Start to rewrite all the equations
Before Width: | Height: | Size: 183 KiB After Width: | Height: | Size: 163 KiB |
Before Width: | Height: | Size: 319 KiB After Width: | Height: | Size: 329 KiB |
Before Width: | Height: | Size: 246 KiB After Width: | Height: | Size: 233 KiB |
Before Width: | Height: | Size: 317 KiB After Width: | Height: | Size: 303 KiB |
Before Width: | Height: | Size: 454 KiB After Width: | Height: | Size: 404 KiB |
@ -63,14 +63,14 @@
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-1">
|
||||
<path style="stroke:none;" d="M 2.3125 -8.0625 C 2.125 -8.46875 1.59375 -8.484375 1.21875 -8.3125 C 0.921875 -8.171875 0.421875 -7.75 0.578125 -6.734375 C 0.59375 -6.5 0.625 -6.421875 0.9375 -5.171875 L 0.3125 -4.875 C 0.140625 -4.796875 0.046875 -4.75 0.125 -4.5625 C 0.171875 -4.46875 0.25 -4.515625 0.421875 -4.59375 L 1.015625 -4.875 L 2.015625 -0.984375 C 2.265625 -0.046875 2.484375 0.859375 2.015625 1.078125 C 1.96875 1.09375 1.75 1.203125 1.5 1.109375 C 1.921875 0.875 1.828125 0.53125 1.765625 0.390625 C 1.671875 0.1875 1.453125 0.15625 1.296875 0.234375 C 1.046875 0.34375 0.890625 0.65625 1.0625 1.015625 C 1.25 1.40625 1.734375 1.453125 2.109375 1.28125 C 2.59375 1.046875 2.703125 0.328125 2.71875 -0.078125 C 2.734375 -0.78125 2.453125 -1.96875 2.4375 -2.046875 L 1.625 -5.15625 L 2.40625 -5.515625 C 2.578125 -5.59375 2.671875 -5.640625 2.59375 -5.828125 C 2.546875 -5.921875 2.453125 -5.875 2.296875 -5.8125 L 1.5625 -5.46875 C 1.421875 -6.03125 1.40625 -6 1.25 -6.5625 C 1.203125 -6.78125 1.015625 -7.484375 1.03125 -7.59375 C 1.046875 -7.828125 1.125 -8.03125 1.3125 -8.109375 C 1.359375 -8.125 1.578125 -8.234375 1.828125 -8.15625 C 1.453125 -7.9375 1.515625 -7.59375 1.59375 -7.453125 C 1.6875 -7.25 1.890625 -7.203125 2.0625 -7.296875 C 2.296875 -7.40625 2.46875 -7.71875 2.3125 -8.0625 Z M 2.3125 -8.0625 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-2">
|
||||
<path style="stroke:none;" d="M 3.828125 -3.34375 C 3.78125 -3.4375 3.6875 -3.390625 3.671875 -3.375 C 3.578125 -3.34375 3.578125 -3.3125 3.625 -3.171875 C 3.75 -2.421875 3.75 -1.859375 3.359375 -1.671875 C 3.1875 -1.59375 3.015625 -1.65625 2.859375 -1.984375 C 2.796875 -2.140625 2.734375 -2.34375 2.703125 -2.515625 C 2.671875 -2.671875 2.65625 -2.71875 2.609375 -2.796875 C 2.328125 -3.390625 1.640625 -3.390625 0.84375 -3.125 C 1.046875 -3.4375 1.1875 -3.84375 1.296875 -4.15625 C 1.515625 -4.84375 1.75 -5.4375 2.1875 -5.640625 C 2.234375 -5.671875 2.234375 -5.671875 2.265625 -5.65625 C 2.390625 -5.6875 2.40625 -5.703125 2.484375 -5.671875 C 2.515625 -5.671875 2.515625 -5.671875 2.5625 -5.65625 C 2.125 -5.421875 2.203125 -5.046875 2.25 -4.9375 C 2.3125 -4.796875 2.5 -4.671875 2.75 -4.78125 C 2.96875 -4.890625 3.15625 -5.21875 3 -5.546875 C 2.875 -5.84375 2.515625 -6.046875 2.109375 -5.84375 C 1.84375 -5.734375 1.46875 -5.4375 1.15625 -4.421875 C 1.015625 -3.9375 0.84375 -3.4375 0.5625 -3.109375 L -0.28125 -7.359375 C -0.28125 -7.359375 -0.328125 -7.46875 -0.4375 -7.421875 C -0.65625 -7.328125 -1.296875 -6.9375 -1.5 -6.8125 C -1.578125 -6.765625 -1.65625 -6.703125 -1.59375 -6.546875 C -1.53125 -6.4375 -1.453125 -6.46875 -1.3125 -6.53125 C -0.875 -6.734375 -0.84375 -6.6875 -0.796875 -6.59375 L -0.75 -6.40625 L 0.359375 -0.609375 C 0.390625 -0.46875 0.40625 -0.453125 0.421875 -0.390625 C 0.53125 -0.171875 0.734375 -0.21875 0.8125 -0.265625 C 0.921875 -0.3125 1 -0.453125 1.015625 -0.578125 C 1.03125 -0.6875 0.65625 -2.546875 0.609375 -2.796875 C 0.921875 -2.921875 1.734375 -3.109375 2.015625 -2.515625 C 2.046875 -2.453125 2.0625 -2.421875 2.078125 -2.3125 C 2.109375 -2.203125 2.125 -2.078125 2.171875 -1.984375 C 2.421875 -1.4375 2.96875 -1.265625 3.4375 -1.484375 C 3.703125 -1.609375 3.875 -1.859375 3.921875 -2.28125 C 3.953125 -2.796875 3.828125 -3.34375 3.828125 -3.34375 Z M 3.828125 -3.34375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-3">
|
||||
<symbol overflow="visible" id="glyph2-2">
|
||||
<path style="stroke:none;" d="M 6.59375 -3.296875 C 6.546875 -3.390625 6.453125 -3.34375 6.375 -3.3125 C 6 -3.140625 5.828125 -3.171875 5.5625 -3.421875 L 2.890625 -5.78125 C 2.890625 -5.8125 2.796875 -5.859375 2.796875 -5.890625 C 2.796875 -5.890625 2.890625 -6.109375 2.953125 -6.234375 L 3.96875 -8.1875 C 4.515625 -9.1875 4.859375 -9.390625 5.125 -9.546875 C 5.1875 -9.59375 5.265625 -9.640625 5.1875 -9.796875 C 5.171875 -9.84375 5.109375 -9.875 5.046875 -9.84375 C 4.84375 -9.75 4.625 -9.625 4.421875 -9.515625 C 4.09375 -9.375 3.71875 -9.234375 3.390625 -9.078125 C 3.34375 -9.0625 3.234375 -9 3.328125 -8.8125 C 3.34375 -8.765625 3.390625 -8.75 3.484375 -8.78125 C 3.6875 -8.84375 3.78125 -8.84375 3.84375 -8.71875 C 3.921875 -8.546875 3.75 -8.234375 3.703125 -8.15625 L 1.4375 -3.8125 L 0.828125 -7.046875 C 0.75 -7.40625 0.734375 -7.5 1.40625 -7.796875 C 1.625 -7.90625 1.703125 -7.9375 1.609375 -8.125 C 1.578125 -8.203125 1.484375 -8.1875 1.4375 -8.15625 L 0.296875 -7.59375 L -0.875 -7.09375 C -0.953125 -7.046875 -1.0625 -7 -0.984375 -6.828125 C -0.921875 -6.71875 -0.84375 -6.765625 -0.65625 -6.84375 C -0.546875 -6.90625 -0.390625 -6.96875 -0.265625 -7.015625 C -0.125 -7.0625 -0.0625 -7.046875 -0.015625 -6.953125 C 0.015625 -6.90625 0 -6.890625 0.03125 -6.765625 L 1.09375 -1.359375 C 1.15625 -0.984375 1.171875 -0.890625 0.46875 -0.5625 C 0.3125 -0.484375 0.21875 -0.4375 0.296875 -0.265625 C 0.34375 -0.15625 0.453125 -0.21875 0.484375 -0.21875 L 1.609375 -0.796875 L 2.1875 -1.046875 C 2.390625 -1.125 2.59375 -1.203125 2.796875 -1.296875 C 2.84375 -1.328125 2.96875 -1.390625 2.890625 -1.578125 C 2.84375 -1.671875 2.765625 -1.625 2.59375 -1.546875 C 2.25 -1.390625 2 -1.265625 1.921875 -1.421875 C 1.890625 -1.5 1.859375 -1.71875 1.8125 -1.859375 L 1.53125 -3.453125 L 2.375 -5.125 L 4.546875 -3.1875 C 4.765625 -3 4.78125 -2.96875 4.8125 -2.90625 C 4.9375 -2.640625 4.5625 -2.46875 4.484375 -2.421875 C 4.375 -2.375 4.28125 -2.328125 4.359375 -2.140625 C 4.40625 -2.046875 4.53125 -2.109375 4.53125 -2.109375 C 4.890625 -2.28125 5.25 -2.484375 5.609375 -2.65625 C 5.796875 -2.75 6.3125 -2.9375 6.515625 -3.03125 C 6.5625 -3.0625 6.671875 -3.109375 6.59375 -3.296875 Z M 6.59375 -3.296875 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-3">
|
||||
<path style="stroke:none;" d="M 2.3125 -8.0625 C 2.125 -8.46875 1.59375 -8.484375 1.21875 -8.3125 C 0.921875 -8.171875 0.421875 -7.75 0.578125 -6.734375 C 0.59375 -6.5 0.625 -6.421875 0.9375 -5.171875 L 0.3125 -4.875 C 0.140625 -4.796875 0.046875 -4.75 0.125 -4.5625 C 0.171875 -4.46875 0.25 -4.515625 0.421875 -4.59375 L 1.015625 -4.875 L 2.015625 -0.984375 C 2.265625 -0.046875 2.484375 0.859375 2.015625 1.078125 C 1.96875 1.09375 1.75 1.203125 1.5 1.109375 C 1.921875 0.875 1.828125 0.53125 1.765625 0.390625 C 1.671875 0.1875 1.453125 0.15625 1.296875 0.234375 C 1.046875 0.34375 0.890625 0.65625 1.0625 1.015625 C 1.25 1.40625 1.734375 1.453125 2.109375 1.28125 C 2.59375 1.046875 2.703125 0.328125 2.71875 -0.078125 C 2.734375 -0.78125 2.453125 -1.96875 2.4375 -2.046875 L 1.625 -5.15625 L 2.40625 -5.515625 C 2.578125 -5.59375 2.671875 -5.640625 2.59375 -5.828125 C 2.546875 -5.921875 2.453125 -5.875 2.296875 -5.8125 L 1.5625 -5.46875 C 1.421875 -6.03125 1.40625 -6 1.25 -6.5625 C 1.203125 -6.78125 1.015625 -7.484375 1.03125 -7.59375 C 1.046875 -7.828125 1.125 -8.03125 1.3125 -8.109375 C 1.359375 -8.125 1.578125 -8.234375 1.828125 -8.15625 C 1.453125 -7.9375 1.515625 -7.59375 1.59375 -7.453125 C 1.6875 -7.25 1.890625 -7.203125 2.0625 -7.296875 C 2.296875 -7.40625 2.46875 -7.71875 2.3125 -8.0625 Z M 2.3125 -8.0625 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-4">
