Update Content - 2020-09-18
This commit is contained in:
parent
fa57b69657
commit
0ea60cf275
@ -49,9 +49,12 @@ The noise source has a PSD given by:
|
|||||||
\\[ S\_T(f) = 4 k T \text{Re}(Z(f)) \ [V^2/Hz] \\]
|
\\[ S\_T(f) = 4 k T \text{Re}(Z(f)) \ [V^2/Hz] \\]
|
||||||
with \\(k = 1.38 \cdot 10^{-23} \,[J/K]\\) the Boltzmann's constant, \\(T\\) the temperature [K] and \\(Z(f)\\) the frequency dependent impedance of the system.
|
with \\(k = 1.38 \cdot 10^{-23} \,[J/K]\\) the Boltzmann's constant, \\(T\\) the temperature [K] and \\(Z(f)\\) the frequency dependent impedance of the system.
|
||||||
|
|
||||||
```text
|
<div class="examp">
|
||||||
A kilo Ohm resistor at 20 degree Celsius will show a thermal noise of $0.13 \mu V$ from zero up to one kHz.
|
<div></div>
|
||||||
```
|
|
||||||
|
A kilo Ohm resistor at 20 degree Celsius will show a thermal noise of \\(0.13 \mu V\\) from zero up to one kHz.
|
||||||
|
|
||||||
|
</div>
|
||||||
|
|
||||||
**Shot Noise**.
|
**Shot Noise**.
|
||||||
Seen with junctions in a transistor.
|
Seen with junctions in a transistor.
|
||||||
@ -59,9 +62,12 @@ It has a white spectral density:
|
|||||||
\\[ S\_S = 2 q\_e i\_{dc} \ [A^2/Hz] \\]
|
\\[ S\_S = 2 q\_e i\_{dc} \ [A^2/Hz] \\]
|
||||||
with \\(q\_e\\) the electronic charge (\\(1.6 \cdot 10^{-19}\, [C]\\)), \\(i\_{dc}\\) the average current [A].
|
with \\(q\_e\\) the electronic charge (\\(1.6 \cdot 10^{-19}\, [C]\\)), \\(i\_{dc}\\) the average current [A].
|
||||||
|
|
||||||
```text
|
<div class="examp">
|
||||||
An averable current of 1 A will introduce noise with a STD of $10 \cdot 10^{-9}\,[A]$ from zero up to one kHz.
|
<div></div>
|
||||||
```
|
|
||||||
|
An averable current of 1 A will introduce noise with a STD of \\(10 \cdot 10^{-9}\,[A]\\) from zero up to one kHz.
|
||||||
|
|
||||||
|
</div>
|
||||||
|
|
||||||
**Excess Noise** (or \\(1/f\\) noise).
|
**Excess Noise** (or \\(1/f\\) noise).
|
||||||
It results from fluctuating conductivity due to imperfect contact between two materials.
|
It results from fluctuating conductivity due to imperfect contact between two materials.
|
||||||
@ -91,24 +97,28 @@ The corresponding PSD is white up to the Nyquist frequency:
|
|||||||
\\[ S\_Q = \frac{q^2}{12 f\_N} \\]
|
\\[ S\_Q = \frac{q^2}{12 f\_N} \\]
|
||||||
with \\(f\_N\\) the Nyquist frequency [Hz].
|
with \\(f\_N\\) the Nyquist frequency [Hz].
|
||||||
|
|
||||||
```text
|
<div class="examp">
|
||||||
|
<div></div>
|
||||||
|
|
||||||
Let's take the example of a 16 bit ADC which has an electronic noise with a SNR of 80dB.
|
Let's take the example of a 16 bit ADC which has an electronic noise with a SNR of 80dB.
|
||||||
Let's suppose the ADC is used to measure a position over a range of 1 mm.
|
Let's suppose the ADC is used to measure a position over a range of 1 mm.
|
||||||
|
|
||||||
- ADC quantization noise: it has 16 bots over the 1 mm range.
|
- ADC quantization noise: it has 16 bots over the 1 mm range.
|
||||||
The standard diviation from the quantization is:
|
The standard diviation from the quantization is:
|
||||||
\[ \sigma_{ADq} = \frac{1 \cdot 10^6/2^16}{\sqrt{12}} = 4.4\,[nm] \]
|
\\[ \sigma\_{ADq} = \frac{1 \cdot 10^6/2^16}{\sqrt{12}} = 4.4\,[nm] \\]
|
||||||
- ADC electronic noise: the RMS value of a sine that covers to full range is $\frac{0.5}{\sqrt{2}} = 0.354\,[mm]$.
