digital Converters]({{< relref "analog_to_digital_converters" >}})
|
||||
: [Analog to Digital Converters]({{<relref "analog_to_digital_converters.md#" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Active Isolation Platforms"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Vibration Isolation]({{< relref "vibration_isolation" >}})
|
||||
: [Vibration Isolation]({{<relref "vibration_isolation.md#" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
@@ -9,20 +9,20 @@ Tags
|
||||
|
||||
Links to specific actuators:
|
||||
|
||||
- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
||||
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
|
||||
- [Voice Coil Actuators]({{<relref "voice_coil_actuators.md#" >}})
|
||||
- [Piezoelectric Actuators]({{<relref "piezoelectric_actuators.md#" >}})
|
||||
|
||||
|
||||
## How to choose the correct actuator for my application? {#how-to-choose-the-correct-actuator-for-my-application}
|
||||
|
||||
For vibration isolation:
|
||||
|
||||
- In ([Ito and Schitter 2016](#orga71edd4)), the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{< relref "ito16_compar_class_high_precis_actuat" >}}))
|
||||
- In ([Ito and Schitter 2016](#orge96c061)), the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{<relref "ito16_compar_class_high_precis_actuat.md#" >}}))
|
||||
|
||||
|
||||
## Brush-less DC Motor {#brush-less-dc-motor}
|
||||
|
||||
- ([Yedamale 2003](#org0ac1a74))
|
||||
- ([Yedamale 2003](#org9fa946a))
|
||||
|
||||
<https://www.electricaltechnology.org/2016/05/bldc-brushless-dc-motor-construction-working-principle.html>
|
||||
|
||||
@@ -30,6 +30,6 @@ For vibration isolation:
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orga71edd4"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 21 (2):1169–78. <https://doi.org/10.1109/tmech.2015.2478658>.
|
||||
<a id="orge96c061"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 21 (2):1169–78. <https://doi.org/10.1109/tmech.2015.2478658>.
|
||||
|
||||
<a id="org0ac1a74"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (BLDC) Motor Fundamentals.” _Microchip Technology Inc_ 20:3–15.
|
||||
<a id="org9fa946a"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (BLDC) Motor Fundamentals.” _Microchip Technology Inc_ 20:3–15.
|
||||
|
@@ -3,17 +3,18 @@ title = "Analog to Digital Converters"
|
||||
author = ["Thomas Dehaeze"]
|
||||
keywords = ["electronics"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{< relref "electronics" >}})
|
||||
: [Electronics]({{<relref "electronics.md#" >}})
|
||||
|
||||
|
||||
## Types of Analog to Digital Converters {#types-of-analog-to-digital-converters}
|
||||
|
||||
<https://dewesoft.com/daq/types-of-adc-converters>
|
||||
|
||||
- Delta Sigma ([Baker 2011](#org60f0e22))
|
||||
- Delta Sigma ([Baker 2011](#orgbdb61af))
|
||||
- Successive Approximation
|
||||
|
||||
|
||||
@@ -32,9 +33,9 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati
|
||||
Interestingly, the noise amplitude is uniformly distributed.
|
||||
|
||||
The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., it’s a uniform distribution).
|
||||
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#orgee08810)).
|
||||
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org4bd731c)).
|
||||
|
||||
<a id="orgee08810"></a>
|
||||
<a id="org4bd731c"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}}
|
||||
|
||||
@@ -89,4 +90,4 @@ The quantization is:
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org60f0e22"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.
|
||||
<a id="orgbdb61af"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Cables"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Connectors]({{< relref "connectors" >}})
|
||||
: [Connectors]({{<relref "connectors.md#" >}})
|
||||
|
||||
|
||||
## Typical Cables {#typical-cables}
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Capacitive Sensors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
: [Position Sensors]({{<relref "position_sensors.md#" >}})
|
||||
|
||||
|
||||
## Description of Capacitive Sensors {#description-of-capacitive-sensors}
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Charge Amplifiers"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{< relref "electronics" >}})
|
||||
: [Electronics]({{<relref "electronics.md#" >}})
|
||||
|
||||
|
||||
## Description {#description}
|
||||
@@ -17,19 +18,19 @@ This can be typically used to interface with piezoelectric sensors.