|
||||
<path style="stroke:none;" d="M 4.5625 -7.390625 L 3.984375 -9.03125 C 3.90625 -9.28125 3.859375 -9.265625 3.640625 -9.15625 L -0.78125 -7.09375 C -0.96875 -7.015625 -1.046875 -6.96875 -0.953125 -6.796875 C -0.921875 -6.6875 -0.84375 -6.734375 -0.671875 -6.8125 C -0.34375 -6.953125 -0.09375 -7.078125 -0.015625 -6.921875 C 0 -6.890625 0.015625 -6.875 0.046875 -6.703125 L 1.09375 -1.359375 C 1.15625 -0.984375 1.171875 -0.890625 0.46875 -0.5625 C 0.3125 -0.484375 0.21875 -0.4375 0.296875 -0.265625 C 0.34375 -0.15625 0.453125 -0.21875 0.484375 -0.21875 L 1.65625 -0.8125 L 3.015625 -1.40625 C 3.09375 -1.4375 3.203125 -1.5 3.125 -1.671875 C 3.09375 -1.734375 3.015625 -1.734375 3.015625 -1.734375 C 2.984375 -1.734375 2.96875 -1.734375 2.765625 -1.625 C 2.5625 -1.53125 2.515625 -1.515625 2.28125 -1.421875 C 2.015625 -1.34375 1.96875 -1.359375 1.921875 -1.484375 C 1.921875 -1.484375 1.890625 -1.546875 1.875 -1.703125 L 1.375 -4.21875 L 2.25 -4.625 C 2.9375 -4.9375 3.0625 -4.828125 3.1875 -4.546875 C 3.203125 -4.5 3.265625 -4.375 3.328125 -4.078125 C 3.328125 -4.046875 3.34375 -3.96875 3.34375 -3.96875 C 3.375 -3.890625 3.4375 -3.890625 3.5 -3.921875 C 3.578125 -3.953125 3.5625 -3.96875 3.53125 -4.15625 L 3.140625 -6.359375 C 3.109375 -6.46875 3.109375 -6.484375 3.09375 -6.5 C 3.09375 -6.5 3.03125 -6.609375 2.9375 -6.5625 C 2.84375 -6.515625 2.859375 -6.46875 2.875 -6.3125 C 3.03125 -5.515625 2.890625 -5.265625 2.125 -4.90625 L 1.296875 -4.53125 L 0.828125 -7.09375 C 0.75 -7.4375 0.734375 -7.46875 1.125 -7.640625 L 2.328125 -8.203125 C 3.4375 -8.71875 3.78125 -8.515625 4.109375 -7.828125 C 4.203125 -7.625 4.21875 -7.578125 4.296875 -7.328125 C 4.34375 -7.21875 4.359375 -7.1875 4.359375 -7.15625 C 4.390625 -7.109375 4.4375 -7.078125 4.515625 -7.109375 C 4.625 -7.15625 4.609375 -7.203125 4.5625 -7.390625 Z M 4.5625 -7.390625 "/>
|
||||
</symbol>
|
||||
@ -84,13 +84,13 @@
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-1">
|
||||
<path style="stroke:none;" d="M 3.546875 -2.75 C 3.5 -2.828125 3.40625 -2.796875 3.390625 -2.78125 C 3.296875 -2.734375 3.3125 -2.71875 3.34375 -2.53125 C 3.40625 -2.203125 3.484375 -1.75 3.203125 -1.625 C 3.046875 -1.5625 2.921875 -1.671875 2.84375 -1.84375 C 2.796875 -1.953125 2.734375 -2.21875 2.71875 -2.390625 L 2.46875 -3.640625 C 2.4375 -3.828125 2.390625 -4.15625 2.375 -4.171875 C 2.3125 -4.296875 2.171875 -4.328125 2.0625 -4.265625 C 1.828125 -4.171875 1.859375 -3.953125 1.90625 -3.75 L 2.203125 -2.265625 C 2.21875 -2.125 2.28125 -1.859375 2.28125 -1.859375 C 2.234375 -1.59375 2.140625 -1.140625 1.765625 -0.953125 C 1.328125 -0.75 1.125 -1.171875 1.078125 -1.28125 C 0.90625 -1.640625 0.859375 -2.171875 0.84375 -2.734375 C 0.8125 -2.875 0.8125 -2.984375 0.765625 -3.078125 C 0.609375 -3.421875 0.234375 -3.515625 -0.078125 -3.359375 C -0.71875 -3.0625 -0.59375 -2.0625 -0.546875 -1.953125 C -0.515625 -1.875 -0.4375 -1.90625 -0.40625 -1.921875 C -0.3125 -1.96875 -0.328125 -2 -0.328125 -2.09375 C -0.421875 -2.65625 -0.265625 -3.046875 -0.03125 -3.15625 C 0.078125 -3.21875 0.15625 -3.15625 0.234375 -3.015625 C 0.296875 -2.859375 0.3125 -2.71875 0.3125 -2.546875 C 0.375 -1.515625 0.46875 -1.328125 0.546875 -1.15625 C 0.59375 -1.0625 0.734375 -0.765625 1.078125 -0.671875 C 1.3125 -0.59375 1.59375 -0.65625 1.8125 -0.765625 C 2.21875 -0.953125 2.3125 -1.265625 2.4375 -1.578125 C 2.78125 -1.21875 3.1875 -1.40625 3.28125 -1.453125 C 3.484375 -1.546875 3.59375 -1.75 3.609375 -2.015625 C 3.625 -2.34375 3.5625 -2.71875 3.546875 -2.75 Z M 3.546875 -2.75 "/>
|
||||
<path style="stroke:none;" d="M 3.6875 -5.375 L 3.3125 -6.53125 C 3.21875 -6.734375 3.1875 -6.71875 3.03125 -6.640625 L -0.34375 -5.0625 C -0.46875 -5.015625 -0.546875 -4.984375 -0.484375 -4.84375 C -0.4375 -4.75 -0.359375 -4.78125 -0.234375 -4.828125 C -0.234375 -4.828125 -0.109375 -4.890625 0 -4.9375 C 0.15625 -4.96875 0.171875 -4.96875 0.203125 -4.921875 C 0.21875 -4.875 0.234375 -4.796875 0.234375 -4.765625 L 0.9375 -1.078125 C 1 -0.78125 1.015625 -0.75 0.515625 -0.53125 C 0.421875 -0.484375 0.328125 -0.4375 0.390625 -0.296875 C 0.421875 -0.234375 0.484375 -0.21875 0.53125 -0.25 C 0.71875 -0.34375 1.171875 -0.578125 1.359375 -0.671875 L 1.859375 -0.875 C 2.03125 -0.953125 2.1875 -1.03125 2.34375 -1.09375 C 2.390625 -1.109375 2.5 -1.15625 2.4375 -1.296875 C 2.390625 -1.390625 2.3125 -1.359375 2.171875 -1.296875 C 2.171875 -1.296875 2 -1.21875 1.828125 -1.140625 C 1.6875 -1.09375 1.625 -1.0625 1.578125 -1.171875 C 1.578125 -1.1875 1.5625 -1.203125 1.546875 -1.296875 L 1.21875 -3.0625 L 1.875 -3.375 C 2.359375 -3.59375 2.5 -3.53125 2.59375 -3.328125 C 2.640625 -3.234375 2.640625 -3.21875 2.671875 -3.015625 C 2.671875 -3 2.671875 -2.953125 2.6875 -2.9375 C 2.703125 -2.875 2.796875 -2.859375 2.84375 -2.890625 C 2.9375 -2.921875 2.90625 -2.96875 2.890625 -3.09375 L 2.609375 -4.609375 C 2.59375 -4.625 2.5625 -4.734375 2.5625 -4.734375 C 2.53125 -4.796875 2.46875 -4.8125 2.421875 -4.78125 C 2.328125 -4.75 2.34375 -4.6875 2.375 -4.5625 C 2.46875 -4 2.328125 -3.84375 1.78125 -3.59375 L 1.15625 -3.296875 L 0.828125 -5.078125 C 0.78125 -5.265625 0.78125 -5.3125 1.046875 -5.421875 L 2.015625 -5.890625 C 2.859375 -6.28125 3.109375 -6.140625 3.359375 -5.609375 C 3.453125 -5.40625 3.484375 -5.25 3.5 -5.21875 C 3.53125 -5.15625 3.578125 -5.109375 3.65625 -5.15625 C 3.75 -5.203125 3.734375 -5.265625 3.6875 -5.375 Z M 3.6875 -5.375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-2">
|
||||
<path style="stroke:none;" d="M 2.3125 -3.875 C 2.078125 -4.375 1.78125 -4.234375 1.765625 -4.21875 C 1.59375 -4.140625 1.5 -3.890625 1.578125 -3.71875 C 1.625 -3.609375 1.71875 -3.59375 1.75 -3.578125 C 1.921875 -3.53125 2.125 -3.4375 2.25 -3.171875 C 2.375 -2.890625 2.59375 -1.34375 1.84375 -0.984375 C 1.328125 -0.75 1.109375 -1.203125 1.0625 -1.328125 C 0.921875 -1.609375 0.875 -2 0.84375 -2.71875 C 0.8125 -2.875 0.8125 -2.984375 0.765625 -3.078125 C 0.609375 -3.421875 0.234375 -3.515625 -0.078125 -3.359375 C -0.71875 -3.0625 -0.59375 -2.0625 -0.546875 -1.953125 C -0.515625 -1.875 -0.4375 -1.90625 -0.40625 -1.921875 C -0.3125 -1.96875 -0.328125 -2 -0.328125 -2.09375 C -0.421875 -2.65625 -0.28125 -3.046875 -0.03125 -3.15625 C 0.078125 -3.21875 0.15625 -3.15625 0.234375 -3.015625 C 0.296875 -2.859375 0.3125 -2.71875 0.3125 -2.546875 C 0.375 -1.71875 0.421875 -1.40625 0.53125 -1.1875 C 0.828125 -0.5625 1.421875 -0.578125 1.90625 -0.8125 C 2.96875 -1.296875 2.546875 -3.34375 2.3125 -3.875 Z M 2.3125 -3.875 "/>
|
||||
