diff --git a/content/phdthesis/jabben07_mechat.md b/content/phdthesis/jabben07_mechat.md index 4f9eb20..67f7e61 100644 --- a/content/phdthesis/jabben07_mechat.md +++ b/content/phdthesis/jabben07_mechat.md @@ -49,9 +49,12 @@ The noise source has a PSD given by: \\[ S\_T(f) = 4 k T \text{Re}(Z(f)) \ [V^2/Hz] \\] with \\(k = 1.38 \cdot 10^{-23} \,[J/K]\\) the Boltzmann's constant, \\(T\\) the temperature [K] and \\(Z(f)\\) the frequency dependent impedance of the system. -```text -A kilo Ohm resistor at 20 degree Celsius will show a thermal noise of $0.13 \mu V$ from zero up to one kHz. -``` +
+
+ +A kilo Ohm resistor at 20 degree Celsius will show a thermal noise of \\(0.13 \mu V\\) from zero up to one kHz. + +
**Shot Noise**. Seen with junctions in a transistor. @@ -59,9 +62,12 @@ It has a white spectral density: \\[ S\_S = 2 q\_e i\_{dc} \ [A^2/Hz] \\] with \\(q\_e\\) the electronic charge (\\(1.6 \cdot 10^{-19}\, [C]\\)), \\(i\_{dc}\\) the average current [A]. -```text -An averable current of 1 A will introduce noise with a STD of $10 \cdot 10^{-9}\,[A]$ from zero up to one kHz. -``` +
+
+ +An averable current of 1 A will introduce noise with a STD of \\(10 \cdot 10^{-9}\,[A]\\) from zero up to one kHz. + +
**Excess Noise** (or \\(1/f\\) noise). It results from fluctuating conductivity due to imperfect contact between two materials. @@ -91,24 +97,28 @@ The corresponding PSD is white up to the Nyquist frequency: \\[ S\_Q = \frac{q^2}{12 f\_N} \\] with \\(f\_N\\) the Nyquist frequency [Hz]. -```text +
+
+ Let's take the example of a 16 bit ADC which has an electronic noise with a SNR of 80dB. Let's suppose the ADC is used to measure a position over a range of 1 mm. -- ADC quantization noise: it has 16 bots over the 1 mm range. - The standard diviation from the quantization is: - \[ \sigma_{ADq} = \frac{1 \cdot 10^6/2^16}{\sqrt{12}} = 4.4\,[nm] \] -- ADC electronic noise: the RMS value of a sine that covers to full range is $\frac{0.5}{\sqrt{2}} = 0.354\,[mm]$. - With a SNR of 80dB, the electronic noise from the ADC becomes: - \[ \sigma_{ADn} = 35\,[nm] \] -Let's suppose the ADC is used to measure a sensor with an electronic noise having a standard deviation of $\sigma_{sn} = 17\,[nm]$. +- ADC quantization noise: it has 16 bots over the 1 mm range. + The standard diviation from the quantization is: + \\[ \sigma\_{ADq} = \frac{1 \cdot 10^6/2^16}{\sqrt{12}} = 4.4\,[nm] \\] +- ADC electronic noise: the RMS value of a sine that covers to full range is \\(\frac{0.5}{\sqrt{2}} = 0.354\,[mm]\\). + With a SNR of 80dB, the electronic noise from the ADC becomes: + \\[ \sigma\_{ADn} = 35\,[nm] \\] + +Let's suppose the ADC is used to measure a sensor with an electronic noise having a standard deviation of \\(\sigma\_{sn} = 17\,[nm]\\). The PSD of this digitalized sensor noise is: -\[ \sigma_s = \sqrt{\sigma_{sn}^2 + \sigma_{ADq}^2 + \sigma_{ADn}^2} = 39\,[nm]\] -from which the PSD of the total sensor noise $S_s$ is calculated: -\[ S_s = \frac{\sigma_s^2}{f_N} = 1.55\,[nm^2/Hz] \] -with $f_N$ is the Nyquist frequency of 1kHz. -``` +\\[ \sigma\_s = \sqrt{\sigma\_{sn}^2 + \sigma\_{ADq}^2 + \sigma\_{ADn}^2} = 39\,[nm]\\] +from which the PSD of the total sensor noise \\(S\_s\\) is calculated: +\\[ S\_s = \frac{\sigma\_s^2}{f\_N} = 1.55\,[nm^2/Hz] \\] +with \\(f\_N\\) is the Nyquist frequency of 1kHz. + +
#### Acoustic Noise {#acoustic-noise} @@ -119,9 +129,12 @@ The disturbance force acting on a body, is the **difference of pressure between To have a pressure difference, the body must have a certain minimum dimension, depending on the wave length of the sound. For a body of typical dimensions of 100mm, only frequencies above 800 Hz have a significant disturbance contribution. -```text -Consider a cube with a rib size of 100 mm located in a room with a sound level of 80dB, distributed between one and ten kHz, then the force disturbance PSD equal $2.2 \cdot 10^{-2}\,[N^2/Hz]$ -``` +
+
+ +Consider a cube with a rib size of 100 mm located in a room with a sound level of 80dB, distributed between one and ten kHz, then the force disturbance PSD equal \\(2.2 \cdot 10^{-2}\,[N^2/Hz]\\) + +