|
- ADC electronic noise: the RMS value of a sine that covers to full range is \\(\frac{0.5}{\sqrt{2}} = 0.354\,[mm]\\).
|
||||||
With a SNR of 80dB, the electronic noise from the ADC becomes:
|
With a SNR of 80dB, the electronic noise from the ADC becomes:
|
||||||
\[ \sigma_{ADn} = 35\,[nm] \]
|
\\[ \sigma\_{ADn} = 35\,[nm] \\]
|
||||||
|
|
||||||
Let's suppose the ADC is used to measure a sensor with an electronic noise having a standard deviation of $\sigma_{sn} = 17\,[nm]$.
|
Let's suppose the ADC is used to measure a sensor with an electronic noise having a standard deviation of \\(\sigma\_{sn} = 17\,[nm]\\).
|
||||||
|
|
||||||
The PSD of this digitalized sensor noise is:
|
The PSD of this digitalized sensor noise is:
|
||||||
\[ \sigma_s = \sqrt{\sigma_{sn}^2 + \sigma_{ADq}^2 + \sigma_{ADn}^2} = 39\,[nm]\]
|
\\[ \sigma\_s = \sqrt{\sigma\_{sn}^2 + \sigma\_{ADq}^2 + \sigma\_{ADn}^2} = 39\,[nm]\\]
|
||||||
from which the PSD of the total sensor noise $S_s$ is calculated:
|
from which the PSD of the total sensor noise \\(S\_s\\) is calculated:
|
||||||
\[ S_s = \frac{\sigma_s^2}{f_N} = 1.55\,[nm^2/Hz] \]
|
\\[ S\_s = \frac{\sigma\_s^2}{f\_N} = 1.55\,[nm^2/Hz] \\]
|
||||||
with $f_N$ is the Nyquist frequency of 1kHz.
|
with \\(f\_N\\) is the Nyquist frequency of 1kHz.
|
||||||
```
|
|
||||||
|
</div>
|
||||||
|
|
||||||
|
|
||||||
#### Acoustic Noise {#acoustic-noise}
|
#### Acoustic Noise {#acoustic-noise}
|
||||||
@ -119,9 +129,12 @@ The disturbance force acting on a body, is the **difference of pressure between
|
|||||||
To have a pressure difference, the body must have a certain minimum dimension, depending on the wave length of the sound.
|
To have a pressure difference, the body must have a certain minimum dimension, depending on the wave length of the sound.
|
||||||
For a body of typical dimensions of 100mm, only frequencies above 800 Hz have a significant disturbance contribution.
|
For a body of typical dimensions of 100mm, only frequencies above 800 Hz have a significant disturbance contribution.
|
||||||
|
|
||||||
```text
|
<div class="examp">
|
||||||
Consider a cube with a rib size of 100 mm located in a room with a sound level of 80dB, distributed between one and ten kHz, then the force disturbance PSD equal $2.2 \cdot 10^{-2}\,[N^2/Hz]$
|
<div></div>
|
||||||
```
|
|
||||||
|
Consider a cube with a rib size of 100 mm located in a room with a sound level of 80dB, distributed between one and ten kHz, then the force disturbance PSD equal \\(2.2 \cdot 10^{-2}\,[N^2/Hz]\\)
|
||||||
|
|
||||||
|
</div>
|
||||||
|
|
||||||
|
|
||||||
#### Brownian Noise {#brownian-noise}
|
#### Brownian Noise {#brownian-noise}
|
||||||
@ -148,21 +161,21 @@ Three factors influence the performance:
|
|||||||
The DEB helps identifying which disturbance is the limiting factor, and it should be investigated if the controller can deal with this disturbance before re-designing the plant.
|
The DEB helps identifying which disturbance is the limiting factor, and it should be investigated if the controller can deal with this disturbance before re-designing the plant.
|
||||||
|
|
||||||
The modelling of disturbance as stochastic variables, is by excellence suitable for the optimal stochastic control framework.
|
The modelling of disturbance as stochastic variables, is by excellence suitable for the optimal stochastic control framework.
