Update Mathjax

This commit is contained in:
2025-12-02 14:41:58 +01:00
parent 7f107550e7
commit 5b20274ed0

View File

@@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2025-12-02 Tue 14:32 -->
<!-- 2025-12-02 Tue 14:41 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Delta Robot</title>
<meta name="author" content="Dehaeze Thomas" />
@@ -11,19 +11,19 @@
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
<script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
<script>
MathJax = {
svg: {
scale: 1,
fontCache: "global"
},
tex: {
tags: "%AUTONUMBER",
multlineWidth: "%MULTLINEWIDTH",
tagSide: "right",
macros: {bm: ["\\boldsymbol{#1}",1],},
tagIndent: ".8em"
}
};
MathJax = {
svg: {
scale: 1,
fontCache: "global"
},
tex: {
tags: "ams", // or "all" or "none"
multlineWidth: "85%", // Set this to a real value
tagSide: "right",
tagIndent: ".8em",
macros: {bm: ["\boldsymbol{#1}",1]}
}
};
</script>
<script id="MathJax-script" async
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script>
@@ -39,43 +39,43 @@
<h2>Table of Contents</h2>
<div id="text-table-of-contents" role="doc-toc">
<ul>
<li><a href="#org9dbd6be">1. Geometry</a></li>
<li><a href="#org8130b11">2. Kinematics: Jacobian Matrix and Mobility</a></li>
<li><a href="#org4dd69f9">3. Kinematics: Degrees of Freedom</a></li>
<li><a href="#org25e6eb0">4. Kinematics: Number of modes</a></li>
<li><a href="#org494f6d0">5. Flexible Joint Design</a>
<li><a href="#orgbb3e49b">1. Geometry</a></li>
<li><a href="#org91b49ae">2. Kinematics: Jacobian Matrix and Mobility</a></li>
<li><a href="#orgbb025c8">3. Kinematics: Degrees of Freedom</a></li>
<li><a href="#org1176a21">4. Kinematics: Number of modes</a></li>
<li><a href="#orgc5910ca">5. Flexible Joint Design</a>
<ul>
<li><a href="#org4834fcb">5.1. Studied Geometry</a></li>
<li><a href="#orgcf04565">5.2. Stiffness seen by the actuator</a></li>
<li><a href="#org8e8af24">5.3. Bending Stiffness</a></li>
<li><a href="#org6d455b1">5.4. Axial Stiffness</a></li>
<li><a href="#orgd75f092">5.5. Torsional Stiffness</a></li>
<li><a href="#org9700eaf">5.6. Shear Stiffness</a></li>
<li><a href="#orgbed5ca4">5.7. Effect of cube&rsquo;s size</a>
<li><a href="#org5239597">5.1. Studied Geometry</a></li>
<li><a href="#org40e3596">5.2. Stiffness seen by the actuator</a></li>
<li><a href="#orga0e7fd0">5.3. Bending Stiffness</a></li>
<li><a href="#orgc0a9e90">5.4. Axial Stiffness</a></li>
<li><a href="#org6acb2ad">5.5. Torsional Stiffness</a></li>
<li><a href="#org2e164b4">5.6. Shear Stiffness</a></li>
<li><a href="#org6f2c076">5.7. Effect of cube&rsquo;s size</a>
<ul>
<li><a href="#org531ae45">5.7.1. Effect on the plant dynamics</a></li>
<li><a href="#org9a49c2b">5.7.2. Effect on the compliance</a></li>
<li><a href="#org934b7b1">5.7.1. Effect on the plant dynamics</a></li>
<li><a href="#org91b34ef">5.7.2. Effect on the compliance</a></li>
</ul>
</li>
<li><a href="#org14884a8">5.8. Effect of the strut length ?</a>
<li><a href="#org75891de">5.8. Effect of the strut length ?</a>
<ul>
<li><a href="#orgea1bcc5">5.8.1. Effect on the plant dynamics</a></li>
<li><a href="#orga760c24">5.8.2. Effect on the compliance</a></li>
<li><a href="#orgda43225">5.8.1. Effect on the plant dynamics</a></li>
<li><a href="#orgd0abd06">5.8.2. Effect on the compliance</a></li>
</ul>
</li>
<li><a href="#org1693b06">5.9. Having the Center of Mass at the cube&rsquo;s center</a></li>
<li><a href="#org9065437">5.10. Conclusion</a></li>
<li><a href="#org0105411">5.9. Having the Center of Mass at the cube&rsquo;s center</a></li>
<li><a href="#orgcac595f">5.10. Conclusion</a></li>
</ul>
</li>
<li><a href="#org41e56de">6. Conclusion</a></li>
<li><a href="#org0f914f1">6. Conclusion</a></li>
</ul>
</div>
</div>
<p>
<a id="org2b67556"></a>
<a id="orgf136f49"></a>
</p>
<div id="outline-container-org9dbd6be" class="outline-2">
<h2 id="org9dbd6be"><span class="section-number-2">1.</span> Geometry</h2>
<div id="outline-container-orgbb3e49b" class="outline-2">
<h2 id="orgbb3e49b"><span class="section-number-2">1.</span> Geometry</h2>
<div class="outline-text-2" id="text-1">
<p>
The Delta Robot geometry is defined as shown in Figure <a href="ref:fig:delta_robot_schematic">ref:fig:delta_robot_schematic</a>.
