Add equations
This commit is contained in:
		
							
								
								
									
										105
									
								
								paper/paper.org
									
									
									
									
									
								
							
							
						
						
									
										105
									
								
								paper/paper.org
									
									
									
									
									
								
							@@ -249,7 +249,7 @@ Stiff positioning platforms should be used if high rotational speeds or heavy pa
 | 
			
		||||
| <<fig:campbell_diagram_real>> Real Part | <<fig:campbell_diagram_imag>> Imaginary Part |
 | 
			
		||||
 | 
			
		||||
* Decentralized Integral Force Feedback
 | 
			
		||||
** Control Schematic
 | 
			
		||||
** System Schematic and Control Architecture
 | 
			
		||||
 | 
			
		||||
Force Sensors are added in series with the actuators as shown in Figure [[fig:system_iff]].
 | 
			
		||||
 | 
			
		||||
@@ -332,7 +332,7 @@ It increase with the rotational speed $\Omega$.
 | 
			
		||||
** Decentralized Integral Force Feedback
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \bm{K}_F(s) = g \cdot \frac{1}{s}
 | 
			
		||||
  K_F(s) = g \cdot \frac{1}{s}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
# Problem of zero with a positive real part
 | 
			
		||||
@@ -341,10 +341,9 @@ This is due to the fact that the zeros of the plant are the poles of the closed
 | 
			
		||||
Thus, for some finite IFF gain, one pole will have a positive real part and the system will be unstable.
 | 
			
		||||
 | 
			
		||||
# General explanation for the Root Locus Plot
 | 
			
		||||
 | 
			
		||||
# MIMO root locus: gain is simultaneously increased for both decentralized controllers
 | 
			
		||||
 | 
			
		||||
# Explain the circles, crosses and black crosses (poles of the controller)
 | 
			
		||||
# transmission zeros
 | 
			
		||||
 | 
			
		||||
#+name: fig:root_locus_pure_iff
 | 
			
		||||
#+caption: Root Locus for the Decentralized Integral Force Feedback
 | 
			
		||||
@@ -370,7 +369,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
 | 
			
		||||
# Equation with the new control law
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \bm{K}_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
 | 
			
		||||
  K_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -429,19 +428,32 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
 | 
			
		||||
* Integral Force Feedback with Parallel Springs
 | 
			
		||||
** Stiffness in Parallel with the Force Sensor
 | 
			
		||||
 | 
			
		||||
# Zeros = remove force sensor
 | 
			
		||||
# We want to have stable zeros => add stiffnesses in parallel
 | 
			
		||||
 | 
			
		||||
#+name: fig:system_parallel_springs
 | 
			
		||||
#+caption: System with added springs $k_p$ in parallel with the actuators
 | 
			
		||||
#+caption: System with added springs in parallel with the actuators
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/system_parallel_springs.pdf]]
 | 
			
		||||
 | 
			
		||||
# Maybe add the fact that this is equivalent to amplified piezo for instance
 | 
			
		||||
# Add reference to cite:souleille18_concep_activ_mount_space_applic
 | 
			
		||||
 | 
			
		||||
** Plant Dynamics
 | 
			
		||||
 | 
			
		||||
We define an adimensional parameter $\alpha$, $0 \le \alpha < 1$, that describes the proportion of the stiffness in parallel with the actuator and force sensor:
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    k_p &= \alpha k \\
 | 
			
		||||
    k_a &= (1 - \alpha) k
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
The overall stiffness $k$ stays constant:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  k = k_a + k_p
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
# Equations: sensed force
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
 | 
			
		||||
@@ -459,30 +471,27 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
With:
 | 
			
		||||
\begin{align}
 | 
			
		||||
  G_{kp} &= \left( \frac{s^2}{{\omega_0^\prime}^2} + 2\xi^\prime \frac{s}{{\omega_0^\prime}^2} + 1 - \frac{\Omega^2}{{\omega_0^\prime}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)^2 \\
 | 
			