|
||||||
In Figure [1](#org30a4301), the generalized plant maps the disturbances to the performance channels.
|
In Figure [1](#orga43f7f1), the generalized plant maps the disturbances to the performance channels.
|
||||||
By minimizing the \\(\mathcal{H}\_2\\) system norm of the generalized plant, the variance of the performance channels is minimized.
|
By minimizing the \\(\mathcal{H}\_2\\) system norm of the generalized plant, the variance of the performance channels is minimized.
|
||||||
|
|
||||||
<a id="org30a4301"></a>
|
<a id="orga43f7f1"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/jabben07_general_plant.png" caption="Figure 1: Control system with the generalized plant \\(G\\). The performance channels are stacked in \\(z\\), while the controller input is denoted with \\(y\\)" >}}
|
{{< figure src="/ox-hugo/jabben07_general_plant.png" caption="Figure 1: Control system with the generalized plant \\(G\\). The performance channels are stacked in \\(z\\), while the controller input is denoted with \\(y\\)" >}}
|
||||||
|
|
||||||
|
|
||||||
#### Using Weighting Filters for Disturbance Modelling {#using-weighting-filters-for-disturbance-modelling}
|
#### Using Weighting Filters for Disturbance Modelling {#using-weighting-filters-for-disturbance-modelling}
|
||||||
|
|
||||||
Since disturbances are generally not white, the system of Figure [1](#org30a4301) needs to be augmented with so called **disturbance weighting filters**.
|
Since disturbances are generally not white, the system of Figure [1](#orga43f7f1) needs to be augmented with so called **disturbance weighting filters**.
|
||||||
|
|
||||||
A disturbance weighting filter gives the disturbance PSD when white noise as input is applied.
|
A disturbance weighting filter gives the disturbance PSD when white noise as input is applied.
|
||||||
|
|
||||||
This is illustrated in Figure [2](#org3b94947) where a vector of white noise time signals \\(\underbar{w}(t)\\) is filtered through a weighting filter to obtain the colored physical disturbances \\(w(t)\\) with the desired PSD \\(S\_w\\) .
|
This is illustrated in Figure [2](#org906705e) where a vector of white noise time signals \\(\underbar{w}(t)\\) is filtered through a weighting filter to obtain the colored physical disturbances \\(w(t)\\) with the desired PSD \\(S\_w\\) .
|
||||||
|
|
||||||
The generalized plant framework also allows to include **weighting filters for the performance channels**.
|
The generalized plant framework also allows to include **weighting filters for the performance channels**.
|
||||||
This is useful for three reasons:
|
This is useful for three reasons:
|
||||||
@ -171,7 +184,7 @@ This is useful for three reasons:
|
|||||||
- some performance channels may be of more importance than others
|
- some performance channels may be of more importance than others
|
||||||
- by using dynamic weighting filters, one can emphasize the performance in a certain frequency range
|
- by using dynamic weighting filters, one can emphasize the performance in a certain frequency range
|
||||||
|
|
||||||
<a id="org3b94947"></a>
|
<a id="org906705e"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/jabben07_weighting_functions.png" caption="Figure 2: Control system with the generalized plant \\(G\\) and weighting functions" >}}
|
{{< figure src="/ox-hugo/jabben07_weighting_functions.png" caption="Figure 2: Control system with the generalized plant \\(G\\) and weighting functions" >}}
|
||||||
|
|
||||||
@ -196,9 +209,9 @@ So, to obtain feasible controllers, the performance channel is a combination of
|
|||||||
By choosing suitable weighting filters for \\(y\\) and \\(u\\), the performance can be optimized while keeping the controller effort limited:
|
By choosing suitable weighting filters for \\(y\\) and \\(u\\), the performance can be optimized while keeping the controller effort limited:
|
||||||
\\[ \\|z\\|\_{rms}^2 = \left\\| \begin{bmatrix} y \\ \alpha u \end{bmatrix} \right\\|\_{rms}^2 = \\|y\\|\_{rms}^2 + \alpha^2 \\|u\\|\_{rms}^2 \\]
|
\\[ \\|z\\|\_{rms}^2 = \left\\| \begin{bmatrix} y \\ \alpha u \end{bmatrix} \right\\|\_{rms}^2 = \\|y\\|\_{rms}^2 + \alpha^2 \\|u\\|\_{rms}^2 \\]
|
||||||
|
|
||||||
By calculation \\(\mathcal{H}\_2\\) optimal controllers for increasing \\(\alpha\\) and plotting the performance \\(\\|y\\|\\) vs the controller effort \\(\\|u\\|\\), the curve as depicted in Figure [3](#orgb0b1e78) is obtained.