@@ -91,7 +91,7 @@ The geometry is fully defined by three parameters:
</ul>
<div id="orgf0c5783" class="figure">
<div id="org1393dba" class="figure">
<p><img src="figs/delta_robot_schematic.png" alt="delta_robot_schematic.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Schematic of the Delta Robot</p>
@@ -149,22 +149,22 @@ Let&rsquo;s initialize a Delta Robot architecture, and plot the obtained geometr
</p>
<div id="org31ec0d3" class="figure">
<div id="org54b1a70" class="figure">
<p><img src="figs/delta_robot_architecture.png" alt="delta_robot_architecture.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Delta Robot Architecture</p>
</div>
<div id="org80c1e20" class="figure">
<div id="orgbfb2618" class="figure">
<p><img src="figs/delta_robot_architecture_top.png" alt="delta_robot_architecture_top.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Delta Robot Architecture - Top View</p>
</div>
</div>
</div>
<div id="outline-container-org8130b11" class="outline-2">
<h2 id="org8130b11"><span class="section-number-2">2.</span> Kinematics: Jacobian Matrix and Mobility</h2>
<div id="outline-container-org91b49ae" class="outline-2">
<h2 id="org91b49ae"><span class="section-number-2">2.</span> Kinematics: Jacobian Matrix and Mobility</h2>
<div class="outline-text-2" id="text-2">
<p>
Jacobian matrix between actuator displacement and top platform displacement.
@@ -199,7 +199,7 @@ The achievable workspace is a cube whose edge length is equal to the actuator st
</p>
<div id="org7052783" class="figure">
<div id="org19bbc82" class="figure">
<p><img src="figs/delta_robot_3d_workspace.png" alt="delta_robot_3d_workspace.png" />
</p>
<p><span class="figure-number">Figure 4: </span>3D workspace</p>
@@ -214,7 +214,7 @@ Depending on how the YZ plane is oriented (i.e., depending on the Rz angle of th
</p>
<div id="org40b9c06" class="figure">
<div id="org524d43a" class="figure">
<p><img src="figs/delta_robot_2d_workspace.png" alt="delta_robot_2d_workspace.png" />
</p>
<p><span class="figure-number">Figure 5: </span>2D mobility for different orientations</p>
@@ -226,15 +226,15 @@ Maximum YZ mobility for an angle of 270 degrees, square with edge size of 117 um
<div id="org02a87d6" class="figure">
<div id="orgdabe3d4" class="figure">
<p><img src="figs/delta_robot_2d_workspace_optimal.png" alt="delta_robot_2d_workspace_optimal.png" />
</p>
<p><span class="figure-number">Figure 6: </span>2D mobility for the optimal Rz angle</p>
</div>
</div>
</div>
<div id="outline-container-org4dd69f9" class="outline-2">
<h2 id="org4dd69f9"><span class="section-number-2">3.</span> Kinematics: Degrees of Freedom</h2>
<div id="outline-container-orgbb025c8" class="outline-2">
<h2 id="orgbb025c8"><span class="section-number-2">3.</span> Kinematics: Degrees of Freedom</h2>
<div class="outline-text-2" id="text-3">
<p>
In the perfect case (flexible joints having no stiffness in bending, and infinite stiffness in torsion and in the axial direction), the top platform is allowed to move only in the X, Y and Z directions while the three rotations are fixed.