|
||||
|
||||
## Basic Circuit {#basic-circuit}
|
||||
|
||||
Two basic circuits of charge amplifiers are shown in Figure [1](#org7d016e2) (taken from ([Fleming 2010](#org467f88f))) and Figure [2](#orgb83f736) (taken from ([Schmidt, Schitter, and Rankers 2014](#org80f2485)))
|
||||
Two basic circuits of charge amplifiers are shown in Figure [1](#org0d411fa) (taken from ([Fleming 2010](#org7834496))) and Figure [2](#org1c3e25d) (taken from ([Schmidt, Schitter, and Rankers 2014](#orgd26dd11)))
|
||||
|
||||
<a id="org7d016e2"></a>
|
||||
<a id="org0d411fa"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/charge_amplifier_circuit.png" caption="Figure 1: Electrical model of a piezoelectric force sensor is shown in gray. The op-amp charge amplifier is shown on the right. The output voltage \\(V\_s\\) equal to \\(-q/C\_s\\)" >}}
|
||||
|
||||
<a id="orgb83f736"></a>
|
||||
<a id="org1c3e25d"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/charge_amplifier_circuit_bis.png" caption="Figure 2: A piezoelectric accelerometer with a charge amplifier as signal conditioning element" >}}
|
||||
|
||||
The input impedance of the charge amplifier is very small (unlike when using a voltage amplifier).
|
||||
|
||||
The gain of the charge amplified (Figure [1](#org7d016e2)) is equal to:
|
||||
The gain of the charge amplified (Figure [1](#org0d411fa)) is equal to:
|
||||
\\[ \frac{V\_s}{q} = \frac{-1}{C\_s} \\]
|
||||
|
||||
|
||||
@@ -50,6 +51,6 @@ The gain of the charge amplified (Figure [1](#org7d016e2)) is equal to:
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org467f88f"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="org7834496"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
||||
<a id="org80f2485"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
<a id="orgd26dd11"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Connectors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Cables]({{< relref "cables" >}})
|
||||
: [Cables]({{<relref "cables.md#" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
@@ -19,8 +20,8 @@ Tags
|
||||
|
||||
## BNC {#bnc}
|
||||
|
||||
BNC connectors can have an impedance of 50Ohms or 75Ohms as shown in Figure [1](#orgd1b23d3).
|
||||
BNC connectors can have an impedance of 50Ohms or 75Ohms as shown in Figure [1](#orgf757f74).
|
||||
|
||||
<a id="orgd1b23d3"></a>
|
||||
<a id="orgf757f74"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/bnc_50_75_ohms.jpg" caption="Figure 1: 75Ohms and 50Ohms BNC connectors" >}}
|
||||
|
@@ -2,7 +2,8 @@
|
||||
title = "Digital to Analog Converters"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{< relref "electronics" >}})
|
||||
: [Electronics]({{<relref "electronics.md#" >}})
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Eddy Current Sensors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
: [Position Sensors]({{<relref "position_sensors.md#" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Encoders"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
: [Position Sensors]({{<relref "position_sensors.md#" >}})
|
||||
|
||||
There are two main types of encoders: optical encoders, and magnetic encoders.
|
||||
|
||||
|
@@ -12,33 +12,43 @@ Tags
|
||||
|
||||
Books:
|
||||
|
||||
- ([Lobontiu 2002](#org0e711a7))
|
||||
- ([Henein 2003](#org4fb65e1))
|
||||
- ([Smith 2005](#orgbf46163))
|
||||
- ([Soemers 2011](#orgf482067))
|
||||
- ([Cosandier 2017](#orgf099485))
|
||||
- ([Lobontiu 2002](#orgb45af18))
|
||||
- ([Henein 2003](#org8ce4916))
|
||||
- ([Smith 2005](#orgccbed32))
|
||||
- ([Soemers 2011](#org772b663))
|
||||
- ([Cosandier 2017](#org7ebf41f))
|
||||
|
||||
|
||||
## Flexure Joints for Stewart Platforms: {#flexure-joints-for-stewart-platforms}
|
||||
|
||||
From ([Chen and McInroy 2000](#org14378b5)):
|
||||
From ([Chen and McInroy 2000](#org64f8175)):
|
||||
|
||||
> To avoid the extremely non-linear micro-dynamics of joint friction and backlash, these hexapods employ flexure joints.
|
||||
> A flexure joint bends material to achieve motion, rather than sliding of rolling across two surfaces.
|
||||
> This does eliminate friction and backlash, but adds spring dynamics and limits the workspace.
|
||||
|
||||
|
||||
## Materials {#materials}
|
||||
|
||||
- ([Smith 2000](#org299921c))
|
||||
- ([Lobontiu 2002](#orgb45af18))
|
||||
- ([Henein 2003](#org8ce4916))
|
||||
- ([Cosandier 2017](#org7ebf41f))
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org14378b5"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
<a id="org64f8175"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
||||
<a id="orgf099485"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
|
||||
<a id="org7ebf41f"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
|
||||
|
||||
<a id="org4fb65e1"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
|
||||
<a id="org8ce4916"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
|
||||
|
||||
<a id="org0e711a7"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
|
||||
<a id="orgb45af18"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
|
||||
|
||||
<a id="orgbf46163"></a>Smith, Stuart T. 2005. _Foundations of Ultra-Precision Mechanism Design_. Vol. 2. CRC Press.