|
By calculation \\(\mathcal{H}\_2\\) optimal controllers for increasing \\(\alpha\\) and plotting the performance \\(\\|y\\|\\) vs the controller effort \\(\\|u\\|\\), the curve as depicted in Figure [3](#org58a8c87) is obtained.
|
||||||
|
|
||||||
<a id="orgb0b1e78"></a>
|
<a id="org58a8c87"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/jabben07_pareto_curve_H2.png" caption="Figure 3: An illustration of a Pareto curve. Each point of the curve represents the performance obtained with an optimal controller. The curve is obtained by varying \\(\alpha\\) and calculating an \\(\mathcal{H}\_2\\) optimal controller for each \\(\alpha\\)." >}}
|
{{< figure src="/ox-hugo/jabben07_pareto_curve_H2.png" caption="Figure 3: An illustration of a Pareto curve. Each point of the curve represents the performance obtained with an optimal controller. The curve is obtained by varying \\(\alpha\\) and calculating an \\(\mathcal{H}\_2\\) optimal controller for each \\(\alpha\\)." >}}
|
||||||
|
|
||||||
|
@ -10,9 +10,9 @@ Tags
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links |
|
| Manufacturers | Links | Country |
|
||||||
|---------------|-------------------------------------------------|
|
|---------------|-------------------------------------------------|-------------|
|
||||||
| LEMO | [link](https://www.lemo.com/en) |
|
| LEMO | [link](https://www.lemo.com/en) | Switzerland |
|
||||||
| Fischer | [link](https://www.fischerconnectors.com/uk/en) |
|
| Fischer | [link](https://www.fischerconnectors.com/uk/en) | Switzerland |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -4,13 +4,13 @@ author = ["Thomas Dehaeze"]
|
|||||||
draft = false
|
draft = false
|
||||||
+++
|
+++
|
||||||
|
|
||||||
### Backlinks {#backlinks}
|
Backlinks:
|
||||||
|
|
||||||
- [Signal Conditioner]({{< relref "signal_conditioner" >}})
|
|
||||||
- [Sensors]({{< relref "sensors" >}})
|
- [Sensors]({{< relref "sensors" >}})
|
||||||
- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}})
|
- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}})
|
||||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||||
|
- [Signal Conditioner]({{< relref "signal_conditioner" >}})
|
||||||
|
|
||||||
Tags
|
Tags
|
||||||
:
|
:
|
||||||
@ -21,7 +21,7 @@ Tags
|
|||||||
|
|
||||||
### Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor}
|
### Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor}
|
||||||
|
|
||||||
An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org82df6e1)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org25f6243)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||||
|
|
||||||
|
|
||||||
### Manufacturers {#manufacturers}
|
### Manufacturers {#manufacturers}
|
||||||
@ -36,17 +36,10 @@ An analysis the dynamics and noise of a piezoelectric force sensor is done in ([
|
|||||||
|
|
||||||
### Signal Conditioner {#signal-conditioner}
|
### Signal Conditioner {#signal-conditioner}
|
||||||
|
|
||||||
The voltage generated by the piezoelectric material generally needs to be amplified.
|
The voltage generated by the piezoelectric material generally needs to be amplified using a [Signal Conditioner]({{< relref "signal_conditioner" >}}).
|
||||||
|
|
||||||
Either **charge** amplifiers or **voltage** amplifiers can be used.
|
Either **charge** amplifiers or **voltage** amplifiers can be used.
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
|
||||||
|---------------|------------------------------------------------------------------------------------|---------|
|
|
||||||
| PCB | [link](https://www.pcb.com/products?m=482c15) | USA |
|
|
||||||
| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany |
|
|
||||||
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
|
|
||||||
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
|
|
||||||
|
|
||||||
|
|
||||||
### Effect of using multiple Stacks in series of parallels {#effect-of-using-multiple-stacks-in-series-of-parallels}
|
### Effect of using multiple Stacks in series of parallels {#effect-of-using-multiple-stacks-in-series-of-parallels}
|
||||||
|
|
||||||
@ -60,4 +53,4 @@ However, if a charge conditioner is used, the signal will be doubled.
