We are interested by the physical interpretation of the SVD when applied to the frequency response of a MIMO system \\(G(s)\\) with \\(m\\) inputs and \\(l\\) outputs.
- \\(\Sigma\\): is an \\(l \times m\\) matrix with \\(k = \min\\{l, m\\}\\) non-negative **singular values** \\(\sigma\_i\\), arranged in descending order along its main diagonal, the other entries are zero.
- \\(U\\): is an \\(l \times l\\) unitary matrix. The columns of \\(U\\), denoted \\(u\_i\\), represent the **output directions** of the plant. They are orthonormal.
- \\(V\\): is an \\(m \times m\\) unitary matrix. The columns of \\(V\\), denoted \\(v\_i\\), represent the **input directions** of the plant. They are orthonormal.
Furthermore, since \\(\\|v\_i\\|\_2=1\\) and \\(\\|u\_i\\|\_2=1\\), we see that **the singular value \\(\sigma\_i\\) directly gives the gain of the matrix \\(G\\) in this direction**.
- \\(U\\) and \\(V\\) orthogonal matrices. The columns \\(u\_i\\) and \\(v\_i\\) of \\(U\\) and \\(V\\) are the eigenvectors of the square matrices \\(JJ^T\\) and \\(J^TJ\\) respectively
- \\(\Sigma\\) a rectangular diagonal matrix of dimension \\(m \times n\\) containing the square root of the common non-zero eigenvalues of \\(JJ^T\\) and \\(J^TJ\\)
- \\(r\\) is the number of non-zero singular values of \\(J\\)
<divclass="csl-entry"><aid="citeproc_bib_item_1"></a>Preumont, Andre. 2018. <i>Vibration Control of Active Structures - Fourth Edition</i>. Solid Mechanics and Its Applications. Springer International Publishing. doi:<ahref="https://doi.org/10.1007/978-3-319-72296-2">10.1007/978-3-319-72296-2</a>.</div>