|
||||
<a id="org299921c"></a>Smith, Stuart T. 2000. _Flexures: Elements of Elastic Mechanisms_. Crc Press.
|
||||
|
||||
<a id="orgf482067"></a>Soemers, Herman. 2011. _Design Principles for Precision Mechanisms_. T-Pointprint.
|
||||
<a id="orgccbed32"></a>———. 2005. _Foundations of Ultra-Precision Mechanism Design_. Vol. 2. CRC Press.
|
||||
|
||||
<a id="org772b663"></a>Soemers, Herman. 2011. _Design Principles for Precision Mechanisms_. T-Pointprint.
|
||||
|
@@ -1,31 +0,0 @@
|
||||
+++
|
||||
title = "Flexures"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Flexible Joints]({{< relref "flexible_joints" >}})
|
||||
|
||||
|
||||
## Material Used {#material-used}
|
||||
|
||||
|
||||
## Materials {#materials}
|
||||
|
||||
- ([Smith 2000](#org903194d))
|
||||
- ([Lobontiu 2002](#org353b748))
|
||||
- ([Henein 2003](#org26cb408))
|
||||
- ([Cosandier 2017](#org684f025))
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org684f025"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
|
||||
|
||||
<a id="org26cb408"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
|
||||
|
||||
<a id="org353b748"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
|
||||
|
||||
<a id="org903194d"></a>Smith, Stuart T. 2000. _Flexures: Elements of Elastic Mechanisms_. Crc Press.
|
@@ -2,10 +2,11 @@
|
||||
title = "Force Sensors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Signal Conditioner]({{< relref "signal_conditioner" >}}), [Modal Analysis]({{< relref "modal_analysis" >}})
|
||||
: [Signal Conditioner]({{<relref "signal_conditioner.md#" >}}), [Modal Analysis]({{<relref "modal_analysis.md#" >}})
|
||||
|
||||
|
||||
## Technologies {#technologies}
|
||||
@@ -17,9 +18,9 @@ There are two main technique for force sensors:
|
||||
|
||||
The choice between the two is usually based on whether the measurement is static (strain gauge) or dynamics (piezoelectric).
|
||||
|
||||
Main differences between the two are shown in Figure [1](#orgd4cde6e).
|
||||
Main differences between the two are shown in Figure [1](#orgc9e9a88).
|
||||
|
||||
<a id="orgd4cde6e"></a>
|
||||
<a id="orgc9e9a88"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/force_sensor_piezo_vs_strain_gauge.png" caption="Figure 1: Piezoelectric Force sensor VS Strain Gauge Force sensor" >}}
|
||||
|
||||
@@ -29,7 +30,7 @@ Main differences between the two are shown in Figure [1](#orgd4cde6e).
|
||||
|
||||
### Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor}
|
||||
|
||||
An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org6f75dec)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org024e377)) ([Notes]({{<relref "fleming10_nanop_system_with_force_feedb.md#" >}})).
|
||||
|
||||
|
||||
### Manufacturers {#manufacturers}
|
||||
@@ -45,7 +46,7 @@ An analysis the dynamics and noise of a piezoelectric force sensor is done in ([
|
||||
|
||||
### Signal Conditioner {#signal-conditioner}
|
||||
|
||||
The voltage generated by the piezoelectric material generally needs to be amplified using a [Signal Conditioner]({{< relref "signal_conditioner" >}}).
|
||||
The voltage generated by the piezoelectric material generally needs to be amplified using a [Signal Conditioner]({{<relref "signal_conditioner.md#" >}}).
|
||||
|
||||
Either **charge** amplifiers or **voltage** amplifiers can be used.
|
||||
|
||||
@@ -78,4 +79,4 @@ However, if a charge conditioner is used, the signal will be doubled.