		||||
  G_{kz} &= \left( \frac{s^2}{{\omega_0^\prime}^2} + \frac{k_p}{k + k_p} - \frac{\Omega^2}{{\omega_0^\prime}^2} \right) \left( \frac{s^2}{{\omega_0^\prime}^2} + 2\xi^\prime \frac{s}{{\omega_0^\prime}^2} + 1 - \frac{\Omega^2}{{\omega_0^\prime}^2} \right) + \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)^2 \\
 | 
			
		||||
  G_{kc} &= \left( 2 \xi^\prime \frac{s}{\omega_0^\prime} + \frac{k}{k + k_p} \right) \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)
 | 
			
		||||
\end{align}
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    G_{kp} &= \left( \frac{s^2}{{\omega_0}^2} + 2\xi \frac{s}{\omega_0} + 1 - \frac{\Omega^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
    G_{kz} &= \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \right) \left( \frac{s^2}{{\omega_0}^2} + 2\xi \frac{s}{\omega_0} + 1 - \frac{\Omega^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
    G_{kc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
# New parameters
 | 
			
		||||
where:
 | 
			
		||||
- $\omega_0^\prime = \frac{k + k_p}{m}$
 | 
			
		||||
- $\xi^\prime = \frac{c}{2 \sqrt{(k + k_p) m}}$
 | 
			
		||||
# News terms with \alpha are added
 | 
			
		||||
# w0 and xi are the same as before => only the zeros are changing and not the poles.
 | 
			
		||||
 | 
			
		||||
** Effect of the Parallel Stiffness on the Plant Dynamics
 | 
			
		||||
 | 
			
		||||
# Negative Stiffness due to rotation => the stiffness should be larger than that
 | 
			
		||||
 | 
			
		||||
# TODO: Verify that
 | 
			
		||||
# For kp < negative stiffness => real zeros
 | 
			
		||||
# For kp > negative stiffness => complex conjugate zeros
 | 
			
		||||
# For kp < negative stiffness => real zeros => non-minimum phase
 | 
			
		||||
# For kp > negative stiffness => complex conjugate zeros => minimum phase
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \frac{k_p}{k + k_p} - \frac{\Omega^2}{{\omega_0^\prime}^2} > 0
 | 
			
		||||
\end{equation}
 | 
			
		||||
Which is equivalent to
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  k_p > m \Omega^2
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    \alpha > \frac{\Omega^2}{{\omega_0}^2} \\
 | 
			
		||||
    \Leftrightarrow k_p > m \Omega^2
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
#+name: fig:plant_iff_kp
 | 
			
		||||
@@ -490,7 +499,8 @@ Which is equivalent to
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/plant_iff_kp.pdf]]
 | 
			
		||||
 | 
			
		||||
# Location of the zeros as a function of kp
 | 
			
		||||
# Location of the zeros as a function of kp => maybe to complex
 | 
			
		||||
# Do we talk about siso zeros of mimo (transmission zeros)?
 | 
			
		||||
 | 
			
		||||
# Try to show that we don't have anymore real zeros that was making the system non-minimum phase
 | 
			
		||||
 | 
			
		||||
@@ -504,36 +514,31 @@ Which is equivalent to
 | 
			
		||||
# For kp > m Omega => unconditionally stable
 | 
			
		||||
 | 
			
		||||
** Optimal Parallel Stiffness
 | 
			
		||||
 | 
			
		||||
# Explain that we have k = ka + kp constant in order to have the same resonance
 | 
			
		||||
 | 
			
		||||
# Attainable damping generally proportional to the distance between the poles and zeros (add reference, probably preumont)
 | 
			
		||||
# The zero is the poles of the system without the force sensors => w =
 | 
			
		||||
# The zero is the poles of the system without the force sensors => w0 = sqrt(kp/m) +/- Omega ?? => seems not true
 | 
			
		||||
# Thus, small kp is wanted: kp close to m Omega^2 should give the optimal damping but is not acceptable for robustness reasons
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Large Stiffness decreases the attainable damping
 | 
			
