- The low stiffness actuators achieve smooth transition from active isolation to passive isolation.
- The high stiffness actuators can have a gap between the passive and active isolation vibration where the vibrations are amplified in a certain frequency band.
The stiffness requirement for low-stiffness actuators can be rephrased in the frequency domain as: "the cross-over frequency of the sensitivity function of the feedback system must be larger than \\(\sqrt{2} \omega\_r\\) with \\(\omega\_r\\) is the resonant frequency of the uncontrolled system".
In practice, this is difficult to achieve with piezoelectric actuators as their first resonant frequency \\(\omega\_r\\) is **too close to other resonant frequencies to ensure close-loop stability**.
In contrast, the frequency band between the first and the other resonances of Lorentz actuators can be broad by design making them more suitable to construct a low-stiffness actuators.
<aid="orgbaa452e"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 21 (2):1169–78. <https://doi.org/10.1109/tmech.2015.2478658>.