|
|||||||
|
|
||||||
## Bibliography {#bibliography}
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
<a id="org82df6e1"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
<a id="org25f6243"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||||
|
@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
|||||||
draft = false
|
draft = false
|
||||||
+++
|
+++
|
||||||
|
|
||||||
### Backlinks {#backlinks}
|
Backlinks:
|
||||||
|
|
||||||
- [Actuators]({{< relref "actuators" >}})
|
- [Actuators]({{< relref "actuators" >}})
|
||||||
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
|
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
|
||||||
@ -35,7 +35,7 @@ Tags
|
|||||||
|
|
||||||
### Model {#model}
|
### Model {#model}
|
||||||
|
|
||||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgdda2743)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgf8860c8)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||||
|
|
||||||
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
|
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
|
||||||
|
|
||||||
@ -50,19 +50,19 @@ with:
|
|||||||
|
|
||||||
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
|
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
|
||||||
|
|
||||||
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#orga200a60)):
|
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org98162bd)):
|
||||||
|
|
||||||
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
|
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
|
||||||
> The flatter is the actuator, the higher is the amplification.
|
> The flatter is the actuator, the higher is the amplification.
|
||||||
|
|
||||||
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org46de525)).
|
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org47bb392)).
|
||||||
|
|
||||||
<a id="orgeed82ad"></a>
|
<a id="orgeb77af2"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a class=\"reference-link\" href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \& Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">(Mingxiang Ling {\it et al.}, 2016)</a></sup>" >}}
|
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \& Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">ling16_enhan_mathem_model_displ_amplif</a></sup>" >}}
|
||||||
|
|
||||||
| **Manufacturers** | **Links** | **Country** |
|
| Manufacturers | Links | Country |
|
||||||
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|
||||||
| Cedrat | [link](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) | France |
|
| Cedrat | [link](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) | France |
|
||||||
| PiezoDrive | [link](https://www.piezodrive.com/actuators/ap-series-amplified-piezoelectric-actuators/) | Australia |
|
| PiezoDrive | [link](https://www.piezodrive.com/actuators/ap-series-amplified-piezoelectric-actuators/) | Australia |
|
||||||
| Dynamic-Structures | [link](https://www.dynamic-structures.com/category/piezo-actuators-stages) | USA |
|
| Dynamic-Structures | [link](https://www.dynamic-structures.com/category/piezo-actuators-stages) | USA |
|
||||||
@ -149,51 +149,51 @@ For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolut
|
|||||||
|
|
||||||
### Electrical Capacitance {#electrical-capacitance}
|
### Electrical Capacitance {#electrical-capacitance}
|
||||||
|
|
||||||
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org9c97b26)).
|
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org297ca75)).
|
||||||
This is due to the fact that voltage amplifier has a limitation on the deliverable current.
|
This is due to the fact that voltage amplifier has a limitation on the deliverable current.
|
||||||
|
|
||||||
[Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
|
[Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
|
||||||
|
|
||||||
<a id="org9c97b26"></a>
|
<a id="org297ca75"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
|
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
|
||||||
|
|
||||||
|
|
||||||
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
|
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
|
||||||
|
|
||||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org6172e71)).
|
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org481d529)).
|
||||||
|
|
||||||
<a id="org6172e71"></a>
|
<a id="org481d529"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
|
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
|
||||||
|
|
||||||
|
|
||||||
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
|
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
|
||||||
|
|
||||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#org802b6e3)):
|
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgf063765)):
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
|
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
<a id="org802b6e3"></a>
|
<a id="orgf063765"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
|
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
|
||||||
|
|
||||||
For piezo actuators, force and displacement are inversely related (Figure [5](#orga68d9e2)).
|
For piezo actuators, force and displacement are inversely related (Figure [5](#org82b8a4e)).