		||||
 | 
			
		||||
#+name: fig:root_locus_iff_kps
 | 
			
		||||
#+caption: Root Locus for IFF for several parallel spring stiffnesses $k_p$
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/root_locus_iff_kps.pdf]]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Example with kp = 5 m Omega
 | 
			
		||||
 | 
			
		||||
#+name: fig:root_locus_opt_gain_iff_kp
 | 
			
		||||
#+caption: Root Locus for IFF with $k_p = 5 m \Omega^2$. The poles of the system using the gain that yields the maximum damping ratio are shown by black crosses
 | 
			
		||||
#+attr_latex: :scale 1
 | 
			
		||||
[[file:figs/root_locus_opt_gain_iff_kp.pdf]]
 | 
			
		||||
#+name: fig:root_locus_iff_kps_opt
 | 
			
		||||
#+caption: Root Locus for IFF when parallel stiffness is used
 | 
			
		||||
#+attr_latex: :environment subfigure :width 0.49\linewidth :align c
 | 
			
		||||
| file:figs/root_locus_iff_kps.pdf                 | file:figs/root_locus_opt_gain_iff_kp.pdf                                          |
 | 
			
		||||
| <<fig:root_locus_iff_kps>> Three values of $k_p$ | <<fig:root_locus_opt_gain_iff_kp>> $k_p = 5 m \Omega^2$, optimal damping is shown |
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
* Direct Velocity Feedback
 | 
			
		||||
** Control Schematic
 | 
			
		||||
 | 
			
		||||
** System Schematic and Control Architecture
 | 
			
		||||
# Basic Idea of DVF
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Equation with the control law
 | 
			
		||||
# Equation with the control law: pure gain
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  K_V(s) = g
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
#+name: fig:system_dvf
 | 
			
		||||
#+caption: System with relative velocity sensors and with decentralized controllers $K_V$
 | 
			
		||||
@@ -556,7 +561,7 @@ Which is equivalent to
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
 | 
			
		||||
\frac{s}{k} \frac{1}{G_{vp}}
 | 
			
		||||
\frac{1}{k} \frac{1}{G_{vp}}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
   G_{vz} & G_{vc} \\
 | 
			
		||||
  -G_{vc} & G_{vz}
 | 
			
		||||
@@ -564,11 +569,13 @@ Which is equivalent to
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
With:
 | 
			
		||||
\begin{align}
 | 
			
		||||
  G_{vp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
  G_{vz} &= \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
 | 
			
		||||
  G_{vc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
 | 
			
		||||
\end{align}
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    G_{vp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
    G_{vz} &= s \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) \\
 | 
			
		||||
    G_{vc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
# Show that the rotation have somehow less impact on the plant than for IFF
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								paper/paper.pdf
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								paper/paper.pdf
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										211
									
								
								paper/paper.tex
									
									
									
									
									
								
							
							
						
						
									
										211
									
								
								paper/paper.tex
									
									
									
									
									
								
							@@ -1,4 +1,4 @@
 | 
			
		||||
% Created 2020-06-25 jeu. 10:07
 | 
			
		||||
% Created 2020-06-25 jeu. 17:24
 | 
			
		||||
% Intended LaTeX compiler: pdflatex
 | 
			
		||||
\documentclass{ISMA_USD2020}
 | 
			
		||||
\usepackage[utf8]{inputenc}
 | 
			
		||||
@@ -53,18 +53,20 @@
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
\section{Introduction}
 | 
			
		||||
\label{sec:org5780a8f}
 | 
			
		||||
\label{sec:org7ff5c70}
 | 
			
		||||
\label{sec:introduction}
 | 
			
		||||
Controller Poles are shown by black crosses (
 | 
			
		||||
\begin{tikzpicture} \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){}; \end{tikzpicture}
 | 
			
		||||
).
 | 
			
		||||
Due to gyroscopic effects, the guaranteed robustness properties of Integral Force Feedback do not hold.
 | 
			
