: <supid="aad53368e29e8a519e2f63857044fa46"><aclass="reference-link"href="#ito16_compar_class_high_precis_actuat"title="Shingo Ito \& Georg Schitter, Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation, {IEEE/ASME Transactions on Mechatronics}, v(2), 1169-1178 (2016).">(Shingo Ito \& Georg Schitter, 2016)</a></sup>
- The low stiffness actuators achieve smooth transition from active isolation to passive isolation.
- The high stiffness actuators can have a gap between the passive and active isolation vibration where the vibrations are amplified in a certain frequency band.
The stiffness requirement for low-stiffness actuators can be rephrased in the frequency domain as: "the cross-over frequency of the sensitivity function of the feedback system must be larger than \\(\sqrt{2} \omega\_r\\) with \\(\omega\_r\\) is the resonant frequency of the uncontrolled system".
In practice, this is difficult to achieve with piezoelectric actuators as their first resonant frequency \\(\omega\_r\\) is **too close to other resonant frequencies to ensure close-loop stability**.
In contrast, the frequency band between the first and the other resonances of Lorentz actuators can be broad by design making them more suitable to construct a low-stiffness actuators.