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org6f75dec"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="org024e377"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
@@ -2,6 +2,7 @@
|
||||
title = "Granite"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
|
@@ -2,18 +2,19 @@
|
||||
title = "Inertial Sensors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
: [Position Sensors]({{<relref "position_sensors.md#" >}})
|
||||
|
||||
|
||||
## Review of Absolute (inertial) Position Sensors {#review-of-absolute--inertial--position-sensors}
|
||||
|
||||
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#orga092f9a))
|
||||
- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#orgef1075b))
|
||||
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#orgc1383e0))
|
||||
- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#org7b301f5))
|
||||
|
||||
<a id="org9a5fa73"></a>
|
||||
<a id="orgf969bc3"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}}
|
||||
|
||||
@@ -35,7 +36,7 @@ Wireless Accelerometers
|
||||
|
||||
- <https://micromega-dynamics.com/products/recovib/miniature-vibration-recorder/>
|
||||
|
||||
<a id="org1693047"></a>
|
||||
<a id="orga2a662e"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="Figure 2: Characteristics of commercially available accelerometers <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">collette11_review</a></sup>" >}}
|
||||
|
||||
@@ -52,7 +53,7 @@ Wireless Accelerometers
|
||||
| [Guralp](https://www.guralp.com/products/surface) | UK |
|
||||
| [Nanometric](https://www.nanometrics.ca/products/seismometers) | Canada |
|
||||
|
||||
<a id="org6d70737"></a>
|
||||
<a id="org431a804"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="Figure 3: Characteristics of commercially available geophones <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">collette11_review</a></sup>" >}}
|
||||
|
||||
@@ -60,6 +61,6 @@ Wireless Accelerometers
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orga092f9a"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):1289–1300. <https://doi.org/10.1785/0120110223>.
|
||||
<a id="orgc1383e0"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):1289–1300. <https://doi.org/10.1785/0120110223>.
|
||||
|
||||
<a id="orgef1075b"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_.
|
||||
<a id="org7b301f5"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_.
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Instrumented Hammer"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Modal Analysis]({{< relref "modal_analysis" >}}), [Force Sensors]({{< relref "force_sensors" >}})
|
||||
: [Modal Analysis]({{<relref "modal_analysis.md#" >}}), [Force Sensors]({{<relref "force_sensors.md#" >}})
|
||||
|
||||
And instrumented hammer consist of a regular hammer with a force sensor fixed at its tip.
|
||||
|
||||
|
@@ -2,6 +2,7 @@
|
||||
title = "Interferometers"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
@@ -24,12 +25,12 @@ Tags
|
||||
|
||||
## Reviews {#reviews}
|
||||
|
||||
([Ducourtieux 2018](#orgba5debb), [2018](#orgba5debb); [Bobroff 1993](#org9cfc0be), [1993](#org9cfc0be); [Thurner et al. 2015](#org9f4a3ed), [2015](#org9f4a3ed); [Loughridge and Abramovitch 2013](#org2c02ae6))
|
||||
([Ducourtieux 2018](#org538e4dc), [2018](#org538e4dc); [Bobroff 1993](#org9f4652e), [1993](#org9f4652e); [Thurner et al. 2015](#orgdcf4929), [2015](#orgdcf4929); [Loughridge and Abramovitch 2013](#orgd91ce9e))
|
||||
|
||||
|
||||
## Effect of Refractive Index - Environmental Units {#effect-of-refractive-index-environmental-units}
|
||||
|
||||
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#org9f4a3ed))).
|
||||
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#orgdcf4929))).
|
||||
|
||||
<a id="table--tab:index-air"></a>
|
||||
<div class="table-caption">
|
||||
@@ -64,16 +65,16 @@ Typical characteristics of commercial environmental units are shown in Table [2]
|
||||
|
||||
## Interferometer Precision {#interferometer-precision}
|
||||
|
||||
Figure [1](#org1406d51) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#orgcfb1fbe))).
|
||||
Figure [1](#org24527f3) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#org0cf5512))).
|
||||
|
||||
<a id="org1406d51"></a>
|
||||
<a id="org24527f3"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
|
||||
|
||||
|
||||
## Sources of uncertainty {#sources-of-uncertainty}
|
||||
|
||||
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#orgba5debb)).
|
||||
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#org538e4dc)).
|
||||
|
||||
It includes:
|
||||
|
||||
@@ -83,10 +84,10 @@ It includes:
|
||||
- Pressure: \\(K\_P \approx 0.27 ppm hPa^{-1}\\)
|
||||
- Humidity: \\(K\_{HR} \approx 0.01 ppm \% RH^{-1}\\)
|
||||
- These errors can partially be compensated using an environmental unit.
|
||||
- Air turbulence (Figure [2](#org690599c))
|
||||
- Air turbulence (Figure [2](#org1d0f37d))
|
||||
- Non linearity
|
||||
|
||||
<a id="org690599c"></a>
|
||||
<a id="org1d0f37d"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/interferometers_air_turbulence.png" caption="Figure 2: Effect of air turbulences on measurement stability" >}}
|
||||
|
||||
@@ -94,12 +95,12 @@ It includes:
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org9cfc0be"></a>Bobroff, N. 1993. “Recent Advances in Displacement Measuring Interferometry.” _Measurement Science and Technology_ 4 (9):907–26. <https://doi.org/10.1088/0957-0233/4/9/001>.
|
||||
<a id="org9f4652e"></a>Bobroff, N. 1993. “Recent Advances in Displacement Measuring Interferometry.” _Measurement Science and Technology_ 4 (9):907–26. <https://doi.org/10.1088/0957-0233/4/9/001>.