<path style="stroke:none;" d="M 3.546875 -2.75 C 3.5 -2.828125 3.40625 -2.796875 3.390625 -2.78125 C 3.296875 -2.734375 3.3125 -2.71875 3.34375 -2.53125 C 3.40625 -2.203125 3.484375 -1.75 3.203125 -1.625 C 3.046875 -1.5625 2.921875 -1.671875 2.84375 -1.84375 C 2.796875 -1.953125 2.734375 -2.21875 2.71875 -2.390625 L 2.46875 -3.640625 C 2.4375 -3.828125 2.390625 -4.15625 2.375 -4.171875 C 2.3125 -4.296875 2.171875 -4.328125 2.0625 -4.265625 C 1.828125 -4.171875 1.859375 -3.953125 1.90625 -3.75 L 2.203125 -2.265625 C 2.21875 -2.125 2.28125 -1.859375 2.28125 -1.859375 C 2.234375 -1.59375 2.140625 -1.140625 1.765625 -0.953125 C 1.328125 -0.75 1.125 -1.171875 1.078125 -1.28125 C 0.90625 -1.640625 0.859375 -2.171875 0.84375 -2.734375 C 0.8125 -2.875 0.8125 -2.984375 0.765625 -3.078125 C 0.609375 -3.421875 0.234375 -3.515625 -0.078125 -3.359375 C -0.71875 -3.0625 -0.59375 -2.0625 -0.546875 -1.953125 C -0.515625 -1.875 -0.4375 -1.90625 -0.40625 -1.921875 C -0.3125 -1.96875 -0.328125 -2 -0.328125 -2.09375 C -0.421875 -2.65625 -0.265625 -3.046875 -0.03125 -3.15625 C 0.078125 -3.21875 0.15625 -3.15625 0.234375 -3.015625 C 0.296875 -2.859375 0.3125 -2.71875 0.3125 -2.546875 C 0.375 -1.515625 0.46875 -1.328125 0.546875 -1.15625 C 0.59375 -1.0625 0.734375 -0.765625 1.078125 -0.671875 C 1.3125 -0.59375 1.59375 -0.65625 1.8125 -0.765625 C 2.21875 -0.953125 2.3125 -1.265625 2.4375 -1.578125 C 2.78125 -1.21875 3.1875 -1.40625 3.28125 -1.453125 C 3.484375 -1.546875 3.59375 -1.75 3.609375 -2.015625 C 3.625 -2.34375 3.5625 -2.71875 3.546875 -2.75 Z M 3.546875 -2.75 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-3">
|
||||
<path style="stroke:none;" d="M 3.6875 -5.375 L 3.3125 -6.53125 C 3.21875 -6.734375 3.1875 -6.71875 3.03125 -6.640625 L -0.34375 -5.0625 C -0.46875 -5.015625 -0.546875 -4.984375 -0.484375 -4.84375 C -0.4375 -4.75 -0.359375 -4.78125 -0.234375 -4.828125 C -0.234375 -4.828125 -0.109375 -4.890625 0 -4.9375 C 0.15625 -4.96875 0.171875 -4.96875 0.203125 -4.921875 C 0.21875 -4.875 0.234375 -4.796875 0.234375 -4.765625 L 0.9375 -1.078125 C 1 -0.78125 1.015625 -0.75 0.515625 -0.53125 C 0.421875 -0.484375 0.328125 -0.4375 0.390625 -0.296875 C 0.421875 -0.234375 0.484375 -0.21875 0.53125 -0.25 C 0.71875 -0.34375 1.171875 -0.578125 1.359375 -0.671875 L 1.859375 -0.875 C 2.03125 -0.953125 2.1875 -1.03125 2.34375 -1.09375 C 2.390625 -1.109375 2.5 -1.15625 2.4375 -1.296875 C 2.390625 -1.390625 2.3125 -1.359375 2.171875 -1.296875 C 2.171875 -1.296875 2 -1.21875 1.828125 -1.140625 C 1.6875 -1.09375 1.625 -1.0625 1.578125 -1.171875 C 1.578125 -1.1875 1.5625 -1.203125 1.546875 -1.296875 L 1.21875 -3.0625 L 1.875 -3.375 C 2.359375 -3.59375 2.5 -3.53125 2.59375 -3.328125 C 2.640625 -3.234375 2.640625 -3.21875 2.671875 -3.015625 C 2.671875 -3 2.671875 -2.953125 2.6875 -2.9375 C 2.703125 -2.875 2.796875 -2.859375 2.84375 -2.890625 C 2.9375 -2.921875 2.90625 -2.96875 2.890625 -3.09375 L 2.609375 -4.609375 C 2.59375 -4.625 2.5625 -4.734375 2.5625 -4.734375 C 2.53125 -4.796875 2.46875 -4.8125 2.421875 -4.78125 C 2.328125 -4.75 2.34375 -4.6875 2.375 -4.5625 C 2.46875 -4 2.328125 -3.84375 1.78125 -3.59375 L 1.15625 -3.296875 L 0.828125 -5.078125 C 0.78125 -5.265625 0.78125 -5.3125 1.046875 -5.421875 L 2.015625 -5.890625 C 2.859375 -6.28125 3.109375 -6.140625 3.359375 -5.609375 C 3.453125 -5.40625 3.484375 -5.25 3.5 -5.21875 C 3.53125 -5.15625 3.578125 -5.109375 3.65625 -5.15625 C 3.75 -5.203125 3.734375 -5.265625 3.6875 -5.375 Z M 3.6875 -5.375 "/>
|
||||
<path style="stroke:none;" d="M 2.3125 -3.875 C 2.078125 -4.375 1.78125 -4.234375 1.765625 -4.21875 C 1.59375 -4.140625 1.5 -3.890625 1.578125 -3.71875 C 1.625 -3.609375 1.71875 -3.59375 1.75 -3.578125 C 1.921875 -3.53125 2.125 -3.4375 2.25 -3.171875 C 2.375 -2.890625 2.59375 -1.34375 1.84375 -0.984375 C 1.328125 -0.75 1.109375 -1.203125 1.0625 -1.328125 C 0.921875 -1.609375 0.875 -2 0.84375 -2.71875 C 0.8125 -2.875 0.8125 -2.984375 0.765625 -3.078125 C 0.609375 -3.421875 0.234375 -3.515625 -0.078125 -3.359375 C -0.71875 -3.0625 -0.59375 -2.0625 -0.546875 -1.953125 C -0.515625 -1.875 -0.4375 -1.90625 -0.40625 -1.921875 C -0.3125 -1.96875 -0.328125 -2 -0.328125 -2.09375 C -0.421875 -2.65625 -0.28125 -3.046875 -0.03125 -3.15625 C 0.078125 -3.21875 0.15625 -3.15625 0.234375 -3.015625 C 0.296875 -2.859375 0.3125 -2.71875 0.3125 -2.546875 C 0.375 -1.71875 0.421875 -1.40625 0.53125 -1.1875 C 0.828125 -0.5625 1.421875 -0.578125 1.90625 -0.8125 C 2.96875 -1.296875 2.546875 -3.34375 2.3125 -3.875 Z M 2.3125 -3.875 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph4-0">
|
||||
<path style="stroke:none;" d=""/>
|
||||
@ -195,27 +195,9 @@
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -29.975839 -29.618459 L -41.95923 -3.926913 L -36.820138 -1.529453 L -24.840658 -27.220998 Z M -29.975839 -29.618459 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -29.975839 -29.618459 L -36.820138 -1.529453 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -41.95923 -3.926913 L -24.840658 -27.220998 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-1" x="84.734346" y="120.805071"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-1" x="89.780064" y="120.09975"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-1" x="132.449976" y="138.872969"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-1" x="137.495694" y="138.167647"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3.924956 -41.957754 L 1.531407 -36.818662 L 27.222953 -24.839182 L 29.616502 -29.978274 Z M 3.924956 -41.957754 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 29.616502 -29.978274 L 1.531407 -36.818662 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3.924956 -41.957754 L 27.222953 -24.839182 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-1" x="125.254778" y="170.059819"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-2" x="130.300074" y="169.353592"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -51.901064 -42.966799 L -36.48379 -35.778329 L -38.88125 -30.643148 L -54.294614 -37.831619 Z M -51.901064 -42.966799 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -34.176283 -31.577884 L -37.230796 -33.001499 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.054516 0.0000829694 L 1.60962 1.684316 L 3.085219 -0.000595614 L 1.610657 -1.682163 Z M 6.054516 0.0000829694 " transform="matrix(0.905193,-0.422084,-0.422084,-0.905193,96.929687,155.53215)"/>
|
||||
@ -223,7 +205,7 @@
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.055226 -0.0000854737 L 1.61033 1.684148 L 3.085929 -0.000764057 L 1.607822 -1.680679 Z M 6.055226 -0.0000854737 " transform="matrix(-0.905193,0.422084,0.422084,0.905193,79.668683,163.580984)"/>
|
||||
<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -41.95923 -3.926913 L -47.09441 -6.324373 L -47.39947 -9.210712 L -52.210035 -5.960648 L -52.816245 -11.737237 L -57.630721 -8.487172 L -58.233019 -14.263761 L -63.047495 -11.013697 L -63.649794 -16.790286 L -66.058987 -15.163298 L -72.785956 -18.303854 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-2" x="72.273589" y="128.860217"/>
|
||||
<use xlink:href="#glyph2-1" x="72.273589" y="128.860217"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 42.968753 -51.899588 L 35.780283 -36.486225 L 30.641191 -38.879774 L 37.829662 -54.297048 Z M 42.968753 -51.899588 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 31.575927 -34.178718 L 32.999542 -37.233231 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
@ -232,41 +214,53 @@