		||||
Either the control architecture can be slightly modfied or mechanical changes in the system can be performed.
 | 
			
		||||
This paper has been published
 | 
			
		||||
The Matlab code that was use to obtain the results are available in \cite{dehaeze20_activ_dampin_rotat_posit_platf}.
 | 
			
		||||
 | 
			
		||||
\section{Dynamics of Rotating Positioning Platforms}
 | 
			
		||||
\label{sec:orga8db619}
 | 
			
		||||
\label{sec:org029ca48}
 | 
			
		||||
\subsection{Studied Rotating Positioning Platform}
 | 
			
		||||
\label{sec:org70ddefe}
 | 
			
		||||
\label{sec:org7eec6c5}
 | 
			
		||||
Consider the rotating X-Y stage of Figure \ref{fig:system}.
 | 
			
		||||
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
@@ -82,7 +84,7 @@ Consider the rotating X-Y stage of Figure \ref{fig:system}.
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Equations of Motion}
 | 
			
		||||
\label{sec:org647b64d}
 | 
			
		||||
\label{sec:orgca181a2}
 | 
			
		||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates \([q_1\ q_2] = [d_u\ d_v]\) (describing the position of the mass in the rotating frame).
 | 
			
		||||
 | 
			
		||||
Let's express the kinetic energy \(T\), the potential energy \(V\) of the mass \(m\) (neglecting the rotational energy) as well as the deceptive function \(R\):
 | 
			
		||||
@@ -117,7 +119,7 @@ The Gyroscopic effects can be seen from the two following terms:
 | 
			
		||||
\end{itemize}
 | 
			
		||||
 | 
			
		||||
\subsection{Transfer Functions in the Laplace domain}
 | 
			
		||||
\label{sec:org55c9228}
 | 
			
		||||
\label{sec:orge7e184a}
 | 
			
		||||
 | 
			
		||||
Using the Laplace transformation on the equations of motion \eqref{eq:eom_coupled}, the transfer functions from \([F_u,\ F_v]\) to \([d_u,\ d_v]\) are obtained:
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
@@ -139,7 +141,7 @@ Without rotation \(\Omega = 0\) and the system corresponds to two uncoupled one
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
\subsection{Change of Variables / Parameters for the study}
 | 
			
		||||
\label{sec:orgb7d090c}
 | 
			
		||||
\label{sec:org3cdb1ab}
 | 
			
		||||
 | 
			
		||||
In order this study is more independent on the system parameters, the following change of variable is performed:
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
@@ -171,8 +173,13 @@ With:
 | 
			
		||||
 | 
			
		||||
\(G_{dp}\) describes to poles of the system, \(G_{dz}\) the zeros of the diagonal terms and \(G_{dc}\) the coupling.
 | 
			
		||||
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
\item \(k = \SI{1}{N/m}\), \(m = \SI{1}{kg}\), \(c = \SI{0.05}{\newton\per\meter\second}\)
 | 
			
		||||
\item \(\omega_0 = \SI{1}{\radian\per\second}\), \(\xi = 0.025\)
 | 
			
		||||
\end{itemize}
 | 
			
		||||
 | 
			
		||||
\subsection{System Dynamics and Campbell Diagram}
 | 
			
		||||
\label{sec:org24f5f5f}
 | 
			
		||||
\label{sec:org42dee20}
 | 
			
		||||
The bode plot of \(\bm{G}_d\) is shown in Figure \ref{fig:plant_compare_rotating_speed}.
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
@@ -189,6 +196,14 @@ The bode plot of \(\bm{G}_d\) is shown in Figure \ref{fig:plant_compare_rotating
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
The poles are the roots of \(G_{dp}\).
 | 
			
		||||
Two pairs of complex conjugate poles (supposing small damping \(\xi \approx 0\)):
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    p_1 &= \pm j (\omega_0 - \Omega) \\
 | 
			