|
||||
|
||||
<a id="orgba5debb"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
|
||||
<a id="org538e4dc"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
|
||||
|
||||
<a id="orgcfb1fbe"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
||||
<a id="org0cf5512"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
||||
|
||||
<a id="org2c02ae6"></a>Loughridge, Russell, and Daniel Y. Abramovitch. 2013. “A Tutorial on Laser Interferometry for Precision Measurements.” In _2013 American Control Conference_, nil. <https://doi.org/10.1109/acc.2013.6580402>.
|
||||
<a id="orgd91ce9e"></a>Loughridge, Russell, and Daniel Y. Abramovitch. 2013. “A Tutorial on Laser Interferometry for Precision Measurements.” In _2013 American Control Conference_, nil. <https://doi.org/10.1109/acc.2013.6580402>.
|
||||
|
||||
<a id="org9f4a3ed"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:3051–63.
|
||||
<a id="orgdcf4929"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:3051–63.
|
||||
|
@@ -2,6 +2,7 @@
|
||||
title = "Linear Guides"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
@@ -14,5 +15,3 @@ Tags
|
||||
|----------------------------------------------------------------------------------------------------------------------------|---------|
|
||||
| [Bosch Rexroth](https://www.boschrexroth.com/en/xc/products/product-groups/linear-motion-technology/topics/linear-guides/) | Germany |
|
||||
| [THK](https://www.thk.com/?q=eng/node/231) | Japan |
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Linear variable differential transformers"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
: [Position Sensors]({{<relref "position_sensors.md#" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
8
content/zettels/parallel_manipulators.md
Normal file
8
content/zettels/parallel_manipulators.md
Normal file
@@ -0,0 +1,8 @@
|
||||
+++
|
||||
title = "Parallel Manipulators"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
@@ -2,10 +2,11 @@
|
||||
title = "Piezoelectric Actuators"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Actuators](actuators.md), [Voltage Amplifier](voltage_amplifier.md)
|
||||
: [Actuators]({{<relref "actuators.md#" >}}), [Voltage Amplifier]({{<relref "voltage_amplifier.md#" >}})
|
||||
|
||||
|
||||
## Piezoelectric Stack Actuators {#piezoelectric-stack-actuators}
|
||||
@@ -32,7 +33,7 @@ Tags
|
||||
|
||||
### Model {#model}
|
||||
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgc916f93)) ([Notes](fleming10_nanop_system_with_force_feedb.md)).
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgd563065)) ([Notes]({{<relref "fleming10_nanop_system_with_force_feedb.md#" >}})).
|
||||
|
||||
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
|
||||
|
||||
@@ -56,14 +57,14 @@ Some manufacturers propose "raw" plate actuators that can be used as actuator /
|
||||
|
||||
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
|
||||
|
||||
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#orgaaabf8d)):
|
||||
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#orgb463c4c)):
|
||||
|
||||
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
|
||||
> The flatter is the actuator, the higher is the amplification.
|
||||
|
||||
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org8ca201e)).
|
||||
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org2bf81f0)).
|
||||
|
||||
<a id="org5d92181"></a>
|
||||
<a id="org77a46eb"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \& Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">ling16_enhan_mathem_model_displ_amplif</a></sup>" >}}
|
||||
|
||||
@@ -141,9 +142,9 @@ with:
|
||||
|
||||
### Resolution {#resolution}
|
||||
|
||||
The resolution is limited by the noise in the [Voltage Amplifier](voltage_amplifier.md).
|
||||
The resolution is limited by the noise in the [Voltage Amplifier]({{<relref "voltage_amplifier.md#" >}}).
|
||||
|
||||
Typical [Signal to Noise Ratio](signal_to_noise_ratio.md) of voltage amplifiers is \\(100dB = 10^{5}\\).
|
||||
Typical [Signal to Noise Ratio]({{<relref "signal_to_noise_ratio.md#" >}}) of voltage amplifiers is \\(100dB = 10^{5}\\).
|
||||
Thus, for a piezoelectric stack with a displacement \\(L\\), the resolution will be
|
||||
|
||||
\begin{equation}
|
||||
@@ -155,58 +156,58 @@ For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolut
|
||||
|
||||
### Electrical Capacitance {#electrical-capacitance}
|
||||
|
||||
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org2c60a2d)).
|
||||
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#orgca6870e)).
|
||||
This is due to the fact that voltage amplifier has a limitation on the deliverable current.
|
||||
|
||||
[Voltage Amplifier](voltage_amplifier.md) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
|
||||
[Voltage Amplifier]({{<relref "voltage_amplifier.md#" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
|
||||
|
||||
<a id="org2c60a2d"></a>
|
||||
<a id="orgca6870e"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
|
||||
|
||||
|
||||
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
|
||||
|
||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org7af4476)).