|
||||||
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
|
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
|
||||||
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
|
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
|
||||||
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
|
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
|
||||||
|
|
||||||
<a id="orga68d9e2"></a>
|
<a id="org82b8a4e"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
|
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
|
||||||
|
|
||||||
|
|
||||||
## Bibliography {#bibliography}
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
<a id="orga200a60"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
<a id="org98162bd"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
||||||
|
|
||||||
<a id="orgdda2743"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
<a id="orgf8860c8"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||||
|
|
||||||
<a id="org46de525"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
<a id="org47bb392"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
||||||
|
@ -18,7 +18,7 @@ Tags
|
|||||||
|
|
||||||
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
|
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
|
||||||
|
|
||||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#org1ee8f98)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
|
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#org81e91f9)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
|
||||||
|
|
||||||
<a id="table--tab:characteristics-relative-sensor"></a>
|
<a id="table--tab:characteristics-relative-sensor"></a>
|
||||||
<div class="table-caption">
|
<div class="table-caption">
|
||||||
@ -76,7 +76,7 @@ Description:
|
|||||||
|
|
||||||
## Inductive Sensor (Eddy Current) {#inductive-sensor--eddy-current}
|
## Inductive Sensor (Eddy Current) {#inductive-sensor--eddy-current}
|
||||||
|
|
||||||
| Manufacturers | Links | |
|
| Manufacturers | Links | Country |
|
||||||
|----------------|-------------------------------------------------------------------------------------------|---------|
|
|----------------|-------------------------------------------------------------------------------------------|---------|
|
||||||
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/) | Germany |
|
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/) | Germany |
|
||||||
| Lion Precision | [link](https://www.lionprecision.com/products/eddy-current-sensors) | USA |
|
| Lion Precision | [link](https://www.lionprecision.com/products/eddy-current-sensors) | USA |
|
||||||
@ -117,9 +117,9 @@ Description:
|
|||||||
| Renishaw | 0.2 | 1 | 6 | 1 |
|
| Renishaw | 0.2 | 1 | 6 | 1 |
|
||||||
| Picoscale | 0.2 | 2 | 2 | 1 |
|
| Picoscale | 0.2 | 2 | 2 | 1 |
|
||||||
|
|
||||||
([Jang and Kim 2017](#org3ee30b7))
|
([Jang and Kim 2017](#org64791e2))
|
||||||
|
|
||||||
<a id="org9edecbb"></a>
|
<a id="org75192f1"></a>
|
||||||
|
|
||||||
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
|
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
|
||||||
|
|
||||||
@ -136,6 +136,6 @@ Description:
|
|||||||
|
|
||||||
## Bibliography {#bibliography}
|
## Bibliography {#bibliography}
|
||||||
|
|
||||||
<a id="org1ee8f98"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
<a id="org81e91f9"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
||||||
|
|
||||||
<a id="org3ee30b7"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
<a id="org64791e2"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
||||||
|
@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
|||||||
draft = false
|
draft = false
|
||||||
+++
|
+++
|
||||||
|
|
||||||
### Backlinks {#backlinks}
|
Backlinks:
|
||||||
|
|
||||||
- [Modal Analysis]({{< relref "modal_analysis" >}})
|
- [Modal Analysis]({{< relref "modal_analysis" >}})
|
||||||
|
|
||||||
@ -14,8 +14,6 @@ Tags
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
<https://www.bksv.com/en/products/shakers-and-exciters/LDS-shaker-systems/permanent-magnet-shakers/V201>
|
|
||||||
|
|
||||||
| Manufacturers | Links | Country |
|
| Manufacturers | Links | Country |
|
||||||
|--------------------|----------------------------------------------------------------------------------|-----------|
|
|--------------------|----------------------------------------------------------------------------------|-----------|
|
||||||
| Labsen | [link](http://labsentec.com.au/category/products/vibrationshock/) | Australia |
|
| Labsen | [link](http://labsentec.com.au/category/products/vibrationshock/) | Australia |
|
||||||
|
@ -4,12 +4,12 @@ author = ["Thomas Dehaeze"]
|
|||||||
draft = false
|
draft = false
|
||||||
+++
|
+++
|
||||||
|
|
||||||
### Backlinks {#backlinks}
|
Backlinks:
|
||||||
|
|
||||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||||
|
|
||||||
Tags
|
Tags
|
||||||
: [Force Sensors]({{< relref "force_sensors" >}})
|
: [Force Sensors]({{< relref "force_sensors" >}}), [Sensors]({{< relref "sensors" >}}), [Electronics]({{< relref "electronics" >}})
|
||||||
|
|
||||||
Most sensors needs some signal conditioner electronics before digitize the signal.
|
Most sensors needs some signal conditioner electronics before digitize the signal.