@@ -524,8 +524,8 @@ Therefore, to model some compliance of the top platform in rotation, both the ax
</p>
</div>
</div>
<div id="outline-container-org25e6eb0" class="outline-2">
<h2 id="org25e6eb0"><span class="section-number-2">4.</span> Kinematics: Number of modes</h2>
<div id="outline-container-org1176a21" class="outline-2">
<h2 id="org1176a21"><span class="section-number-2">4.</span> Kinematics: Number of modes</h2>
<div class="outline-text-2" id="text-4">
<p>
In the perfect condition (i.e. infinite stiffness in torsion and in compression of the flexible joints), the system has 6 states (i.e. 3 modes, one for each DoF: X, Y and Z).
@@ -541,11 +541,11 @@ State-space model with 3 outputs, 3 inputs, and 6 states.
</pre>
</div>
</div>
<div id="outline-container-org494f6d0" class="outline-2">
<h2 id="org494f6d0"><span class="section-number-2">5.</span> Flexible Joint Design</h2>
<div id="outline-container-orgc5910ca" class="outline-2">
<h2 id="orgc5910ca"><span class="section-number-2">5.</span> Flexible Joint Design</h2>
<div class="outline-text-2" id="text-5">
<p>
<a id="org1d3485b"></a>
<a id="orga126d5e"></a>
</p>
<p>
The goal is to extract specifications for the flexible joints of the six struts.
@@ -571,8 +571,8 @@ First, the dynamics of a &ldquo;perfect&rdquo; Delta-Robot is identified (i.e. w
Then, the impact of the flexible joint&rsquo;s imperfections will be studied.
</p>
</div>
<div id="outline-container-org4834fcb" class="outline-3">
<h3 id="org4834fcb"><span class="section-number-3">5.1.</span> Studied Geometry</h3>
<div id="outline-container-org5239597" class="outline-3">
<h3 id="org5239597"><span class="section-number-3">5.1.</span> Studied Geometry</h3>
<div class="outline-text-3" id="text-5-1">
<p>
The cube&rsquo;s edge length is equal to 50mm, the distance between cube&rsquo;s vertices and top joints is 20mm and the length of the struts (i.e. the distance between the two flexible joints of the same strut) is 50mm.
@@ -584,7 +584,7 @@ The obtained geometry is shown in Figure <a href="ref:fig:delta_robot_studied_ge
</p>
<div id="org0edf7cb" class="figure">
<div id="orgac9fd7a" class="figure">
<p><img src="figs/delta_robot_studied_geometry.png" alt="delta_robot_studied_geometry.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Geometry of the studied Delta Robot</p>
@@ -598,15 +598,15 @@ The dynamics is shown in Figure <a href="ref:fig:delta_robot_dynamics_perfect">r
</p>
<div id="org0ef4cae" class="figure">
<div id="org280fddc" class="figure">
<p><img src="figs/delta_robot_dynamics_perfect.png" alt="delta_robot_dynamics_perfect.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Dynamics of the delta robot with perfect joints</p>
</div>
</div>
</div>
<div id="outline-container-orgcf04565" class="outline-3">
<h3 id="orgcf04565"><span class="section-number-3">5.2.</span> Stiffness seen by the actuator</h3>
<div id="outline-container-org40e3596" class="outline-3">
<h3 id="org40e3596"><span class="section-number-3">5.2.</span> Stiffness seen by the actuator</h3>
<div class="outline-text-3" id="text-5-2">
<p>
Because the flexible joints will have some bending stiffness, the actuator in one direction will &ldquo;see&rdquo; some stiffness due to the struts in the other directions.
@@ -619,7 +619,7 @@ The parallel stiffness seen by the actuator as a function of the bending stiffne
</p>
<div id="orgef85bd9" class="figure">
<div id="org1a31cf8" class="figure">
<p><img src="figs/delta_robot_bending_stiffness_parallel_k.png" alt="delta_robot_bending_stiffness_parallel_k.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Effect of the bending stiffness of the flexible joints on the stiffness seen by the actuators</p>
@@ -640,8 +640,8 @@ This should be validated with the final geometry.