|
||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#orge05f5e6)).
|
||||
|
||||
<a id="org7af4476"></a>
|
||||
<a id="orge05f5e6"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
|
||||
|
||||
|
||||
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
|
||||
|
||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#org97370ea)):
|
||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgfcd374f)):
|
||||
|
||||
\begin{equation}
|
||||
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
|
||||
\end{equation}
|
||||
|
||||
<a id="org97370ea"></a>
|
||||
<a id="orgfcd374f"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
|
||||
|
||||
For piezo actuators, force and displacement are inversely related (Figure [5](#org8c01425)).
|
||||
For piezo actuators, force and displacement are inversely related (Figure [5](#orgada6c4c)).
|
||||
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
|
||||
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
|
||||
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
|
||||
|
||||
<a id="org8c01425"></a>
|
||||
<a id="orgada6c4c"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
|
||||
|
||||
|
||||
## Driving Electronics {#driving-electronics}
|
||||
|
||||
Piezoelectric actuators can be driven either using a voltage to charge converter or a [Voltage Amplifier](voltage_amplifier.md).
|
||||
Limitations of the electronics is discussed in [Design, modeling and control of nanopositioning systems](fleming14_desig_model_contr_nanop_system.md).
|
||||
Piezoelectric actuators can be driven either using a voltage to charge converter or a [Voltage Amplifier]({{<relref "voltage_amplifier.md#" >}}).
|
||||
Limitations of the electronics is discussed in [Design, modeling and control of nanopositioning systems]({{<relref "fleming14_desig_model_contr_nanop_system.md#" >}}).
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgaaabf8d"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
||||
<a id="orgb463c4c"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
||||
|
||||
<a id="orgc916f93"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="orgd563065"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
||||
<a id="org8ca201e"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
||||
<a id="org2bf81f0"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
||||
|
@@ -5,23 +5,23 @@ draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Inertial Sensors]({{< relref "inertial_sensors" >}}), [Force Sensors]({{< relref "force_sensors" >}}), [Sensor Fusion]({{< relref "sensor_fusion" >}}), [Signal Conditioner]({{< relref "signal_conditioner" >}}), [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
|
||||
: [Inertial Sensors]({{<relref "inertial_sensors.md#" >}}), [Force Sensors]({{<relref "force_sensors.md#" >}}), [Sensor Fusion]({{<relref "sensor_fusion.md#" >}}), [Signal Conditioner]({{<relref "signal_conditioner.md#" >}}), [Signal to Noise Ratio]({{<relref "signal_to_noise_ratio.md#" >}})
|
||||
|
||||
|
||||
## Types of Positioning sensors {#types-of-positioning-sensors}
|
||||
|
||||
High precision positioning sensors include:
|
||||
|
||||
- [Interferometers]({{< relref "interferometers" >}})
|
||||
- [Capacitive Sensors]({{< relref "capacitive_sensors" >}})
|
||||
- [LVDT]({{< relref "linear_variable_differential_transformers" >}})
|
||||
- [Eddy Current Sensors]({{< relref "eddy_current_sensors" >}})
|
||||
- [Encoders]({{< relref "encoders" >}})
|
||||
- [Interferometers]({{<relref "interferometers.md#" >}})
|
||||
- [Capacitive Sensors]({{<relref "capacitive_sensors.md#" >}})
|
||||
- [LVDT]({{<relref "linear_variable_differential_transformers.md#" >}})
|
||||
- [Eddy Current Sensors]({{<relref "eddy_current_sensors.md#" >}})
|
||||
- [Encoders]({{<relref "encoders.md#" >}})
|
||||
|
||||
|
||||
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
|
||||
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#orgbadb097)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#org654bd0b)) ([Notes]({{<relref "fleming13_review_nanom_resol_posit_sensor.md#" >}}))
|
||||
|
||||
<a id="table--tab:characteristics-relative-sensor"></a>
|
||||
<div class="table-caption">
|
||||
@@ -57,7 +57,7 @@ High precision positioning sensors include:
|
||||
|
||||
Capacitive Sensors and Eddy-Current sensors are compare [here](https://www.lionprecision.com/comparing-capacitive-and-eddy-current-sensors/).