		||||
    p_2 &= \pm j (\omega_0 + \Omega)
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
When the rotation speed in non-null, the resonance frequency is split into two pairs of complex conjugate poles.
 | 
			
		||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies.
 | 
			
		||||
@@ -213,9 +228,9 @@ Stiff positioning platforms should be used if high rotational speeds or heavy pa
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Decentralized Integral Force Feedback}
 | 
			
		||||
\label{sec:orgd957fd6}
 | 
			
		||||
\subsection{Control Schematic}
 | 
			
		||||
\label{sec:orgc01d8cf}
 | 
			
		||||
\label{sec:orgda38ad7}
 | 
			
		||||
\subsection{System Schematic and Control Architecture}
 | 
			
		||||
\label{sec:orgf08eb9d}
 | 
			
		||||
 | 
			
		||||
Force Sensors are added in series with the actuators as shown in Figure \ref{fig:system_iff}.
 | 
			
		||||
 | 
			
		||||
@@ -225,8 +240,8 @@ Force Sensors are added in series with the actuators as shown in Figure \ref{fig
 | 
			
		||||
\caption{\label{fig:system_iff}System with Force Sensors in Series with the Actuators. Decentralized Integral Force Feedback is used}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Equations}
 | 
			
		||||
\label{sec:orge5896ec}
 | 
			
		||||
\subsection{Plant Dynamics}
 | 
			
		||||
\label{sec:orgf2f22c2}
 | 
			
		||||
The forces measured by the force sensors are equal to:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\label{eq:measured_force}
 | 
			
		||||
@@ -235,11 +250,12 @@ The forces measured by the force sensors are equal to:
 | 
			
		||||
  \begin{bmatrix} d_u \\ d_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
Reinjecting \eqref{eq:tf_d} into \eqref{eq:measured_force} yields:
 | 
			
		||||
Re-injecting \eqref{eq:tf_d} into \eqref{eq:measured_force} yields:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\label{eq:tf_f}
 | 
			
		||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
Where \(\bm{G}_f\) is a \(2 \times 2\) transfer function matrix.
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\bm{G}_f =
 | 
			
		||||
@@ -249,24 +265,38 @@ Reinjecting \eqref{eq:tf_d} into \eqref{eq:measured_force} yields:
 | 
			
		||||
  G_{fc} &  G_{fz}
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
with:
 | 
			
		||||
\begin{align}
 | 
			
		||||
  G_{fp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
  G_{fz} &= \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
  G_{fc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)
 | 
			
		||||
\end{align}
 | 
			
		||||
 | 
			
		||||
The zeros of the diagonal terms are the roots of \(G_{fz}\) (supposing small damping):
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    z_1 &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \\
 | 
			
		||||
    z_2 &= \pm   \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} }
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
The frequency of the two complex conjugate zeros \(z_1\) is between the frequency of the two pairs of complex conjugate poles \(p_1\) and \(p_2\).
 | 
			
		||||
This is the expected behavior of a collocated pair of actuator and sensor.
 | 
			
		||||
 | 
			
		||||
However, the two real zeros \(z_2\) induces an increase of +2 of the slope without change of phase (Figure \ref{fig:plant_iff_compare_rotating_speed}).
 | 
			
		||||
This represents non-minimum phase behavior.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
The low frequency gain, for \(\Omega < \omega_0\), is no longer zero:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\bm{G}_f =
 | 
			
		||||
\frac{1}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
  \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 & -G_{fc} \\
 | 
			
		||||
  G_{fc} &  \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2
 | 
			
		||||
\label{low_freq_gain_iff_plan}
 | 
			
		||||
  \bm{G}_{f0} = \lim_{\omega \to 0} \left| \bm{G}_f (j\omega) \right| = \begin{bmatrix}
 | 
			
		||||
  \frac{- \Omega^2}{{\omega_0}^2 - \Omega^2} & 0 \\
 | 
			
		||||
  0  & \frac{- \Omega^2}{{\omega_0}^2 - \Omega^2}
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\subsection{Plant Dynamics}
 | 
			