</p>
</div>
</div>
<div id="outline-container-org8e8af24" class="outline-3">
<h3 id="org8e8af24"><span class="section-number-3">5.3.</span> Bending Stiffness</h3>
<div id="outline-container-orga0e7fd0" class="outline-3">
<h3 id="orga0e7fd0"><span class="section-number-3">5.3.</span> Bending Stiffness</h3>
<div class="outline-text-3" id="text-5-3">
<p>
Then, the dynamics is identified for a bending Stiffness of \(50\,Nm/\text{rad}\) and compared with a Delta robot with no bending stiffness in Figure <a href="ref:fig:delta_robot_bending_stiffness_dynamics">ref:fig:delta_robot_bending_stiffness_dynamics</a>.
@@ -654,15 +654,15 @@ It is not critical from a dynamical point of view, it just decreases the achieva
</p>
<div id="org3b5ebdd" class="figure">
<div id="orgc78914f" class="figure">
<p><img src="figs/delta_robot_bending_stiffness_dynamics.png" alt="delta_robot_bending_stiffness_dynamics.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Effect of the bending stiffness on the dynamics</p>
</div>
</div>
</div>
<div id="outline-container-org6d455b1" class="outline-3">
<h3 id="org6d455b1"><span class="section-number-3">5.4.</span> Axial Stiffness</h3>
<div id="outline-container-orgc0a9e90" class="outline-3">
<h3 id="orgc0a9e90"><span class="section-number-3">5.4.</span> Axial Stiffness</h3>
<div class="outline-text-3" id="text-5-4">
<p>
Now, the effect of the axial stiffness on the dynamics is studied (Figure <a href="ref:fig:delta_robot_axial_stiffness_dynamics">ref:fig:delta_robot_axial_stiffness_dynamics</a>).
@@ -673,15 +673,15 @@ Therefore, we should aim at \(k_a > 100\,N/\mu m\).
</p>
<div id="org1f7d588" class="figure">
<div id="org650666d" class="figure">
<p><img src="figs/delta_robot_axial_stiffness_dynamics.png" alt="delta_robot_axial_stiffness_dynamics.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Effect of the joint&rsquo;s axial stiffness on the plant dynamics</p>
</div>
</div>
</div>
<div id="outline-container-orgd75f092" class="outline-3">
<h3 id="orgd75f092"><span class="section-number-3">5.5.</span> Torsional Stiffness</h3>
<div id="outline-container-org6acb2ad" class="outline-3">
<h3 id="org6acb2ad"><span class="section-number-3">5.5.</span> Torsional Stiffness</h3>
<div class="outline-text-3" id="text-5-5">
<p>
Now the compliance in torsion of the flexible joints is considered.
@@ -692,7 +692,7 @@ If we look at the compliance of the delta robot in rotation as a function of the
</p>
<div id="orgfec2a22" class="figure">
<div id="orgc2d0c2a" class="figure">
<p><img src="figs/delta_robot_kt_compliance.png" alt="delta_robot_kt_compliance.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Effect of the joint&rsquo;s torsional stiffness on the Delta Robot compliance</p>
@@ -703,7 +703,7 @@ If we have a look at the effect of the torsional stiffness on the plant dynamics
</p>
<div id="org919b485" class="figure">
<div id="org8a91569" class="figure">
<p><img src="figs/delta_robot_kt_dynamics.png" alt="delta_robot_kt_dynamics.png" />
</p>
<p><span class="figure-number">Figure 13: </span>Effect of the joint&rsquo;s torsional stiffness on the Delta Robot plant dynamics</p>
@@ -714,8 +714,8 @@ Therefore, the torsional stiffness is not a super important metric for the desig
</p>
</div>
</div>
<div id="outline-container-org9700eaf" class="outline-3">
<h3 id="org9700eaf"><span class="section-number-3">5.6.</span> Shear Stiffness</h3>
<div id="outline-container-org2e164b4" class="outline-3">
<h3 id="org2e164b4"><span class="section-number-3">5.6.</span> Shear Stiffness</h3>
<div class="outline-text-3" id="text-5-6">
<p>
As shown in Figure <a href="ref:fig:delta_robot_shear_stiffness_compliance">ref:fig:delta_robot_shear_stiffness_compliance</a>, the shear stiffness of the flexible joints has some effect on the compliance in translation and almost no effect on the compliance in rotation.