|
||||
|
||||
<a id="org2b23cef"></a>
|
||||
<a id="orgff7dc3a"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensors_thurner15.png" caption="Figure 1: Overview of range and precision of different position displacement sensors. Taken from <sup id=\"53230532ada812541a7cd984b3aa2662\"><a href=\"#thurner15_fiber_based_distan_sensin_inter\" title=\"Thurner, Quacquarelli, Braun, Pierre-Fran\ccois, Dal Savio, Karrai \& Khaled, Fiber-Based Distance Sensing Interferometry, {Applied optics}, v(10), 3051--3063 (2015).\">thurner15_fiber_based_distan_sensin_inter</a></sup>" >}}
|
||||
|
||||
@@ -65,4 +65,4 @@ Capacitive Sensors and Eddy-Current sensors are compare [here](https://www.lionp
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgbadb097"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
||||
<a id="org654bd0b"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Rotation Stage"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Slip Rings]({{< relref "slip_rings" >}})
|
||||
: [Slip Rings]({{<relref "slip_rings.md#" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Shaker"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
||||
: [Voice Coil Actuators]({{<relref "voice_coil_actuators.md#" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Signal Conditioner"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Sensors]({{< relref "sensors" >}}), [Electronics]({{< relref "electronics" >}})
|
||||
: [Sensors]({{<relref "sensors.md#" >}}), [Electronics]({{<relref "electronics.md#" >}})
|
||||
|
||||
Most sensors needs some signal conditioner electronics before digitize the signal.
|
||||
Few examples are:
|
||||
@@ -25,6 +26,6 @@ The signal conditioning electronics can have different functions:
|
||||
|
||||
Depending on the electrical quantity that is meaningful for the measurement, different types of amplifiers are used:
|
||||
|
||||
- Current to Voltage ([Transimpedance Amplifiers]({{< relref "transimpedance_amplifiers" >}}))
|
||||
- Charge to Voltage ([Charge Amplifiers]({{< relref "charge_amplifiers" >}}))
|
||||
- Voltage to Voltage ([Voltage Amplifier]({{< relref "voltage_amplifier" >}}))
|
||||
- Current to Voltage ([Transimpedance Amplifiers]({{<relref "transimpedance_amplifiers.md#" >}}))
|
||||
- Charge to Voltage ([Charge Amplifiers]({{<relref "charge_amplifiers.md#" >}}))
|
||||
- Voltage to Voltage ([Voltage Amplifier]({{<relref "voltage_amplifier.md#" >}}))
|
||||
|
@@ -2,6 +2,7 @@
|
||||
title = "Simulink Real Time Target Machines"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Slip Rings"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Rotation Stage]({{< relref "rotation_stage" >}})
|
||||
: [Rotation Stage]({{<relref "rotation_stage.md#" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
@@ -2,6 +2,7 @@
|
||||
title = "Springs"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
@@ -18,5 +19,3 @@ Tags
|
||||
| [Paulstra](https://www.paulstra-industry.com/en/ranges/metal-mountings/v1210) | France |
|
||||
| [Norelem](https://www.norelem.com/us/en/Products/Product-overview/Systems-and-components-for-machine-and-plant-construction/26000-Compression-springs-Elastomer-springs-Rubber-buffers-Shock-absorbers-Gas-springs.html) | France |
|
||||
| [VibraSystems](https://vibrasystems.com/elastomer-and-spring-hangers.html) | USA |
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@@ -2,6 +2,7 @@
|
||||
title = "Tip-Tilt Mirrors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Transconductance Amplifiers"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{< relref "electronics" >}}), [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
||||
: [Electronics]({{<relref "electronics.md#" >}}), [Voice Coil Actuators]({{<relref "voice_coil_actuators.md#" >}})
|
||||
|
||||
|
||||
## Description {#description}
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Transimpedance Amplifiers"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{< relref "electronics" >}})
|
||||
: [Electronics]({{<relref "electronics.md#" >}})
|
||||
|
||||
|
||||
## Description {#description}
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Voice Coil Actuators"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Actuators]({{< relref "actuators" >}})
|
||||
: [Actuators]({{<relref "actuators.md#" >}})
|
||||
|
||||
|
||||
## Working Principle {#working-principle}
|
||||
@@ -16,12 +17,12 @@ Tags
|
||||
|
||||
## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator}
|
||||
|
||||
([Schmidt, Schitter, and Rankers 2014](#orgc4c6d58))
|
||||
([Schmidt, Schitter, and Rankers 2014](#org173764e))
|
||||
|
||||
|
||||
## Driving Electronics {#driving-electronics}
|
||||
|
||||
As the force is proportional to the current, a [Transconductance Amplifiers]({{< relref "transconductance_amplifiers" >}}) (voltage-controller current source) is generally used as the driving electronics.
|
||||
As the force is proportional to the current, a [Transconductance Amplifiers]({{<relref "transconductance_amplifiers.md#" >}}) (voltage-controller current source) is generally used as the driving electronics.