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.053061 -0.00123527 L 1.608165 1.682998 L 3.088961 -0.0000220341 L 1.609202 -1.683482 Z M 6.053061 -0.00123527 " transform="matrix(0.422084,0.905193,0.905193,-0.422084,174.418876,176.762479)"/>
|
||||
<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3.924956 -41.957754 L 6.322416 -47.096845 L 9.212666 -47.397994 L 5.958691 -52.21247 L 11.739191 -52.814769 L 8.485215 -57.629245 L 14.261804 -58.231543 L 11.01174 -63.046019 L 16.788329 -63.652229 L 15.165252 -66.057511 L 18.301897 -72.788391 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-2" x="137.85037" y="187.120948"/>
|
||||
<use xlink:href="#glyph2-1" x="137.85037" y="187.120948"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -24.336136 -55.134009 L -44.88859 -64.719939 L -37.70012 -80.133302 L -17.147665 -70.551283 Z M -24.336136 -55.134009 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-3" x="96.950402" y="195.936164"/>
|
||||
<use xlink:href="#glyph2-2" x="96.950402" y="195.937163"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-3" x="105.240367" y="193.718023"/>
|
||||
<use xlink:href="#glyph3-1" x="105.239945" y="193.718117"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -27.410204 -28.417773 L -13.033263 -59.24841 L -16.087777 -60.675936 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.051483 0.000205036 L 1.610132 1.682785 L 3.087383 0.00141827 L 1.607624 -1.682041 Z M 6.051483 0.000205036 " transform="matrix(-0.905193,0.422084,0.422084,0.905193,120.133922,182.199488)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-3" x="121.359543" y="193.460193"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-2" x="126.404839" y="192.753967"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -34.821603 -59.47525 L -42.236913 -43.573008 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.054581 -0.00172771 L 1.609684 1.682438 L 3.086951 0.00109892 L 1.607222 -1.682372 Z M 6.054581 -0.00172771 " transform="matrix(-0.422074,-0.905203,-0.905203,0.422074,92.647666,168.887603)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-4" x="80.009126" y="178.256791"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-1" x="86.439382" y="176.904746"/>
|
||||
<use xlink:href="#glyph3-2" x="86.439805" y="176.905651"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 74.319557 -18.51896 L 53.763192 -28.10098 L 60.951662 -43.514343 L 81.504116 -33.932323 Z M 74.319557 -18.51896 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-3" x="195.479873" y="159.362904"/>
|
||||
<use xlink:href="#glyph2-2" x="195.479873" y="159.363903"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-3" x="203.770743" y="157.144341"/>
|
||||
<use xlink:href="#glyph3-1" x="203.77032" y="157.144434"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 28.419727 -27.408728 L 59.250365 -13.031787 L 61.874665 -18.659757 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.05442 -0.000360265 L 1.609524 1.683873 L 3.086776 0.00250582 L 1.610561 -1.682607 Z M 6.05442 -0.000360265 " transform="matrix(0.422084,0.905193,0.905193,-0.422084,194.233917,138.863181)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-3" x="198.414283" y="138.804053"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-3" x="203.460001" y="138.098732"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 56.907658 -36.020812 L 43.574962 -42.235437 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.053839 0.00130487 L 1.607289 1.681926 L 3.088101 -0.00106596 L 1.608371 -1.684537 Z M 6.053839 0.00130487 " transform="matrix(-0.905203,0.422074,0.422074,0.905203,179.725495,163.783496)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-4" x="180.903703" y="174.943844"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-2" x="187.333055" y="173.592221"/>
|
||||
<use xlink:href="#glyph3-3" x="187.333055" y="173.592221"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -113.386342 -113.388777 L -61.326643 -113.388777 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.053923 -0.00153737 L 1.607083 1.684116 L 3.089363 -0.00153737 L 1.607083 -1.68328 Z M 6.053923 -0.00153737 " transform="matrix(0.998778,0,0,-0.998778,69.547224,236.04534)"/>
|
||||
@ -277,7 +271,7 @@
|
||||
<use xlink:href="#glyph4-2" x="72.791955" y="249.244953"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph5-1" x="76.219762" y="250.737127"/>
|
||||
<use xlink:href="#glyph5-1" x="76.219762" y="250.738126"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -113.386342 -113.388777 L -113.386342 -61.329078 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.051488 -0.000897507 L 1.608559 1.684756 L 3.086928 -0.000897507 L 1.608559 -1.68264 Z M 6.051488 -0.000897507 " transform="matrix(0,-0.998778,-0.998778,0,20.385822,186.883938)"/>
|
||||
@ -312,7 +306,7 @@
|
||||
<use xlink:href="#glyph2-6" x="178.799278" y="95.880561"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-1" x="182.537461" y="95.783852"/>
|
||||
<use xlink:href="#glyph3-2" x="182.537461" y="95.783852"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -0.00171655 -0.000240399 L -22.001252 47.182407 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.053998 0.00178742 L 1.607449 1.682476 L 3.088245 -0.000544017 L 1.608486 -1.684004 Z M 6.053998 0.00178742 " transform="matrix(-0.422084,-0.905193,-0.905193,0.422084,112.857693,78.240999)"/>
|
||||
@ -323,7 +317,7 @@
|
||||
<use xlink:href="#glyph2-6" x="100.524031" y="80.113848"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-2" x="104.261731" y="80.018466"/>
|
||||
<use xlink:href="#glyph3-3" x="104.261731" y="80.018466"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-dasharray:2.98883,2.98883;stroke-miterlimit:10;" d="M -0.00171655 -0.000240399 L 56.692552 -0.000240399 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 42.518985 -0.000240399 C 42.518985 6.206562 41.157947 12.346876 38.537558 17.970935 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
|
Before Width: | Height: | Size: 64 KiB After Width: | Height: | Size: 63 KiB |
Before Width: | Height: | Size: 55 KiB After Width: | Height: | Size: 56 KiB |
@ -1395,7 +1395,6 @@ One can see that for $k_p > m \Omega^2$, the systems shows alternating complex c
|
||||
|
||||
#+begin_src matlab
|
||||
kp = 0;
|
||||
cp = 0;
|
||||
|
||||
w0p = sqrt((k + kp)/m);
|
||||
xip = c/(2*sqrt((k+kp)*m));
|
||||
@ -1407,7 +1406,7 @@ One can see that for $k_p > m \Omega^2$, the systems shows alternating complex c
|
||||
|
||||
#+begin_src matlab
|
||||
kp = 0.5*m*W^2;
|
||||
cp = 0;
|
||||
k = 1 - kp;
|
||||
|
||||
w0p = sqrt((k + kp)/m);
|
||||
xip = c/(2*sqrt((k+kp)*m));
|
||||
@ -1419,7 +1418,7 @@ One can see that for $k_p > m \Omega^2$, the systems shows alternating complex c
|
||||
|
||||
#+begin_src matlab
|
||||
kp = 1.5*m*W^2;
|
||||
cp = 0;
|
||||
k = 1 - kp;
|
||||
|
||||
w0p = sqrt((k + kp)/m);
|
||||
xip = c/(2*sqrt((k+kp)*m));
|
||||
@ -1442,6 +1441,7 @@ One can see that for $k_p > m \Omega^2$, the systems shows alternating complex c
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]');
|
||||
ylim([1e-5, 2e1]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
@ -1704,6 +1704,7 @@ It is shown that large values of $k_p$ decreases the attainable damping.