@@ -727,15 +727,15 @@ A value of \(100\,N/\mu m\) seems reasonable.
</p>
<div id="org47b9f27" class="figure">
<div id="org3922cac" class="figure">
<p><img src="figs/delta_robot_shear_stiffness_compliance.png" alt="delta_robot_shear_stiffness_compliance.png" />
</p>
<p><span class="figure-number">Figure 14: </span>Effect of the shear stiffness of the flexible joints on the Delta Robot compliance</p>
</div>
</div>
</div>
<div id="outline-container-orgbed5ca4" class="outline-3">
<h3 id="orgbed5ca4"><span class="section-number-3">5.7.</span> Effect of cube&rsquo;s size</h3>
<div id="outline-container-org6f2c076" class="outline-3">
<h3 id="org6f2c076"><span class="section-number-3">5.7.</span> Effect of cube&rsquo;s size</h3>
<div class="outline-text-3" id="text-5-7">
<p>
Let&rsquo;s choose reasonable values for the flexible joints:
@@ -751,8 +751,8 @@ Let&rsquo;s choose reasonable values for the flexible joints:
And we see the effect of changing the cube&rsquo;s size.
</p>
</div>
<div id="outline-container-org531ae45" class="outline-4">
<h4 id="org531ae45"><span class="section-number-4">5.7.1.</span> Effect on the plant dynamics</h4>
<div id="outline-container-org934b7b1" class="outline-4">
<h4 id="org934b7b1"><span class="section-number-4">5.7.1.</span> Effect on the plant dynamics</h4>
<div class="outline-text-4" id="text-5-7-1">
<ul class="org-ul">
<li class="off"><code>[&#xa0;]</code> <b>Understand why such different dynamics between 3dof_a joints and 6dof joints with very high shear stiffnesses</b></li>
@@ -768,22 +768,22 @@ The effect of the cube&rsquo;s size on the plant dynamics is shown in Figure <a
</ul>
<div id="org55507e2" class="figure">
<div id="org53bd331" class="figure">
<p><img src="figs/delta_robot_cube_size_plant_dynamics.png" alt="delta_robot_cube_size_plant_dynamics.png" />
</p>
<p><span class="figure-number">Figure 15: </span>Effect of the cube&rsquo;s size on the plant dynamics</p>
</div>
</div>
</div>
<div id="outline-container-org9a49c2b" class="outline-4">
<h4 id="org9a49c2b"><span class="section-number-4">5.7.2.</span> Effect on the compliance</h4>
<div id="outline-container-org91b34ef" class="outline-4">
<h4 id="org91b34ef"><span class="section-number-4">5.7.2.</span> Effect on the compliance</h4>
<div class="outline-text-4" id="text-5-7-2">
<p>
As shown in Figure <a href="ref:fig:delta_robot_cube_size_compliance_rotation">ref:fig:delta_robot_cube_size_compliance_rotation</a>, the stiffness of the delta robot in rotation increases with the cube&rsquo;s size.
</p>
<div id="org6c387e6" class="figure">
<div id="org23696c7" class="figure">
<p><img src="figs/delta_robot_cube_size_compliance_rotation.png" alt="delta_robot_cube_size_compliance_rotation.png" />
</p>
<p><span class="figure-number">Figure 16: </span>Effect of the cube&rsquo;s size on the rotational compliance of the top platform</p>
@@ -795,8 +795,8 @@ With a cube size of 50mm, the resonance frequency is already above 1kHz with see
</div>
</div>
</div>
<div id="outline-container-org14884a8" class="outline-3">
<h3 id="org14884a8"><span class="section-number-3">5.8.</span> Effect of the strut length ?</h3>
<div id="outline-container-org75891de" class="outline-3">
<h3 id="org75891de"><span class="section-number-3">5.8.</span> Effect of the strut length ?</h3>
<div class="outline-text-3" id="text-5-8">
<p>
Let&rsquo;s choose reasonable values for the flexible joints:
@@ -811,8 +811,8 @@ Let&rsquo;s choose reasonable values for the flexible joints:
And we see the effect of changing the strut length.