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
@@ -43,4 +44,4 @@ As the force is proportional to the current, a [Transconductance Amplifiers]({{<
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgc4c6d58"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
<a id="org173764e"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
|
@@ -2,10 +2,11 @@
|
||||
title = "Voltage Amplifier"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
category = "equipment"
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}), [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}}), [Electronics]({{< relref "electronics" >}})
|
||||
: [Signal to Noise Ratio]({{<relref "signal_to_noise_ratio.md#" >}}), [Piezoelectric Actuators]({{<relref "piezoelectric_actuators.md#" >}}), [Electronics]({{<relref "electronics.md#" >}})
|
||||
|
||||
|
||||
## Voltage Amplifiers to drive Capacitive Loads {#voltage-amplifiers-to-drive-capacitive-loads}
|
||||
@@ -33,9 +34,9 @@ Tags
|
||||
|
||||
The piezoelectric stack can be represented as a capacitance.
|
||||
|
||||
Let's take a capacitance driven by a voltage amplifier (Figure [1](#org14569de)).
|
||||
Let's take a capacitance driven by a voltage amplifier (Figure [1](#org63f8350)).
|
||||
|
||||
<a id="org14569de"></a>
|
||||
<a id="org63f8350"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/voltage_amplifier_capacitance.png" caption="Figure 1: Piezoelectric actuator model with a voltage source" >}}
|
||||
|
||||
@@ -55,7 +56,7 @@ Thus, for a specified maximum current \\(I\_\text{max}\\), the "power bandwidth"
|
||||
- Above \\(\omega\_{0, \text{max}}\\), the maximum current \\(I\_\text{max}\\) is reached and the maximum voltage that can be applied decreases with frequency:
|
||||
\\[ U\_\text{max} = \frac{I\_\text{max}}{\omega C} \\]
|
||||
|
||||
The maximum voltage as a function of frequency is shown in Figure [2](#orga5b5a57).
|
||||
The maximum voltage as a function of frequency is shown in Figure [2](#orgfbd4a45).
|
||||
|
||||
```matlab
|
||||
Vpkp = 170; % [V]
|
||||
@@ -69,7 +70,7 @@ The maximum voltage as a function of frequency is shown in Figure [2](#orga5b5a5
|
||||
56.172
|
||||
```
|
||||
|
||||
<a id="orga5b5a57"></a>
|
||||
<a id="orgfbd4a45"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/voltage_amplifier_max_V_piezo.png" caption="Figure 2: Maximum voltage as a function of the frequency for \\(C = 1 \mu F\\), \\(I\_\text{max} = 30mA\\) and \\(V\_{pkp} = 170 V\\)" >}}
|
||||
|
||||
@@ -89,7 +90,7 @@ Specifications are usually:
|
||||
|
||||
- Maximum Current
|
||||
- DC Gain (usually around 10)
|
||||
- Output Noise or [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
|
||||
- Output Noise or [Signal to Noise Ratio]({{<relref "signal_to_noise_ratio.md#" >}})
|
||||
|
||||
The bandwidth can be estimated from the Maximum Current and the Capacitance of the Piezoelectric Actuator.
|
||||
|
||||
@@ -105,7 +106,7 @@ This can pose several problems:
|
||||
|
||||
### Noise {#noise}
|
||||
|
||||
Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#org8deb271)).
|
||||
Sources of noise in a system comprising a voltage amplifier and a capactive load are discussed in ([Spengen 2020](#org2170119)).
|
||||
|
||||
Proper enclosures and cabling are necessary to protect the system from capacitive and inductive interferance.
|
||||
|
||||
@@ -117,14 +118,14 @@ The **input** impedance of voltage amplifiers are generally set to \\(50 \Omega\
|
||||
The **output** (or internal) impedance of voltage amplifier is generally wanted small in order to have a small voltage drop when large current are drawn.
|
||||
However, for stability reasons and to avoid overshoot (due to the internal negative feedback loop), this impedance can be chosen quite large.
|
||||
|
||||
This is discussed in ([Spengen 2017](#org22b2168)).
|
||||
This is discussed in ([Spengen 2017](#org55e5dcc)).
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org6dde1c6"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
||||
<a id="org200fc06"></a>Fleming, Andrew J., and Kam K. Leang. 2014. _Design, Modeling and Control of Nanopositioning Systems_. Advances in Industrial Control. Springer International Publishing. <https://doi.org/10.1007/978-3-319-06617-2>.
|
||||
|
||||
<a id="org22b2168"></a>Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems.
|
||||
<a id="org55e5dcc"></a>Spengen, W. Merlijn van. 2017. “High Voltage Amplifiers and the Ubiquitous 50 Ohms: Caveats and Benefits.” Falco Systems.
|
||||
|
||||
<a id="org8deb271"></a>———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems.
|
||||
<a id="org2170119"></a>———. 2020. “High Voltage Amplifiers: So You Think You Have Noise!” Falco Systems.
|
||||
|
Reference in New Issue
Block a user