|
||||
hold on;
|
||||
for kp_i = 1:length(kps)
|
||||
kp = kps(kp_i);
|
||||
k = 1 - kp;
|
||||
|
||||
w0p = sqrt((k + kp)/m);
|
||||
xip = c/(2*sqrt((k+kp)*m));
|
||||
@ -1791,7 +1792,7 @@ Let's take $k_p = 5 m \Omega^2$ and find the optimal IFF control gain $g$ such t
|
||||
|
||||
#+begin_src matlab
|
||||
kp = 5*m*W^2;
|
||||
cp = 0.01;
|
||||
k = 1 - kp;
|
||||
|
||||
w0p = sqrt((k + kp)/m);
|
||||
xip = c/(2*sqrt((k+kp)*m));
|
||||
|
317
paper/paper.org
@ -1,4 +1,4 @@
|
||||
#+TITLE: Active Damping of Rotating Positioning Platforms
|
||||
#+TITLE: Decentralized Active Damping of Rotating Positioning Platforms
|
||||
:DRAWER:
|
||||
#+LATEX_CLASS: ISMA_USD2020
|
||||
#+OPTIONS: toc:nil
|
||||
@ -77,6 +77,9 @@ Controller Poles are shown by black crosses (
|
||||
|
||||
** Describe the paper itself / the problem which is addressed :ignore:
|
||||
|
||||
Due to gyroscopic effects, the guaranteed robustness properties of Integral Force Feedback do not hold.
|
||||
Either the control architecture can be slightly modfied or mechanical changes in the system can be performed.
|
||||
|
||||
** Introduce Each part of the paper :ignore:
|
||||
|
||||
This paper has been published
|
||||
@ -84,6 +87,9 @@ The Matlab code that was use to obtain the results are available in cite:dehaeze
|
||||
|
||||
* Dynamics of Rotating Positioning Platforms
|
||||
** Studied Rotating Positioning Platform
|
||||
# Introduce the fact that we need a simple system representing the rotating aspect.
|
||||
|
||||
|
||||
# Simplest system where gyroscopic forces can be studied
|
||||
Consider the rotating X-Y stage of Figure [[fig:system]].
|
||||
|
||||
@ -112,64 +118,71 @@ Consider the rotating X-Y stage of Figure [[fig:system]].
|
||||
# #+attr_latex: :width 0.5\linewidth
|
||||
# [[file:figs/cedrat_xy25xs.jpg]]
|
||||
|
||||
** Equation of Motion
|
||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates $u$ and $v$ (describing the position of the mass in the rotating frame).
|
||||
** Equations of Motion
|
||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates $[q_1\ q_2] = [d_u\ d_v]$ (describing the position of the mass in the rotating frame).
|
||||
|
||||
Let's express the kinetic energy $T$ and the potential energy $V$ of the mass $m$ (neglecting the rotational energy):
|
||||
|
||||
Dissipation function $R$
|
||||
Kinetic energy $T$
|
||||
Potential energy $V$
|
||||
Let's express the kinetic energy $T$, the potential energy $V$ of the mass $m$ (neglecting the rotational energy) as well as the deceptive function $R$:
|
||||
#+name: eq:energy_functions_lagrange
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
T & = \frac{1}{2} m \left( \left( \dot{u} - \Omega v \right)^2 + \left( \dot{v} + \Omega u \right)^2 \right) \\
|
||||
R & = \frac{1}{2} c \left( \dot{u}^2 + \dot{v}^2 \right) \\
|
||||
V & = \frac{1}{2} k \left( u^2 + v^2 \right)
|
||||
T & = \frac{1}{2} m \left( \left( \dot{d}_u - \Omega d_v \right)^2 + \left( \dot{d}_v + \Omega d_u \right)^2 \right) \\
|
||||
V & = \frac{1}{2} k \left( {d_u}^2 + {d_v}^2 \right) \\
|
||||
R & = \frac{1}{2} c \left( \dot{d}_u{}^2 + \dot{d}_v{}^2 \right)
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The Lagrangian is the kinetic energy minus the potential energy:
|
||||
\begin{equation}
|
||||
L = T - V
|
||||
\end{equation}
|
||||
|
||||
From the Lagrange's equations of the second kind, the equation of motion is obtained ($q_1 = u$, $q_2 = v$).
|
||||
The equations of motion are derived from the Lagrangian equation:
|
||||
#+name: eq:lagrangian_equations
|
||||
\begin{equation}
|
||||
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
|
||||
\end{equation}
|
||||
with $Q_i$ is the generalized force associated with the generalized variable $q_i$ ($Q_1 = F_u$ and $Q_2 = F_v$).
|
||||
|
||||
with $L = T - V$ is the Lagrangian and $Q_i$ is the generalized force associated with the generalized variable $q_i$ ($Q_1 = F_u$ and $Q_2 = F_v$).
|
||||
|
||||
#+name: eq:eom_coupled
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
m \ddot{u} + c \dot{u} + ( k - m \Omega ) u &= F_u + 2 m \Omega \dot{v} \\
|
||||
m \ddot{v} + c \dot{v} + ( k \underbrace{-\,m \Omega}_{\text{Centrif.}} ) v &= F_v \underbrace{-\,2 m \Omega \dot{u}}_{\text{Coriolis}}
|
||||
m \ddot{d}_u + c \dot{d}_u + ( k - m \Omega ) d_u &= F_u + 2 m \Omega \dot{d}_v \\
|
||||
m \ddot{d}_v + c \dot{d}_v + ( k \underbrace{-\,m \Omega}_{\text{Centrif.}} ) d_v &= F_v \underbrace{-\,2 m \Omega \dot{d}_u}_{\text{Coriolis}}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
# Explain Gyroscopic effects
|
||||
The Gyroscopic effects can be seen from the two following terms:
|
||||
- Coriolis Forces: coupling
|
||||
- Centrifugal forces: negative stiffness
|
||||
|
||||
Without the coupling terms, each equation is the equation of a one degree of freedom mass-spring system with mass $m$ and stiffness $k- m\dot{\theta}^2$.
|
||||
Thus, the term $- m\dot{\theta}^2$ acts like a negative stiffness (due to *centrifugal forces*).
|
||||
|
||||
|
||||
** Transfer Functions in the Laplace domain
|
||||
|
||||
# Laplace Domain
|
||||
Using the Laplace transformation on the equations of motion eqref:eq:eom_coupled, the transfer functions from $[F_u,\ F_v]$ to $[d_u,\ d_v]$ are obtained:
|
||||
#+name: eq:oem_laplace_domain
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
u &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u + \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v \\
|
||||
v &= \frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u + \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v
|
||||
d_u &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u + \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v \\
|
||||
d_v &= \frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u + \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
|
||||
Without rotation $\Omega = 0$ and the system corresponds to two uncoupled one degree of freedom mass-spring-damper systems:
|
||||
#+name: eq:oem_no_rotation
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
d_u &= \frac{1}{m s^2 + cs + k} F_u \\
|
||||
d_v &= \frac{1}{m s^2 + cs + k} F_v
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
** Change of Variables / Parameters for the study
|
||||
|
||||
# Change of variables
|
||||
In order this study is more independent on the system parameters, the following change of variable is performed:
|
||||
- $\omega_0 = \sqrt{\frac{k}{m}}$: Natural frequency of the mass-spring system in $\si{\radian/\s}$
|
||||
- $\xi = \frac{c}{2 \sqrt{k m}}$: Damping ratio
|
||||
|
||||
#+name: eq:tf_d
|
||||
\begin{equation}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\bm{G}_d
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} = \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
Where $\bm{G}_d$ is a $2 \times 2$ transfer function matrix.
|
||||
|
||||
@ -189,69 +202,18 @@ With:
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
- $\omega_0 = \sqrt{\frac{k}{m}}$: Natural frequency of the mass-spring system in $\si{\radian/\s}$
|
||||
- $\xi$ damping ratio
|
||||
$G_{dp}$ describes to poles of the system, $G_{dz}$ the zeros of the diagonal terms and $G_{dc}$ the coupling.
|
||||
|
||||
# Parameters
|
||||
- $k = \SI{1}{N/m}$, $m = \SI{1}{kg}$, $c = \SI{0.05}{\newton\per\meter\second}$
|
||||
- $\omega_0 = \SI{1}{\radian\per\second}$, $\xi = 0.025$
|
||||
|
||||
** Constant Rotational Speed
|
||||
To simplify, let's consider a constant rotational speed $\dot{\theta} = \Omega$ and thus $\ddot{\theta} = 0$.
|
||||
|
||||
#+NAME: eq:coupledplant
|
||||
\begin{equation}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\frac{1}{(m s^2 + (k - m{\omega_0}^2))^2 + (2 m {\omega_0} s)^2}
|
||||
\begin{bmatrix}
|
||||
ms^2 + (k-m{\omega_0}^2) & 2 m \omega_0 s \\
|
||||
-2 m \omega_0 s & ms^2 + (k-m{\omega_0}^2) \\
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
# Explain each term
|
||||
|
||||
#+NAME: eq:coupled_plant
|
||||
\begin{equation}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\frac{\frac{1}{k}}{\left( \frac{s^2}{{\omega_0}^2} + (1 - \frac{{\Omega}^2}{{\omega_0}^2}) \right)^2 + \left( 2 \frac{{\Omega} s}{{\omega_0}^2} \right)^2}
|
||||
\begin{bmatrix}
|
||||
\frac{s^2}{{\omega_0}^2} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} & 2 \frac{\Omega s}{{\omega_0}^2} \\
|
||||
-2 \frac{\Omega s}{{\omega_0}^2} & \frac{s^2}{{\omega_0}^2} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
When the rotation speed is null, the coupling terms are equal to zero and the diagonal terms corresponds to one degree of freedom mass spring system.