|
||||||
Few examples are:
|
Few examples are:
|
||||||
@ -29,22 +29,28 @@ The signal conditioning electronics can have different functions:
|
|||||||
|
|
||||||
## Charge Amplifier {#charge-amplifier}
|
## Charge Amplifier {#charge-amplifier}
|
||||||
|
|
||||||
| Manufacturers | Links |
|
| Manufacturers | Links | Country |
|
||||||
|---------------|---------------------------------------------------------------------------------------------------------------------|
|
|---------------|---------------------------------------------------------------------------------------------------------------------|---------|
|
||||||
| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) |
|
| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA |
|
||||||
|
| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany |
|
||||||
|
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
|
||||||
|
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
|
||||||
|
|
||||||
|
|
||||||
## Voltage Amplifier {#voltage-amplifier}
|
## Voltage Amplifier {#voltage-amplifier}
|
||||||
|
|
||||||
| Manufacturers | Links |
|
| Manufacturers | Links | Country |
|
||||||
|---------------|------------------------------------------------------------------|
|
|---------------|------------------------------------------------------------------------------------|---------|
|
||||||
| Femto | [link](https://www.femto.de/en/products/voltage-amplifiers.html) |
|
| Femto | [link](https://www.femto.de/en/products/voltage-amplifiers.html) | Germany |
|
||||||
|
| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany |
|
||||||
|
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
|
||||||
|
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
|
||||||
|
|
||||||
|
|
||||||
## Current Amplifier {#current-amplifier}
|
## Current Amplifier {#current-amplifier}
|
||||||
|
|
||||||
| Manufacturers | Links |
|
| Manufacturers | Links | Country |
|
||||||
|---------------|------------------------------------------------------------------|
|
|---------------|------------------------------------------------------------------|---------|
|
||||||
| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) |
|
| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) | Germany |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -4,11 +4,18 @@ author = ["Thomas Dehaeze"]
|
|||||||
draft = false
|
draft = false
|
||||||
+++
|
+++
|
||||||
|
|
||||||
|
Backlinks:
|
||||||
|
|
||||||
|
- [Rotation Stage]({{< relref "rotation_stage" >}})
|
||||||
|
|
||||||
Tags
|
Tags
|
||||||
:
|
:
|
||||||
|
|
||||||
| Manufacturers | Links |
|
|
||||||
|---------------|---------------------------------|
|
## Manufacturers {#manufacturers}
|
||||||
| Moflon | [link](https://www.moflon.com/) |
|
|
||||||
|
| Manufacturers | Links | Country |
|
||||||
|
|---------------|---------------------------------|---------|
|
||||||
|
| Moflon | [link](https://www.moflon.com/) | China |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -34,24 +34,24 @@ Tags
|
|||||||
|
|
||||||
## Vibration Isolating Pads {#vibration-isolating-pads}
|
## Vibration Isolating Pads {#vibration-isolating-pads}
|
||||||
|
|
||||||
| Manufacturer | links |
|
| Manufacturer | links | Country |
|
||||||
|--------------|----------------------------------|
|
|--------------|----------------------------------|---------|
|
||||||
| ACE | [link](https://www.ace-ace.com/) |
|
| ACE | [link](https://www.ace-ace.com/) | Germany |
|
||||||
|
|
||||||
|
|
||||||
## Vibration Isolation Tables {#vibration-isolation-tables}
|
## Vibration Isolation Tables {#vibration-isolation-tables}
|
||||||
|
|
||||||
| Manufacturer | links |
|
| Manufacturer | links | Country |
|
||||||
|-------------------|----------------------------------------------------------------------------------|
|
|-------------------|----------------------------------------------------------------------------------|-------------|
|
||||||
| TMC | [link](https://www.techmfg.com/products/stacis/stacisiii) |
|
| TMC | [link](https://www.techmfg.com/products/stacis/stacisiii) | USA |
|
||||||
| Newport | [link](https://www.newport.com/f/guardian-active-isolation-workstations) |