		||||
\label{sec:org0a22a10}
 | 
			
		||||
It increase with the rotational speed \(\Omega\).
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -274,8 +304,16 @@ Reinjecting \eqref{eq:tf_d} into \eqref{eq:measured_force} yields:
 | 
			
		||||
\caption{\label{fig:plant_iff_compare_rotating_speed}Bode plot of \(\bm{G}_f\) for several rotational speeds \(\Omega\)}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Problems with Integral Force Feedback}
 | 
			
		||||
\label{sec:orgd432439}
 | 
			
		||||
\subsection{Decentralized Integral Force Feedback}
 | 
			
		||||
\label{sec:orge1a14b4}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \bm{K}_F(s) = g \cdot \frac{1}{s}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
Also, as one zero has a positive real part, the \textbf{IFF control is no more unconditionally stable}.
 | 
			
		||||
This is due to the fact that the zeros of the plant are the poles of the closed loop system with an infinite gain.
 | 
			
		||||
Thus, for some finite IFF gain, one pole will have a positive real part and the system will be unstable.
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -287,23 +325,26 @@ At low frequency, the gain is very large and thus no force is transmitted betwee
 | 
			
		||||
This means that at low frequency, the system is decoupled (the force sensor removed) and thus the system is unstable.
 | 
			
		||||
 | 
			
		||||
\section{Integral Force Feedback with High Pass Filters}
 | 
			
		||||
\label{sec:org2e1883a}
 | 
			
		||||
\label{sec:org7f551f8}
 | 
			
		||||
\subsection{Modification of the Control Low}
 | 
			
		||||
\label{sec:org218110f}
 | 
			
		||||
\label{sec:org4c39c6d}
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \bm{K}_{F}(s) = \frac{1}{s} \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = \frac{1}{s + \omega_i}
 | 
			
		||||
  \bm{K}_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Feedback Analysis}
 | 
			
		||||
\label{sec:org03090fc}
 | 
			
		||||
 | 
			
		||||
\label{sec:org2673698}
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
\includegraphics[scale=1]{figs/loop_gain_modified_iff.pdf}
 | 
			
		||||
\caption{\label{fig:loop_gain_modified_iff}Bode Plot of the Loop Gain for IFF with and without the HPF}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  g_\text{max} = \omega_i \left( \frac{{\omega_0}^2}{\Omega^2} - 1 \right) \label{eq:iff_gmax}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
\includegraphics[scale=1]{figs/root_locus_modified_iff.pdf}
 | 
			
		||||
@@ -311,7 +352,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Optimal Cut-Off Frequency}
 | 
			
		||||
\label{sec:org6ba4e55}
 | 
			
		||||
\label{sec:org7d8a789}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -326,16 +367,31 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Integral Force Feedback with Parallel Springs}
 | 
			
		||||
\label{sec:org90ec20f}
 | 
			
		||||
\label{sec:org9bc19d0}
 | 
			
		||||
\subsection{Stiffness in Parallel with the Force Sensor}
 | 
			
		||||
\label{sec:org60d6640}
 | 
			
		||||
 | 
			
		||||
\label{sec:orgdfd59fa}
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
\includegraphics[scale=1]{figs/system_parallel_springs.pdf}
 | 
			
		||||
\caption{\label{fig:system_parallel_springs}System with added springs \(k_p\) in parallel with the actuators}
 | 
			
		||||
\caption{\label{fig:system_parallel_springs}System with added springs in parallel with the actuators}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Plant Dynamics}
 | 
			
		||||
\label{sec:org70fc8fa}
 | 
			
		||||
 | 
			
		||||
We define an adimensional parameter \(\alpha\), \(0 \le \alpha < 1\), that describes the proportion of the stiffness in parallel with the actuator and force sensor:
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    k_p &= \alpha k \\
 | 
			
		||||
    k_a &= (1 - \alpha) k
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
The overall stiffness \(k\) stays constant:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  k = k_a + k_p
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
 | 
			