|
||||
#+NAME: eq:coupled_plant_no_rot
|
||||
\begin{equation}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\frac{\frac{1}{k}}{\frac{s^2}{{\omega_0}^2} + 1}
|
||||
\begin{bmatrix}
|
||||
1 & 0 \\
|
||||
0 & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
# Campbell Diagram
|
||||
|
||||
When the rotation speed in not null, the resonance frequency is duplicated into two pairs of complex conjugate poles.
|
||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies (Figure [[fig:campbell_diagram]]).
|
||||
|
||||
#+name: fig:campbell_diagram
|
||||
#+caption: Campbell Diagram : Evolution of the poles as a function of the rotational speed $\Omega$
|
||||
#+attr_latex: :environment subfigure :width 0.4\linewidth :align c
|
||||
| file:figs/campbell_diagram_real.pdf | file:figs/campbell_diagram_imag.pdf |
|
||||
| <<fig:campbell_diagram_real>> Real Part | <<fig:campbell_diagram_imag>> Imaginary Part |
|
||||
|
||||
|
||||
# #+name: fig:campbell_diagram
|
||||
# #+caption: Campbell Diagram
|
||||
# #+attr_latex: :scale 1
|
||||
# [[file:figs/campbell_diagram.pdf]]
|
||||
|
||||
** System Dynamics and Campbell Diagram
|
||||
# Bode Plots for different ratio wr/w0
|
||||
|
||||
The magnitude of the coupling terms are increasing with the rotation speed.
|
||||
The bode plot of $\bm{G}_d$ is shown in Figure [[fig:plant_compare_rotating_speed]].
|
||||
|
||||
# Describe the dynamics
|
||||
|
||||
#+name: fig:plant_compare_rotating_speed
|
||||
#+caption: Bode Plots for $\bm{G}_d$
|
||||
@ -259,12 +221,34 @@ The magnitude of the coupling terms are increasing with the rotation speed.
|
||||
| file:figs/plant_compare_rotating_speed_direct.pdf | file:figs/plant_compare_rotating_speed_coupling.pdf |
|
||||
| <<fig:plant_compare_rotating_speed_direct>> Direct Terms $d_u/F_u$, $d_v/F_v$ | <<fig:plant_compare_rotating_speed_coupling>> Coupling Terms $d_v/F_u$, $d_u/F_v$ |
|
||||
|
||||
# #+name: fig:plant_compare_rotating_speed
|
||||
# #+caption: Caption
|
||||
# #+attr_latex: :scale 1
|
||||
# [[file:figs/plant_compare_rotating_speed.pdf]]
|
||||
|
||||
* Integral Force Feedback
|
||||
# Campbell Diagram
|
||||
The poles are the roots of $G_{dp}$.
|
||||
Two pairs of complex conjugate poles (supposing small damping $\xi \approx 0$):
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
p_1 &= \pm j (\omega_0 - \Omega) \\
|
||||
p_2 &= \pm j (\omega_0 + \Omega)
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
When the rotation speed in non-null, the resonance frequency is split into two pairs of complex conjugate poles.
|
||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies.
|
||||
|
||||
# The system goes unstable at some frequency w0
|
||||
When the rotational speed $\Omega$ reaches $\omega_0$, the real part of one pair of complex conjugate becomes position meaning is system is unstable.
|
||||
|
||||
The stiffness of the X-Y stage is too small to hold to rotating payload hence the instability.
|
||||
|
||||
Stiff positioning platforms should be used if high rotational speeds or heavy payloads are used.
|
||||
|
||||
#+name: fig:campbell_diagram
|
||||
#+caption: Campbell Diagram : Evolution of the poles as a function of the rotational speed $\Omega$
|
||||
#+attr_latex: :environment subfigure :width 0.4\linewidth :align c
|
||||
| file:figs/campbell_diagram_real.pdf | file:figs/campbell_diagram_imag.pdf |
|
||||
| <<fig:campbell_diagram_real>> Real Part | <<fig:campbell_diagram_imag>> Imaginary Part |
|
||||
|
||||
* Decentralized Integral Force Feedback
|
||||
** Control Schematic
|
||||
|
||||
Force Sensors are added in series with the actuators as shown in Figure [[fig:system_iff]].
|
||||
@ -276,53 +260,85 @@ Force Sensors are added in series with the actuators as shown in Figure [[fig:sy
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/system_iff.pdf]]
|
||||
|
||||
** Equations
|
||||
The sensed forces are equal to:
|
||||
** Plant Dynamics
|
||||
The forces measured by the force sensors are equal to:
|
||||
#+name: eq:measured_force
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k)
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k)
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
Which then gives:
|
||||
Re-injecting eqref:eq:tf_d into eqref:eq:measured_force yields:
|
||||
#+name: eq:tf_f
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
|
||||
\bm{G}_{f}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
Where $\bm{G}_f$ is a $2 \times 2$ transfer function matrix.
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
|
||||
\bm{G}_f =
|
||||
\frac{1}{G_{fp}}
|
||||
\begin{bmatrix}
|
||||
G_{fz} & -G_{fc} \\
|
||||
G_{fc} & G_{fz}
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
with:
|
||||
\begin{align}
|
||||
G_{fp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{fz} &= \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{fc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)
|
||||
\end{align}
|
||||
|
||||
** Plant Dynamics
|
||||
# Explain the two real zeros => change of gain but not of phase
|
||||
# The alternating poles and zeros properties of collocated IFF holds
|
||||
# but additional real zeros are added
|
||||
|
||||
The zeros of the diagonal terms are the roots of $G_{fz}$ (supposing small damping):
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
z_1 &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \\
|
||||
z_2 &= \pm \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} }
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The frequency of the two complex conjugate zeros $z_1$ is between the frequency of the two pairs of complex conjugate poles $p_1$ and $p_2$.
|
||||
This is the expected behavior of a collocated pair of actuator and sensor.
|
||||
|
||||
However, the two real zeros $z_2$ induces an increase of +2 of the slope without change of phase (Figure [[fig:plant_iff_compare_rotating_speed]]).
|
||||
This represents non-minimum phase behavior.
|
||||
|
||||
# Explain physically why the real zeros
|
||||
|
||||
|
||||
# Show that the low frequency gain is no longer zero
|
||||
The low frequency gain, for $\Omega < \omega_0$, is no longer zero:
|
||||
#+name: low_freq_gain_iff_plan
|
||||
\begin{equation}
|
||||
\bm{G}_{f0} = \lim_{\omega \to 0} \left| \bm{G}_f (j\omega) \right| = \begin{bmatrix}
|
||||
\frac{- \Omega^2}{{\omega_0}^2 - \Omega^2} & 0 \\
|
||||
0 & \frac{- \Omega^2}{{\omega_0}^2 - \Omega^2}
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
It increase with the rotational speed $\Omega$.
|
||||
|
||||
#+name: fig:plant_iff_compare_rotating_speed
|
||||
#+caption: Bode plot of $\bm{G}_f$ for several rotational speeds $\Omega$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/plant_iff_compare_rotating_speed.pdf]]
|
||||
|
||||
# Show that the low frequency gain is no longer zero
|
||||
** Decentralized Integral Force Feedback
|
||||
|
||||
# Write the analytical value of the low frequency gain
|
||||
\begin{equation}
|
||||
\bm{K}_F(s) = g \cdot \frac{1}{s}
|
||||
\end{equation}
|
||||
|
||||
# Explain the two real zeros => change of gain but not of phase
|
||||
|
||||
# Explain physically why
|
||||
|
||||
** Integral Force Feedback
|
||||
# Problem of zero with a positive real part
|
||||
Also, as one zero has a positive real part, the *IFF control is no more unconditionally stable*.
|
||||
This is due to the fact that the zeros of the plant are the poles of the closed loop system with an infinite gain.
|
||||
Thus, for some finite IFF gain, one pole will have a positive real part and the system will be unstable.
|
||||
|
||||
# General explanation for the Root Locus Plot
|
||||
|
||||
@ -335,6 +351,9 @@ Which then gives:
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_pure_iff.pdf]]
|
||||
|
||||
# IFF is usually known for its guaranteed stability (add reference)
|
||||
# This is not the case anymore due to gyroscopic effects
|
||||
|
||||
# Physical Interpretation
|
||||
|
||||
At low frequency, the gain is very large and thus no force is transmitted between the payload and the rotating stage.