#### Brownian Noise {#brownian-noise} @@ -148,21 +161,21 @@ Three factors influence the performance: The DEB helps identifying which disturbance is the limiting factor, and it should be investigated if the controller can deal with this disturbance before re-designing the plant. The modelling of disturbance as stochastic variables, is by excellence suitable for the optimal stochastic control framework. -In Figure [1](#org30a4301), the generalized plant maps the disturbances to the performance channels. +In Figure [1](#orga43f7f1), the generalized plant maps the disturbances to the performance channels. By minimizing the \\(\mathcal{H}\_2\\) system norm of the generalized plant, the variance of the performance channels is minimized. - + {{< figure src="/ox-hugo/jabben07_general_plant.png" caption="Figure 1: Control system with the generalized plant \\(G\\). The performance channels are stacked in \\(z\\), while the controller input is denoted with \\(y\\)" >}} #### Using Weighting Filters for Disturbance Modelling {#using-weighting-filters-for-disturbance-modelling} -Since disturbances are generally not white, the system of Figure [1](#org30a4301) needs to be augmented with so called **disturbance weighting filters**. +Since disturbances are generally not white, the system of Figure [1](#orga43f7f1) needs to be augmented with so called **disturbance weighting filters**. A disturbance weighting filter gives the disturbance PSD when white noise as input is applied. -This is illustrated in Figure [2](#org3b94947) where a vector of white noise time signals \\(\underbar{w}(t)\\) is filtered through a weighting filter to obtain the colored physical disturbances \\(w(t)\\) with the desired PSD \\(S\_w\\) . +This is illustrated in Figure [2](#org906705e) where a vector of white noise time signals \\(\underbar{w}(t)\\) is filtered through a weighting filter to obtain the colored physical disturbances \\(w(t)\\) with the desired PSD \\(S\_w\\) . The generalized plant framework also allows to include **weighting filters for the performance channels**. This is useful for three reasons: @@ -171,7 +184,7 @@ This is useful for three reasons: - some performance channels may be of more importance than others - by using dynamic weighting filters, one can emphasize the performance in a certain frequency range - + {{< figure src="/ox-hugo/jabben07_weighting_functions.png" caption="Figure 2: Control system with the generalized plant \\(G\\) and weighting functions" >}} @@ -196,9 +209,9 @@ So, to obtain feasible controllers, the performance channel is a combination of By choosing suitable weighting filters for \\(y\\) and \\(u\\), the performance can be optimized while keeping the controller effort limited: \\[ \\|z\\|\_{rms}^2 = \left\\| \begin{bmatrix} y \\ \alpha u \end{bmatrix} \right\\|\_{rms}^2 = \\|y\\|\_{rms}^2 + \alpha^2 \\|u\\|\_{rms}^2 \\] -By calculation \\(\mathcal{H}\_2\\) optimal controllers for increasing \\(\alpha\\) and plotting the performance \\(\\|y\\|\\) vs the controller effort \\(\\|u\\|\\), the curve as depicted in Figure [3](#orgb0b1e78) is obtained. +By calculation \\(\mathcal{H}\_2\\) optimal controllers for increasing \\(\alpha\\) and plotting the performance \\(\\|y\\|\\) vs the controller effort \\(\\|u\\|\\), the curve as depicted in Figure [3](#org58a8c87) is obtained. - + {{< figure src="/ox-hugo/jabben07_pareto_curve_H2.png" caption="Figure 3: An illustration of a Pareto curve. Each point of the curve represents the performance obtained with an optimal controller. The curve is obtained by varying \\(\alpha\\) and calculating an \\(\mathcal{H}\_2\\) optimal controller for each \\(\alpha\\)." >}} diff --git a/content/zettels/connectors.md b/content/zettels/connectors.md index c045e07..36af82f 100644 --- a/content/zettels/connectors.md +++ b/content/zettels/connectors.md @@ -10,9 +10,9 @@ Tags ## Manufacturers {#manufacturers} -| Manufacturers | Links | -|---------------|-------------------------------------------------| -| LEMO | [link](https://www.lemo.com/en) | -| Fischer | [link](https://www.fischerconnectors.com/uk/en) | +| Manufacturers | Links | Country | +|---------------|-------------------------------------------------|-------------| +| LEMO | [link](https://www.lemo.com/en) | Switzerland | +| Fischer | [link](https://www.fischerconnectors.com/uk/en) | Switzerland | <./biblio/references.bib> diff --git a/content/zettels/force_sensors.md b/content/zettels/force_sensors.md index 054259d..532408d 100644 --- a/content/zettels/force_sensors.md +++ b/content/zettels/force_sensors.md @@ -4,13 +4,13 @@ author = ["Thomas Dehaeze"] draft = false +++ -### Backlinks {#backlinks} +Backlinks: -- [Signal Conditioner]({{< relref "signal_conditioner" >}}) - [Sensors]({{< relref "sensors" >}}) - [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}}) - [Collocated Control]({{< relref "collocated_control" >}}) - [Position Sensors]({{< relref "position_sensors" >}}) +- [Signal Conditioner]({{< relref "signal_conditioner" >}}) Tags : @@ -21,7 +21,7 @@ Tags ### Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor} -An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org82df6e1)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). +An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org25f6243)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). ### Manufacturers {#manufacturers} @@ -36,17 +36,10 @@ An analysis the dynamics and noise of a piezoelectric force sensor is done in ([ ### Signal Conditioner {#signal-conditioner} -The voltage generated by the piezoelectric material generally needs to be amplified. +The voltage generated by the piezoelectric material generally needs to be amplified using a [Signal Conditioner]({{< relref "signal_conditioner" >}}). Either **charge** amplifiers or **voltage** amplifiers can be used. -| Manufacturers | Links | Country | -|---------------|------------------------------------------------------------------------------------|---------| -| PCB | [link](https://www.pcb.com/products?m=482c15) | USA | -| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany | -| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | -| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | - ### Effect of using multiple Stacks in series of parallels {#effect-of-using-multiple-stacks-in-series-of-parallels} @@ -60,4 +53,4 @@ However, if a charge conditioner is used, the signal will be doubled. ## Bibliography {#bibliography} -Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . +Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . diff --git a/content/zettels/piezoelectric_actuators.md b/content/zettels/piezoelectric_actuators.md index 9db27f5..88d0100 100644 --- a/content/zettels/piezoelectric_actuators.md +++ b/content/zettels/piezoelectric_actuators.md @@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"] draft = false +++ -### Backlinks {#backlinks} +Backlinks: - [Actuators]({{< relref "actuators" >}}) - [Voltage Amplifier]({{< relref "voltage_amplifier" >}}) @@ -35,7 +35,7 @@ Tags ### Model {#model} -A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgdda2743)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). +A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgf8860c8)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel. @@ -50,27 +50,27 @@ with: ## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators} -The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#orga200a60)): +The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org98162bd)): > The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height. > The flatter is the actuator, the higher is the amplification. -A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org46de525)). +A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org47bb392)). - + -{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms (Mingxiang Ling {\it et al.}, 2016)" >}} +{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms ling16_enhan_mathem_model_displ_amplif" >}} -| **Manufacturers** | **Links** | **Country** | -|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------| -| Cedrat | [link](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) | France | -| PiezoDrive | [link](https://www.piezodrive.com/actuators/ap-series-amplified-piezoelectric-actuators/) | Australia | -| Dynamic-Structures | [link](https://www.dynamic-structures.com/category/piezo-actuators-stages) | USA | -| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA | -| Noliac | [link](http://www.noliac.com/products/actuators/amplified-actuators/) | Denmark | -| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F5.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F3.