		||||
\bm{G}_k
 | 
			
		||||
@@ -352,27 +408,21 @@ This means that at low frequency, the system is decoupled (the force sensor remo
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
With:
 | 
			
		||||
\begin{align}
 | 
			
		||||
  G_{kp} &= \left( \frac{s^2}{{\omega_0^\prime}^2} + 2\xi^\prime \frac{s}{{\omega_0^\prime}^2} + 1 - \frac{\Omega^2}{{\omega_0^\prime}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)^2 \\
 | 
			
		||||
  G_{kz} &= \left( \frac{s^2}{{\omega_0^\prime}^2} + \frac{k_p}{k + k_p} - \frac{\Omega^2}{{\omega_0^\prime}^2} \right) \left( \frac{s^2}{{\omega_0^\prime}^2} + 2\xi^\prime \frac{s}{{\omega_0^\prime}^2} + 1 - \frac{\Omega^2}{{\omega_0^\prime}^2} \right) + \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)^2 \\
 | 
			
		||||
  G_{kc} &= \left( 2 \xi^\prime \frac{s}{\omega_0^\prime} + \frac{k}{k + k_p} \right) \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)
 | 
			
		||||
\end{align}
 | 
			
		||||
 | 
			
		||||
where:
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
\item \(\omega_0^\prime = \frac{k + k_p}{m}\)
 | 
			
		||||
\item \(\xi^\prime = \frac{c}{2 \sqrt{(k + k_p) m}}\)
 | 
			
		||||
\end{itemize}
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    G_{kp} &= \left( \frac{s^2}{{\omega_0}^2} + 2\xi \frac{s}{\omega_0} + 1 - \frac{\Omega^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
    G_{kz} &= \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \right) \left( \frac{s^2}{{\omega_0}^2} + 2\xi \frac{s}{\omega_0} + 1 - \frac{\Omega^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
    G_{kc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
\subsection{Effect of the Parallel Stiffness on the Plant Dynamics}
 | 
			
		||||
\label{sec:org3ec34fe}
 | 
			
		||||
 | 
			
		||||
\label{sec:orge20adc9}
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \frac{k_p}{k + k_p} - \frac{\Omega^2}{{\omega_0^\prime}^2} > 0
 | 
			
		||||
\end{equation}
 | 
			
		||||
Which is equivalent to
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  k_p > m \Omega^2
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    \alpha > \frac{\Omega^2}{{\omega_0}^2} \\
 | 
			
		||||
    \Leftrightarrow k_p > m \Omega^2
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
@@ -388,26 +438,25 @@ Which is equivalent to
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Optimal Parallel Stiffness}
 | 
			
		||||
\label{sec:org9c47159}
 | 
			
		||||
 | 
			
		||||
\label{sec:orgb14b5c2}
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\begin{subfigure}[c]{0.49\linewidth}
 | 
			
		||||
\includegraphics[width=\linewidth]{figs/root_locus_iff_kps.pdf}
 | 
			
		||||
\caption{\label{fig:root_locus_iff_kps} Three values of \(k_p\)}
 | 
			
		||||
\end{subfigure}
 | 
			
		||||
\begin{subfigure}[c]{0.49\linewidth}
 | 
			
		||||
\includegraphics[width=\linewidth]{figs/root_locus_opt_gain_iff_kp.pdf}
 | 
			
		||||
\caption{\label{fig:root_locus_opt_gain_iff_kp} \(k_p = 5 m \Omega^2\), optimal damping is shown}
 | 
			
		||||
\end{subfigure}
 | 
			
		||||
\caption{\label{fig:root_locus_iff_kps_opt}Root Locus for IFF when parallel stiffness is used}
 | 
			
		||||
\centering
 | 
			
		||||
\includegraphics[scale=1]{figs/root_locus_iff_kps.pdf}
 | 
			
		||||
\caption{\label{fig:root_locus_iff_kps}Root Locus for IFF for several parallel spring stiffnesses \(k_p\)}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
\includegraphics[scale=1]{figs/root_locus_opt_gain_iff_kp.pdf}
 | 
			