|
||||
@ -350,12 +369,16 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
|
||||
|
||||
# Equation with the new control law
|
||||
\begin{equation}
|
||||
\bm{K}_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
|
||||
\end{equation}
|
||||
|
||||
|
||||
# Explain why it is usually done and why it is done here: the problem is the high gain at low frequency => high pass filter
|
||||
|
||||
|
||||
** Feedback Analysis
|
||||
# Explain what do we mean for Loop Gain (loop gain for the decentralized loop)
|
||||
|
||||
# Explain that now the low frequency loop gain does not reach a gain more than 1 (if g not so high)
|
||||
|
||||
@ -365,7 +388,10 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
[[file:figs/loop_gain_modified_iff.pdf]]
|
||||
|
||||
# Not the system can be stable for small values of g
|
||||
# Actually, the system becomes unstable for g > ...
|
||||
# Actually, the system becomes unstable for g > ... => it has been verified
|
||||
\begin{equation}
|
||||
g_\text{max} = \omega_i \left( \frac{{\omega_0}^2}{\Omega^2} - 1 \right) \label{eq:iff_gmax}
|
||||
\end{equation}
|
||||
|
||||
#+name: fig:root_locus_modified_iff
|
||||
#+caption: Root Locus for IFF with and without the HPF
|
||||
@ -414,16 +440,50 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
|
||||
# Maybe add the fact that this is equivalent to amplified piezo for instance
|
||||
|
||||
** Plant Dynamics
|
||||
|
||||
# Equations: sensed force
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
|
||||
\bm{G}_k
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
|
||||
\frac{1}{G_{kp}}
|
||||
\begin{bmatrix}
|
||||
G_{kz} & -G_{kc} \\
|
||||
G_{kc} & G_{kz}
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
With:
|
||||
\begin{align}
|
||||
G_{kp} &= \left( \frac{s^2}{{\omega_0^\prime}^2} + 2\xi^\prime \frac{s}{{\omega_0^\prime}^2} + 1 - \frac{\Omega^2}{{\omega_0^\prime}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)^2 \\
|
||||
G_{kz} &= \left( \frac{s^2}{{\omega_0^\prime}^2} + \frac{k_p}{k + k_p} - \frac{\Omega^2}{{\omega_0^\prime}^2} \right) \left( \frac{s^2}{{\omega_0^\prime}^2} + 2\xi^\prime \frac{s}{{\omega_0^\prime}^2} + 1 - \frac{\Omega^2}{{\omega_0^\prime}^2} \right) + \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)^2 \\
|
||||
G_{kc} &= \left( 2 \xi^\prime \frac{s}{\omega_0^\prime} + \frac{k}{k + k_p} \right) \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)
|
||||
\end{align}
|
||||
|
||||
# New parameters
|
||||
where:
|
||||
- $\omega_0^\prime = \frac{k + k_p}{m}$
|
||||
- $\xi^\prime = \frac{c}{2 \sqrt{(k + k_p) m}}$
|
||||
|
||||
** Effect of the Parallel Stiffness on the Plant Dynamics
|
||||
|
||||
# Negative Stiffness due to rotation => the stiffness should be larger than that
|
||||
|
||||
# TODO: Verify that
|
||||
# For kp < negative stiffness => real zeros
|
||||
# For kp > negative stiffness => complex conjugate zeros
|
||||
\begin{equation}
|
||||
\frac{k_p}{k + k_p} - \frac{\Omega^2}{{\omega_0^\prime}^2} > 0
|
||||
\end{equation}
|
||||
Which is equivalent to
|
||||
\begin{equation}
|
||||
k_p > m \Omega^2
|
||||
\end{equation}
|
||||
|
||||
#+name: fig:plant_iff_kp
|
||||
#+caption: Bode Plot of $f_u/F_u$ without parallel spring, with parallel springs with stiffness $k_p < m \Omega^2$ and $k_p > m \Omega^2$
|
||||
@ -432,6 +492,8 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
|
||||
# Location of the zeros as a function of kp
|
||||
|
||||
# Try to show that we don't have anymore real zeros that was making the system non-minimum phase
|
||||
|
||||
# Show that it is the case on the root locus
|
||||
|
||||
#+name: fig:root_locus_iff_kp
|
||||
@ -445,6 +507,10 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
|
||||
# Explain that we have k = ka + kp constant in order to have the same resonance
|
||||
|
||||
# Attainable damping generally proportional to the distance between the poles and zeros (add reference, probably preumont)
|
||||
# The zero is the poles of the system without the force sensors => w =
|
||||
# Thus, small kp is wanted: kp close to m Omega^2 should give the optimal damping but is not acceptable for robustness reasons
|
||||
|
||||
|
||||
# Large Stiffness decreases the attainable damping
|
||||
|
||||
@ -482,6 +548,27 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
|
||||
# Write the equations
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
|
||||
\bm{G}_v
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
|
||||
\frac{s}{k} \frac{1}{G_{vp}}
|
||||
\begin{bmatrix}
|
||||
G_{vz} & G_{vc} \\
|
||||
-G_{vc} & G_{vz}
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
With:
|
||||
\begin{align}
|
||||
G_{vp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{vz} &= \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
|
||||
G_{vc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
|
||||
\end{align}
|
||||
|
||||
# Show that the rotation have somehow less impact on the plant than for IFF
|
||||
|
||||
|
BIN
paper/paper.pdf
324
paper/paper.tex
@ -1,4 +1,4 @@
|
||||
% Created 2020-06-24 mer. 16:28
|
||||
% Created 2020-06-25 jeu. 10:07
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass{ISMA_USD2020}
|
||||
\usepackage[utf8]{inputenc}
|
||||
@ -36,7 +36,14 @@
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{shapes.misc}
|
||||
\date{}
|
||||
\title{Active Damping of Rotating Positioning Platforms}
|
||||
\title{Decentralized Active Damping of Rotating Positioning Platforms}
|
||||
\hypersetup{
|
||||
pdfauthor={},
|
||||
pdftitle={Decentralized Active Damping of Rotating Positioning Platforms},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 27.0.91 (Org mode 9.4)},
|
||||
pdflang={English}}
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
@ -46,7 +53,7 @@
|
||||
}
|
||||
|
||||
\section{Introduction}
|
||||
\label{sec:org3cbd2ff}
|
||||
\label{sec:org5780a8f}
|
||||
\label{sec:introduction}
|
||||
Controller Poles are shown by black crosses (
|
||||
\begin{tikzpicture} \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){}; \end{tikzpicture}
|
||||
@ -55,9 +62,9 @@ This paper has been published
|
||||
The Matlab code that was use to obtain the results are available in \cite{dehaeze20_activ_dampin_rotat_posit_platf}.
|
||||
|
||||
\section{Dynamics of Rotating Positioning Platforms}
|
||||
\label{sec:org3cf58d1}
|
||||
\label{sec:orga8db619}
|
||||
\subsection{Studied Rotating Positioning Platform}
|
||||
\label{sec:orgf321431}
|
||||
\label{sec:org70ddefe}
|
||||
Consider the rotating X-Y stage of Figure \ref{fig:system}.
|
||||
|
||||
\begin{itemize}
|
||||
@ -74,66 +81,75 @@ Consider the rotating X-Y stage of Figure \ref{fig:system}.
|
||||
\caption{\label{fig:system}Schematic of the studied System}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Equations of Motion}
|
||||
\label{sec:org647b64d}
|
||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates \([q_1\ q_2] = [d_u\ d_v]\) (describing the position of the mass in the rotating frame).
|
||||
|
||||
\subsection{Equation of Motion}
|
||||
\label{sec:org9612ace}
|
||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates \(u\) and \(v\) (describing the position of the mass in the rotating frame).
|
||||
|
||||
Let's express the kinetic energy \(T\) and the potential energy \(V\) of the mass \(m\) (neglecting the rotational energy):
|
||||
|
||||
Dissipation function \(R\)
|
||||
Kinetic energy \(T\)
|
||||
Potential energy \(V\)
|
||||
Let's express the kinetic energy \(T\), the potential energy \(V\) of the mass \(m\) (neglecting the rotational energy) as well as the deceptive function \(R\):
|
||||
\begin{subequations}
|
||||
\label{eq:energy_functions_lagrange}
|
||||
\begin{align}
|
||||
T & = \frac{1}{2} m \left( \left( \dot{u} - \Omega v \right)^2 + \left( \dot{v} + \Omega u \right)^2 \right) \\
|
||||
R & = \frac{1}{2} c \left( \dot{u}^2 + \dot{v}^2 \right) \\
|
||||
V & = \frac{1}{2} k \left( u^2 + v^2 \right)
|
||||
T & = \frac{1}{2} m \left( \left( \dot{d}_u - \Omega d_v \right)^2 + \left( \dot{d}_v + \Omega d_u \right)^2 \right) \\
|
||||
V & = \frac{1}{2} k \left( {d_u}^2 + {d_v}^2 \right) \\
|
||||
R & = \frac{1}{2} c \left( \dot{d}_u{}^2 + \dot{d}_v{}^2 \right)
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The Lagrangian is the kinetic energy minus the potential energy:
|
||||
\begin{equation}
|
||||
L = T - V
|
||||
\end{equation}
|
||||
|
||||
From the Lagrange's equations of the second kind, the equation of motion is obtained (\(q_1 = u\), \(q_2 = v\)).
|
||||
The equations of motion are derived from the Lagrangian equation:
|
||||
\begin{equation}
|
||||
\label{eq:lagrangian_equations}
|
||||
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
|
||||
\end{equation}
|
||||
with \(Q_i\) is the generalized force associated with the generalized variable \(q_i\) (\(Q_1 = F_u\) and \(Q_2 = F_v\)).
|
||||
|
||||
with \(L = T - V\) is the Lagrangian and \(Q_i\) is the generalized force associated with the generalized variable \(q_i\) (\(Q_1 = F_u\) and \(Q_2 = F_v\)).
