2020-10-25 08:50:31 +01:00
|
|
|
+++
|
|
|
|
title = "Mass Spring Damper Systems"
|
|
|
|
author = ["Thomas Dehaeze"]
|
|
|
|
draft = false
|
|
|
|
+++
|
|
|
|
|
|
|
|
Tags
|
|
|
|
:
|
|
|
|
|
2020-10-26 16:00:34 +01:00
|
|
|
|
|
|
|
## Actuated Mass Spring Damper System {#actuated-mass-spring-damper-system}
|
|
|
|
|
|
|
|
Let's consider Figure [1](#orgeec8f0f) where:
|
|
|
|
|
|
|
|
- \\(m\\) is the mass in [kg]
|
|
|
|
- \\(ḱ\\) is the spring stiffness in [N/m]
|
|
|
|
- \\(c\\) is the damping coefficient in [N/(m/s)]
|
|
|
|
- \\(F\\) is the actuator force in [N]
|
|
|
|
- \\(F\_d\\) is external force applied to the mass in [N]
|
|
|
|
- \\(w\\) is ground motion
|
|
|
|
- \\(x\\) is the absolute mass motion
|
|
|
|
|
|
|
|
<a id="orgeec8f0f"></a>
|
|
|
|
|
|
|
|
{{< figure src="/ox-hugo/mass_spring_damper_system.png" caption="Figure 1: Mass Spring Damper System" >}}
|
|
|
|
|
|
|
|
Let's write the transfer function from \\(F\\) to \\(x\\):
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
\frac{x}{F}(s) = \frac{1}{m s^2 + c s + k}
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
This can be re-written as:
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
\frac{x}{F}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
with:
|
|
|
|
|
|
|
|
- \\(\omega\_0\\) the natural frequency in [rad/s]
|
|
|
|
- \\(\xi\\) the damping ratio
|
|
|
|
|
|
|
|
|
|
|
|
## Transmissibility {#transmissibility}
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
\frac{x}{w}(s) = \frac{1}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
|
|
## Compliance {#compliance}
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
\frac{x}{F\_d}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
|
|
|
|
\end{equation}
|
|
|
|
|
2020-10-25 08:50:31 +01:00
|
|
|
<./biblio/references.bib>
|