|
| Newport | [link](https://www.newport.com/f/guardian-active-isolation-workstations) | USA |
|
||||||
| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=42) |
|
| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=42) | USA |
|
||||||
| IDE | [link](https://www.ideworld.com/en/active%5Fvibration%5Fisolation.html) |
|
| IDE | [link](https://www.ideworld.com/en/active%5Fvibration%5Fisolation.html) | Germany |
|
||||||
| Harvard Apparatus | [link](https://www.warneronline.com/labmate-vibraplane-workstations-9100-series) |
|
| Harvard Apparatus | [link](https://www.warneronline.com/labmate-vibraplane-workstations-9100-series) | USA |
|
||||||
| Herzan | [link](https://www.herzan.com/products/active-vibration-control/avi-series.html) |
|
| Herzan | [link](https://www.herzan.com/products/active-vibration-control/avi-series.html) | USA |
|
||||||
| Standa | [link](http://www.standa.lt/products/catalog/optical%5Ftables?item=335) |
|
| Standa | [link](http://www.standa.lt/products/catalog/optical%5Ftables?item=335) | Lithuania |
|
||||||
| Table Stable | [link](http://www.tablestable.com/en/products/list/2/) |
|
| Table Stable | [link](http://www.tablestable.com/en/products/list/2/) | Switzerland |
|
||||||
| Accurion | [link](https://www.halcyonics.com/active-vibration-isolation-products) |
|
| Accurion | [link](https://www.halcyonics.com/active-vibration-isolation-products) | Germany |
|
||||||
| Vibiso | [link](https://vibiso.com/?page%5Fid=3433) |
|
| Vibiso | [link](https://vibiso.com/?page%5Fid=3433) | USA |
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
@ -4,10 +4,11 @@ author = ["Thomas Dehaeze"]
|
|||||||
draft = false
|
draft = false
|
||||||
+++
|
+++
|
||||||
|
|
||||||
### Backlinks {#backlinks}
|
Backlinks:
|
||||||
|
|
||||||
- [Actuators]({{< relref "actuators" >}})
|
- [Actuators]({{< relref "actuators" >}})
|
||||||
- [Shaker]({{< relref "shaker" >}})
|
- [Shaker]({{< relref "shaker" >}})
|
||||||
|
- [Current Amplifier]({{< relref "current_amplifier" >}})
|
||||||
|
|
||||||
Tags
|
Tags
|
||||||
: [Actuators]({{< relref "actuators" >}})
|
: [Actuators]({{< relref "actuators" >}})
|
||||||
@ -15,20 +16,23 @@ Tags
|
|||||||
|
|
||||||
## Manufacturers {#manufacturers}
|
## Manufacturers {#manufacturers}
|
||||||
|
|
||||||
| Manufacturers | Links |
|
| Manufacturers | Links | Country |
|
||||||
|----------------------|----------------------------------------------|
|
|----------------------|----------------------------------------------|-------------|
|
||||||
| Geeplus | [link](https://www.geeplus.com/) |
|
| Geeplus | [link](https://www.geeplus.com/) | UK |
|
||||||
| Maccon | [link](https://www.maccon.de/en.html) |
|
| Maccon | [link](https://www.maccon.de/en.html) | Germany |
|
||||||
| TDS PP | [link](https://www.tds-pp.com/en/) |
|
| TDS PP | [link](https://www.tds-pp.com/en/) | Switzerland |
|
||||||
| H2tech | [link](https://www.h2wtech.com/) |
|
| H2tech | [link](https://www.h2wtech.com/) | USA |
|
||||||
| PBA Systems | [link](http://www.pbasystems.com.sg/) |
|
| PBA Systems | [link](http://www.pbasystems.com.sg/) | Singapore |
|
||||||
| Celera Motion | [link](https://www.celeramotion.com/) |
|
| Celera Motion | [link](https://www.celeramotion.com/) | USA |
|
||||||
| Beikimco | [link](http://www.beikimco.com/) |
|
| Beikimco | [link](http://www.beikimco.com/) | USA |
|
||||||
| Electromate | [link](https://www.electromate.com/) |
|
| Electromate | [link](https://www.electromate.com/) | Canada |
|
||||||
| Magnetic Innovations | [link](https://www.magneticinnovations.com/) |
|
| Magnetic Innovations | [link](https://www.magneticinnovations.com/) | Netherlands |
|
||||||
| Monticont | [link](http://www.moticont.com/) |
|
| Monticont | [link](http://www.moticont.com/) | USA |
|
||||||
|
|
||||||
|
|
||||||
## Typical Specifications {#typical-specifications}
|
## Typical Specifications {#typical-specifications}
|
||||||
|
|
||||||
|
|
||||||
|
## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator}
|
||||||
|
|
||||||
<./biblio/references.bib>
|
<./biblio/references.bib>
|
||||||
|
Loading…
Reference in New Issue
Block a user