When \\(\phi\\) is close to zero, this means there is no interaction.
- The **relative gain array** of a square matrix:
\\[ \text{RGA}(G) \triangleq G \times ( G^{-1})^T \\]
## Stability {#stability}
-**Characteristic Loci**: Eigenvalues of \\(G(j\omega)\\) plotted in the complex plane
-**Generalized Nyquist Criterion**: If \\(G(s)\\) has \\(p\_0\\) unstable poles, then the closed-loop system with return ratio \\(kG(s)\\) is stable if and only if the characteristic loci of \\(kG(s)\\), taken together, encircle the point \\(-1\\), \\(p\_0\\) times anti-clockwise, assuming there are no hidden modes