</p>
</div>
<div id="outline-container-orgea1bcc5" class="outline-4">
<h4 id="orgea1bcc5"><span class="section-number-4">5.8.1.</span> Effect on the plant dynamics</h4>
<div id="outline-container-orgda43225" class="outline-4">
<h4 id="orgda43225"><span class="section-number-4">5.8.1.</span> Effect on the plant dynamics</h4>
<div class="outline-text-4" id="text-5-8-1">
<p>
As shown in Figure <a href="ref:fig:delta_robot_strut_length_plant_dynamics">ref:fig:delta_robot_strut_length_plant_dynamics</a>, having longer struts:
@@ -829,22 +829,22 @@ So, the struts length can be optimized to not decrease too much the stiffness of
</p>
<div id="org52ddd53" class="figure">
<div id="org7c04cf7" class="figure">
<p><img src="figs/delta_robot_strut_length_plant_dynamics.png" alt="delta_robot_strut_length_plant_dynamics.png" />
</p>
<p><span class="figure-number">Figure 17: </span>Effect of the cube&rsquo;s size on the plant dynamics</p>
</div>
</div>
</div>
<div id="outline-container-orga760c24" class="outline-4">
<h4 id="orga760c24"><span class="section-number-4">5.8.2.</span> Effect on the compliance</h4>
<div id="outline-container-orgd0abd06" class="outline-4">
<h4 id="orgd0abd06"><span class="section-number-4">5.8.2.</span> Effect on the compliance</h4>
<div class="outline-text-4" id="text-5-8-2">
<p>
As shown in Figure <a href="ref:fig:delta_robot_strut_length_compliance_rotation">ref:fig:delta_robot_strut_length_compliance_rotation</a>, the strut length has an effect on the system stiffness in translation (left plot) but almost not in rotation (right plot).
</p>
<div id="org170bf64" class="figure">
<div id="org3d8b133" class="figure">
<p><img src="figs/delta_robot_strut_length_compliance_rotation.png" alt="delta_robot_strut_length_compliance_rotation.png" />
</p>
<p><span class="figure-number">Figure 18: </span>Effect of the cube&rsquo;s size on the rotational compliance of the top platform</p>
@@ -852,8 +852,8 @@ As shown in Figure <a href="ref:fig:delta_robot_strut_length_compliance_rotation
</div>
</div>
</div>
<div id="outline-container-org1693b06" class="outline-3">
<h3 id="org1693b06"><span class="section-number-3">5.9.</span> Having the Center of Mass at the cube&rsquo;s center</h3>
<div id="outline-container-org0105411" class="outline-3">
<h3 id="org0105411"><span class="section-number-3">5.9.</span> Having the Center of Mass at the cube&rsquo;s center</h3>
<div class="outline-text-3" id="text-5-9">
<p>
To make things easier, we take a top platform with no mass, mass-less struts, and we put a payload on top of the platform.
@@ -866,24 +866,24 @@ But how sensitive this decoupling is to the exact position of the CoM still need
</p>
<div id="orgab013d8" class="figure">
<div id="orge91c166" class="figure">
<p><img src="figs/delta_robot_CoM_pos_effect_plant.png" alt="delta_robot_CoM_pos_effect_plant.png" />
</p>
<p><span class="figure-number">Figure 19: </span>Effect of the payload&rsquo;s Center of Mass position with respect to the cube&rsquo;s size on the plant dynamics</p>
</div>
</div>
</div>
<div id="outline-container-org9065437" class="outline-3">
<h3 id="org9065437"><span class="section-number-3">5.10.</span> Conclusion</h3>
<div id="outline-container-orgcac595f" class="outline-3">
<h3 id="orgcac595f"><span class="section-number-3">5.10.</span> Conclusion</h3>
</div>
</div>
<div id="outline-container-org41e56de" class="outline-2">
<h2 id="org41e56de"><span class="section-number-2">6.</span> Conclusion</h2>
<div id="outline-container-org0f914f1" class="outline-2">
<h2 id="org0f914f1"><span class="section-number-2">6.</span> Conclusion</h2>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2025-12-02 Tue 14:32</p>
<p class="date">Created: 2025-12-02 Tue 14:41</p>
</div>
</body>
</html>