Two basic circuits of charge amplifiers are shown in Figure [1](#org9ffcf40) (taken from ([Fleming 2010](#orgaceef58))) and Figure [2](#org37bd87f) (taken from ([Schmidt, Schitter, and Rankers 2014](#org683b96e)))
<aid="org9ffcf40"></a>
{{<figuresrc="/ox-hugo/charge_amplifier_circuit.png"caption="Figure 1: Electrical model of a piezoelectric force sensor is shown in gray. The op-amp charge amplifier is shown on the right. The output voltage \\(V\_s\\) equal to \\(-q/C\_s\\)">}}
<aid="org37bd87f"></a>
{{<figuresrc="/ox-hugo/charge_amplifier_circuit_bis.png"caption="Figure 2: A piezoelectric accelerometer with a charge amplifier as signal conditioning element">}}
The input impedance of the charge amplifier is very small (unlike when using a voltage amplifier).
The gain of the charge amplified (Figure [1](#org9ffcf40)) is equal to:
<aid="orgaceef58"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
<aid="org683b96e"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.