		||||
\caption{\label{fig:root_locus_opt_gain_iff_kp}Root Locus for IFF with \(k_p = 5 m \Omega^2\). The poles of the system using the gain that yields the maximum damping ratio are shown by black crosses}
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Direct Velocity Feedback}
 | 
			
		||||
\label{sec:org5cb3076}
 | 
			
		||||
\subsection{Control Schematic}
 | 
			
		||||
\label{sec:orgaaa522f}
 | 
			
		||||
 | 
			
		||||
\label{sec:org7628683}
 | 
			
		||||
\subsection{System Schematic and Control Architecture}
 | 
			
		||||
\label{sec:org6953bc7}
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
\includegraphics[scale=1]{figs/system_dvf.pdf}
 | 
			
		||||
@@ -415,7 +464,7 @@ Which is equivalent to
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\subsection{Equations}
 | 
			
		||||
\label{sec:orge0a4555}
 | 
			
		||||
\label{sec:orgfab42cd}
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
 | 
			
		||||
@@ -425,7 +474,7 @@ Which is equivalent to
 | 
			
		||||
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
 | 
			
		||||
\frac{s}{k} \frac{1}{G_{vp}}
 | 
			
		||||
\frac{1}{k} \frac{1}{G_{vp}}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
   G_{vz} & G_{vc} \\
 | 
			
		||||
  -G_{vc} & G_{vz}
 | 
			
		||||
@@ -433,15 +482,17 @@ Which is equivalent to
 | 
			
		||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
 | 
			
		||||
\end{equation}
 | 
			
		||||
With:
 | 
			
		||||
\begin{align}
 | 
			
		||||
  G_{vp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
  G_{vz} &= \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
 | 
			
		||||
  G_{vc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
 | 
			
		||||
\end{align}
 | 
			
		||||
\begin{subequations}
 | 
			
		||||
  \begin{align}
 | 
			
		||||
    G_{vp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
 | 
			
		||||
    G_{vz} &= s \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) \\
 | 
			
		||||
    G_{vc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
 | 
			
		||||
  \end{align}
 | 
			
		||||
\end{subequations}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Relative Direct Velocity Feedback}
 | 
			
		||||
\label{sec:org5401110}
 | 
			
		||||
\label{sec:org5cf0d6b}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -450,14 +501,14 @@ With:
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Comparison of the Proposed Active Damping Techniques for Rotating Positioning Stages}
 | 
			
		||||
\label{sec:org4cbf163}
 | 
			
		||||
\label{sec:orga2b60a8}
 | 
			
		||||
\subsection{Physical Comparison}
 | 
			
		||||
\label{sec:org5eba275}
 | 
			
		||||
\label{sec:orgb69316c}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Attainable Damping}
 | 
			
		||||
\label{sec:org44635e0}
 | 
			
		||||
\label{sec:org5c23e13}
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
\centering
 | 
			
		||||
@@ -467,7 +518,7 @@ With:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\subsection{Transmissibility and Compliance}
 | 
			
		||||
\label{sec:org58e9594}
 | 
			
		||||
\label{sec:org723fb63}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\begin{figure}[htbp]
 | 
			
		||||
@@ -484,11 +535,11 @@ With:
 | 
			
		||||
\end{figure}
 | 
			
		||||
 | 
			
		||||
\section{Conclusion}
 | 
			
		||||
\label{sec:org292b448}
 | 
			
		||||
\label{sec:orgd52b568}
 | 
			
		||||
\label{sec:conclusion}
 | 
			
		||||
 | 
			
		||||
\section*{Acknowledgment}
 | 
			
		||||
\label{sec:orgff7af07}
 | 
			
		||||
\label{sec:orge4d73e9}
 | 
			
		||||
 | 
			
		||||
\bibliography{ref.bib}
 | 
			
		||||
\end{document}
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user