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5Fmtkk.html) | Japan | -| CoreMorrow | [link](http://www.coremorrow.com/en/pro-13-1.html) | China | -| PiezoData | [link](https://www.piezodata.com/piezoelectric-actuator-amplifier/) | China | +| Manufacturers | Links | Country | +|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------| +| Cedrat | [link](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) | France | +| PiezoDrive | [link](https://www.piezodrive.com/actuators/ap-series-amplified-piezoelectric-actuators/) | Australia | +| Dynamic-Structures | [link](https://www.dynamic-structures.com/category/piezo-actuators-stages) | USA | +| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) | USA | +| Noliac | [link](http://www.noliac.com/products/actuators/amplified-actuators/) | Denmark | +| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F5.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F3.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5Fmtkk.html) | Japan | +| CoreMorrow | [link](http://www.coremorrow.com/en/pro-13-1.html) | China | +| PiezoData | [link](https://www.piezodata.com/piezoelectric-actuator-amplifier/) | China | ## Specifications {#specifications} @@ -149,51 +149,51 @@ For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolut ### Electrical Capacitance {#electrical-capacitance} -The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org9c97b26)). +The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org297ca75)). This is due to the fact that voltage amplifier has a limitation on the deliverable current. [Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used. - + {{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}} ## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load} -When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org6172e71)). +When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org481d529)). - + {{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}} ## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load} -Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#org802b6e3)): +Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgf063765)): \begin{equation} \Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e} \end{equation} - + {{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}} -For piezo actuators, force and displacement are inversely related (Figure [5](#orga68d9e2)). +For piezo actuators, force and displacement are inversely related (Figure [5](#org82b8a4e)). Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement. Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated. When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced. - + {{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}} ## Bibliography {#bibliography} -Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. . +Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. . -Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . +Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . -Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.” +Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.” diff --git a/content/zettels/position_sensors.md b/content/zettels/position_sensors.md index 8d0fc86..eedb717 100644 --- a/content/zettels/position_sensors.md +++ b/content/zettels/position_sensors.md @@ -18,7 +18,7 @@ Tags ## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors} -- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#org1ee8f98)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})) +- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#org81e91f9)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
@@ -76,7 +76,7 @@ Description: ## Inductive Sensor (Eddy Current) {#inductive-sensor--eddy-current} -| Manufacturers | Links | | +| Manufacturers | Links | Country | |----------------|-------------------------------------------------------------------------------------------|---------| | Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/) | Germany | | Lion Precision | [link](https://www.lionprecision.com/products/eddy-current-sensors) | USA | @@ -117,9 +117,9 @@ Description: | Renishaw | 0.2 | 1 | 6 | 1 | | Picoscale | 0.2 | 2 | 2 | 1 | -([Jang and Kim 2017](#org3ee30b7)) +([Jang and Kim 2017](#org64791e2)) - + {{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}} @@ -136,6 +136,6 @@ Description: ## Bibliography {#bibliography} -Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. . +Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. . -Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. . +Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. . diff --git a/content/zettels/shaker.md b/content/zettels/shaker.md index 7eb2f1e..26dd9d1 100644 --- a/content/zettels/shaker.md +++ b/content/zettels/shaker.md @@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"] draft = false +++ -### Backlinks {#backlinks} +Backlinks: - [Modal Analysis]({{< relref "modal_analysis" >}}) @@ -14,8 +14,6 @@ Tags ## Manufacturers {#manufacturers} - - | Manufacturers | Links | Country | |--------------------|----------------------------------------------------------------------------------|-----------| | Labsen | [link](http://labsentec.com.au/category/products/vibrationshock/) | Australia | diff --git a/content/zettels/signal_conditioner.md b/content/zettels/signal_conditioner.md index e6a3ce4..11b1931 100644 --- a/content/zettels/signal_conditioner.md +++ b/content/zettels/signal_conditioner.md @@ -4,12 +4,12 @@ author = ["Thomas Dehaeze"] draft = false +++ -### Backlinks {#backlinks} +Backlinks: - [Position Sensors]({{< relref "position_sensors" >}}) Tags -: [Force Sensors]({{< relref "force_sensors" >}}) +: [Force Sensors]({{< relref "force_sensors" >}}), [Sensors]({{< relref "sensors" >}}), [Electronics]({{< relref "electronics" >}}) Most sensors needs some signal conditioner electronics before digitize the signal. Few examples are: @@ -29,22 +29,28 @@ The signal conditioning electronics can have different functions: ## Charge Amplifier {#charge-amplifier} -| Manufacturers | Links | -|---------------|---------------------------------------------------------------------------------------------------------------------| -| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | +| Manufacturers | Links | Country | +|---------------|---------------------------------------------------------------------------------------------------------------------|---------| +| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA | +| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany | +| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | +| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | ## Voltage Amplifier {#voltage-amplifier} -| Manufacturers | Links | -|---------------|------------------------------------------------------------------| -| Femto | [link](https://www.femto.de/en/products/voltage-amplifiers.html) | +| Manufacturers | Links | Country | +|---------------|------------------------------------------------------------------------------------|---------| +| Femto | [link](https://www.femto.de/en/products/voltage-amplifiers.html) | Germany | +| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany | +| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | +| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | ## Current Amplifier {#current-amplifier} -| Manufacturers | Links | -|---------------|------------------------------------------------------------------| -| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) | +| Manufacturers | Links | Country | +|---------------|------------------------------------------------------------------|---------| +| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) | Germany | <./biblio/references.bib> diff --git a/content/zettels/slip_rings.md b/content/zettels/slip_rings.md index 57ba07f..4adf838 100644 --- a/content/zettels/slip_rings.md +++ b/content/zettels/slip_rings.md @@ -4,11 +4,18 @@ author = ["Thomas Dehaeze"] draft = false +++ +Backlinks: + +- [Rotation Stage]({{< relref "rotation_stage" >}}) + Tags : -| Manufacturers | Links | -|---------------|---------------------------------| -| Moflon | [link](https://www.moflon.com/) | + +## Manufacturers {#manufacturers} + +| Manufacturers | Links | Country | +|---------------|---------------------------------|---------| +| Moflon | [link](https://www.moflon.com/) | China | <./biblio/references.bib> diff --git a/content/zettels/vibration_isolation.md b/content/zettels/vibration_isolation.md index 58313a1..48d44d3 100644 --- a/content/zettels/vibration_isolation.md +++ b/content/zettels/vibration_isolation.md @@ -34,24 +34,24 @@ Tags ## Vibration Isolating Pads {#vibration-isolating-pads} -| Manufacturer | links | -|--------------|----------------------------------| -| ACE | [link](https://www.ace-ace.com/) | +| Manufacturer | links | Country | +|--------------|----------------------------------|---------| +| ACE | [link](https://www.ace-ace.com/) | Germany | ## Vibration Isolation Tables {#vibration-isolation-tables} -| Manufacturer | links | -|-------------------|----------------------------------------------------------------------------------| -| TMC | [link](https://www.techmfg.com/products/stacis/stacisiii) | -| Newport | [link](https://www.newport.com/f/guardian-active-isolation-workstations) | -| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=42) | -| IDE | [link](https://www.ideworld.com/en/active%5Fvibration%5Fisolation.html) | -| Harvard Apparatus | [link](https://www.warneronline.com/labmate-vibraplane-workstations-9100-series) | -| Herzan | [link](https://www.herzan.com/products/active-vibration-control/avi-series.html) | -| Standa | [link](http://www.standa.lt/products/catalog/optical%5Ftables?item=335) | -| Table Stable | [link](http://www.tablestable.com/en/products/list/2/) | -| Accurion | [link](https://www.halcyonics.com/active-vibration-isolation-products) | -| Vibiso | [link](https://vibiso.com/?page%5Fid=3433) | +| Manufacturer | links | Country | +|-------------------|----------------------------------------------------------------------------------|-------------| +| TMC | [link](https://www.techmfg.com/products/stacis/stacisiii) | USA | +| Newport | [link](https://www.newport.com/f/guardian-active-isolation-workstations) | USA | +| Thorlabs | [link](https://www.thorlabs.com/navigation.cfm?guide%5FID=42) | USA | +| IDE | [link](https://www.ideworld.com/en/active%5Fvibration%5Fisolation.html) | Germany | +| Harvard Apparatus | [link](https://www.warneronline.com/labmate-vibraplane-workstations-9100-series) | USA | +| Herzan | [link](https://www.herzan.com/products/active-vibration-control/avi-series.html) | USA | +| Standa | [link](http://www.standa.lt/products/catalog/optical%5Ftables?item=335) | Lithuania | +| Table Stable | [link](http://www.tablestable.com/en/products/list/2/) | Switzerland | +| Accurion | [link](https://www.halcyonics.com/active-vibration-isolation-products) | Germany | +| Vibiso | [link](https://vibiso.com/?page%5Fid=3433) | USA | <./biblio/references.bib> diff --git a/content/zettels/voice_coil_actuators.md b/content/zettels/voice_coil_actuators.md index 8296c9c..342dec9 100644 --- a/content/zettels/voice_coil_actuators.md +++ b/content/zettels/voice_coil_actuators.md @@ -4,10 +4,11 @@ author = ["Thomas Dehaeze"] draft = false +++ -### Backlinks {#backlinks} +Backlinks: - [Actuators]({{< relref "actuators" >}}) - [Shaker]({{< relref "shaker" >}}) +- [Current Amplifier]({{< relref "current_amplifier" >}}) Tags : [Actuators]({{< relref "actuators" >}}) @@ -15,20 +16,23 @@ Tags ## Manufacturers {#manufacturers} -| Manufacturers | Links | -|----------------------|----------------------------------------------| -| Geeplus | [link](https://www.geeplus.com/) | -| Maccon | [link](https://www.maccon.de/en.html) | -| TDS PP | [link](https://www.tds-pp.com/en/) | -| H2tech | [link](https://www.h2wtech.com/) | -| PBA Systems | [link](http://www.pbasystems.com.sg/) | -| Celera Motion | [link](https://www.celeramotion.com/) | -| Beikimco | [link](http://www.beikimco.com/) | -| Electromate | [link](https://www.electromate.com/) | -| Magnetic Innovations | [link](https://www.magneticinnovations.com/) | -| Monticont | [link](http://www.moticont.com/) | +| Manufacturers | Links | Country | +|----------------------|----------------------------------------------|-------------| +| Geeplus | [link](https://www.geeplus.com/) | UK | +| Maccon | [link](https://www.maccon.de/en.html) | Germany | +| TDS PP | [link](https://www.tds-pp.com/en/) | Switzerland | +| H2tech | [link](https://www.h2wtech.com/) | USA | +| PBA Systems | [link](http://www.pbasystems.com.sg/) | Singapore | +| Celera Motion | [link](https://www.celeramotion.com/) | USA | +| Beikimco | [link](http://www.beikimco.com/) | USA | +| Electromate | [link](https://www.electromate.com/) | Canada | +| Magnetic Innovations | [link](https://www.magneticinnovations.com/) | Netherlands | +| Monticont | [link](http://www.moticont.com/) | USA | ## Typical Specifications {#typical-specifications} + +## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator} + <./biblio/references.bib>