We are interested by the physical interpretation of the SVD when applied to the frequency response of a MIMO system \\(G(s)\\) with \\(m\\) inputs and \\(l\\) outputs.
\begin{equation}
G = U \Sigma V^H
\end{equation}
\\(\Sigma\\)
: is an \\(l \times m\\) matrix with \\(k = \min\\{l, m\\}\\) non-negative **singular values** \\(\sigma\_i\\), arranged in descending order along its main diagonal, the other entries are zero.
\\(U\\)
: is an \\(l \times l\\) unitary matrix. The columns of \\(U\\), denoted \\(u\_i\\), represent the **output directions** of the plant. They are orthonormal.
\\(V\\)
: is an \\(m \times m\\) unitary matrix. The columns of \\(V\\), denoted \\(v\_i\\), represent the **input directions** of the plant. They are orthonormal.
The input and output directions are related through the singular values:
\begin{equation}
G v\_i = \sigma\_i u\_i
\end{equation}
So, if we consider an input in the direction \\(v\_i\\), then the output is in the direction \\(u\_i\\).
Furthermore, since \\(\normtwo{v\_i}=1\\) and \\(\normtwo{u\_i}=1\\), we see that **the singular value \\(\sigma\_i\\) directly gives the gain of the matrix \\(G\\) in this direction**.
The **largest gain** for any input is equal to the **maximum singular value**:
- \\(U\\) and \\(V\\) orthogonal matrices. The columns \\(u\_i\\) and \\(v\_i\\) of \\(U\\) and \\(V\\) are the eigenvectors of the square matrices \\(JJ^T\\) and \\(J^TJ\\) respectively
- \\(\Sigma\\) a rectangular diagonal matrix of dimension \\(m \times n\\) containing the square root of the common non-zero eigenvalues of \\(JJ^T\\) and \\(J^TJ\\)
- \\(r\\) is the number of non-zero singular values of \\(J\\)