|
||||
|
||||
\begin{subequations}
|
||||
\label{eq:eom_coupled}
|
||||
\begin{align}
|
||||
m \ddot{u} + c \dot{u} + ( k - m \Omega ) u &= F_u + 2 m \Omega \dot{v} \\
|
||||
m \ddot{v} + c \dot{v} + ( k \underbrace{-\,m \Omega}_{\text{Centrif.}} ) v &= F_v \underbrace{-\,2 m \Omega \dot{u}}_{\text{Coriolis}}
|
||||
m \ddot{d}_u + c \dot{d}_u + ( k - m \Omega ) d_u &= F_u + 2 m \Omega \dot{d}_v \\
|
||||
m \ddot{d}_v + c \dot{d}_v + ( k \underbrace{-\,m \Omega}_{\text{Centrif.}} ) d_v &= F_v \underbrace{-\,2 m \Omega \dot{d}_u}_{\text{Coriolis}}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The Gyroscopic effects can be seen from the two following terms:
|
||||
\begin{itemize}
|
||||
\item Coriolis Forces: coupling
|
||||
\item Centrifugal forces: negative stiffness
|
||||
\end{itemize}
|
||||
|
||||
Without the coupling terms, each equation is the equation of a one degree of freedom mass-spring system with mass \(m\) and stiffness \(k- m\dot{\theta}^2\).
|
||||
Thus, the term \(- m\dot{\theta}^2\) acts like a negative stiffness (due to \textbf{centrifugal forces}).
|
||||
|
||||
|
||||
\subsection{Transfer Functions in the Laplace domain}
|
||||
\label{sec:org1590670}
|
||||
\label{sec:org55c9228}
|
||||
|
||||
Using the Laplace transformation on the equations of motion \eqref{eq:eom_coupled}, the transfer functions from \([F_u,\ F_v]\) to \([d_u,\ d_v]\) are obtained:
|
||||
\begin{subequations}
|
||||
\label{eq:oem_laplace_domain}
|
||||
\begin{align}
|
||||
u &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u + \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v \\
|
||||
v &= \frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u + \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v
|
||||
d_u &= \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u + \frac{2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v \\
|
||||
d_v &= \frac{-2 m \Omega s}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_u + \frac{ms^2 + cs + k - m \Omega^2}{\left( m s^2 + cs + k - m \Omega^2 \right)^2 + \left( 2 m \Omega s \right)^2} F_v
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
|
||||
Without rotation \(\Omega = 0\) and the system corresponds to two uncoupled one degree of freedom mass-spring-damper systems:
|
||||
\begin{subequations}
|
||||
\label{eq:oem_no_rotation}
|
||||
\begin{align}
|
||||
d_u &= \frac{1}{m s^2 + cs + k} F_u \\
|
||||
d_v &= \frac{1}{m s^2 + cs + k} F_v
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
\subsection{Change of Variables / Parameters for the study}
|
||||
\label{sec:orgb7d090c}
|
||||
|
||||
In order this study is more independent on the system parameters, the following change of variable is performed:
|
||||
\begin{itemize}
|
||||
\item \(\omega_0 = \sqrt{\frac{k}{m}}\): Natural frequency of the mass-spring system in \(\si{\radian/\s}\)
|
||||
\item \(\xi = \frac{c}{2 \sqrt{k m}}\): Damping ratio
|
||||
\end{itemize}
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\bm{G}_d
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\label{eq:tf_d}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} = \bm{G}_d \begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
Where \(\bm{G}_d\) is a \(2 \times 2\) transfer function matrix.
|
||||
|
||||
@ -153,68 +169,11 @@ With:
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
\begin{itemize}
|
||||
\item \(\omega_0 = \sqrt{\frac{k}{m}}\): Natural frequency of the mass-spring system in \(\si{\radian/\s}\)
|
||||
\item \(\xi\) damping ratio
|
||||
\end{itemize}
|
||||
\(G_{dp}\) describes to poles of the system, \(G_{dz}\) the zeros of the diagonal terms and \(G_{dc}\) the coupling.
|
||||
|
||||
|
||||
\subsection{Constant Rotational Speed}
|
||||
\label{sec:orgd9375df}
|
||||
To simplify, let's consider a constant rotational speed \(\dot{\theta} = \Omega\) and thus \(\ddot{\theta} = 0\).
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:coupledplant}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\frac{1}{(m s^2 + (k - m{\omega_0}^2))^2 + (2 m {\omega_0} s)^2}
|
||||
\begin{bmatrix}
|
||||
ms^2 + (k-m{\omega_0}^2) & 2 m \omega_0 s \\
|
||||
-2 m \omega_0 s & ms^2 + (k-m{\omega_0}^2) \\
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:coupled_plant}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\frac{\frac{1}{k}}{\left( \frac{s^2}{{\omega_0}^2} + (1 - \frac{{\Omega}^2}{{\omega_0}^2}) \right)^2 + \left( 2 \frac{{\Omega} s}{{\omega_0}^2} \right)^2}
|
||||
\begin{bmatrix}
|
||||
\frac{s^2}{{\omega_0}^2} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} & 2 \frac{\Omega s}{{\omega_0}^2} \\
|
||||
-2 \frac{\Omega s}{{\omega_0}^2} & \frac{s^2}{{\omega_0}^2} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
When the rotation speed is null, the coupling terms are equal to zero and the diagonal terms corresponds to one degree of freedom mass spring system.
|
||||
\begin{equation}
|
||||
\label{eq:coupled_plant_no_rot}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\frac{\frac{1}{k}}{\frac{s^2}{{\omega_0}^2} + 1}
|
||||
\begin{bmatrix}
|
||||
1 & 0 \\
|
||||
0 & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
When the rotation speed in not null, the resonance frequency is duplicated into two pairs of complex conjugate poles.
|
||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies (Figure \ref{fig:campbell_diagram}).
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.4\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_real.pdf}
|
||||
\caption{\label{fig:campbell_diagram_real} Real Part}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[c]{0.4\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_imag.pdf}
|
||||
\caption{\label{fig:campbell_diagram_imag} Imaginary Part}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:campbell_diagram}Campbell Diagram : Evolution of the poles as a function of the rotational speed \(\Omega\)}
|
||||
\centering
|
||||
\end{figure}
|
||||
|
||||
|
||||
The magnitude of the coupling terms are increasing with the rotation speed.
|
||||
\subsection{System Dynamics and Campbell Diagram}
|
||||
\label{sec:org24f5f5f}
|
||||
The bode plot of \(\bm{G}_d\) is shown in Figure \ref{fig:plant_compare_rotating_speed}.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.45\linewidth}
|
||||
@ -230,10 +189,33 @@ The magnitude of the coupling terms are increasing with the rotation speed.
|
||||
\end{figure}
|
||||
|
||||
|
||||
\section{Integral Force Feedback}
|
||||
\label{sec:org95f47e8}
|
||||
|
||||
When the rotation speed in non-null, the resonance frequency is split into two pairs of complex conjugate poles.
|
||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies.
|
||||
|
||||
When the rotational speed \(\Omega\) reaches \(\omega_0\), the real part of one pair of complex conjugate becomes position meaning is system is unstable.
|
||||
|
||||
The stiffness of the X-Y stage is too small to hold to rotating payload hence the instability.
|
||||
|
||||
Stiff positioning platforms should be used if high rotational speeds or heavy payloads are used.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.4\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_real.pdf}
|
||||
\caption{\label{fig:campbell_diagram_real} Real Part}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[c]{0.4\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/campbell_diagram_imag.pdf}
|
||||
\caption{\label{fig:campbell_diagram_imag} Imaginary Part}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:campbell_diagram}Campbell Diagram : Evolution of the poles as a function of the rotational speed \(\Omega\)}
|
||||
\centering
|
||||
\end{figure}
|
||||
|
||||
\section{Decentralized Integral Force Feedback}
|
||||
\label{sec:orgd957fd6}
|
||||
\subsection{Control Schematic}
|
||||
\label{sec:org8bb26ea}
|
||||
\label{sec:orgc01d8cf}
|
||||
|
||||
Force Sensors are added in series with the actuators as shown in Figure \ref{fig:system_iff}.
|
||||
|
||||
@ -244,29 +226,28 @@ Force Sensors are added in series with the actuators as shown in Figure \ref{fig
|
||||
\end{figure}
|
||||
|
||||
\subsection{Equations}
|
||||
\label{sec:orgbd9ebe0}
|
||||
The sensed forces are equal to:
|
||||
\label{sec:orge5896ec}
|
||||
The forces measured by the force sensors are equal to:
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k)
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
|
||||
\label{eq:measured_force}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix} - (c s + k)
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
Which then gives:
|
||||
Reinjecting \eqref{eq:tf_d} into \eqref{eq:measured_force} yields:
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
|
||||
\bm{G}_{f}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\label{eq:tf_f}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} =
|
||||
\bm{G}_f =
|
||||
\frac{1}{G_{fp}}
|
||||
\begin{bmatrix}
|
||||
G_{fz} & -G_{fc} \\
|
||||
G_{fc} & G_{fz}
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{align}
|
||||
@ -275,8 +256,17 @@ Which then gives:
|
||||
G_{fc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)
|
||||
\end{align}
|
||||
|
||||
\begin{equation}
|
||||
\bm{G}_f =
|
||||
\frac{1}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
|
||||
\begin{bmatrix}
|
||||
\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 & -G_{fc} \\
|
||||
G_{fc} & \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\subsection{Plant Dynamics}
|
||||
\label{sec:org392809f}
|
||||
\label{sec:org0a22a10}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -284,9 +274,8 @@ Which then gives:
|
||||
\caption{\label{fig:plant_iff_compare_rotating_speed}Bode plot of \(\bm{G}_f\) for several rotational speeds \(\Omega\)}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Integral Force Feedback}
|
||||
\label{sec:org049877c}
|
||||
\subsection{Problems with Integral Force Feedback}
|
||||
\label{sec:orgd432439}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -297,15 +286,17 @@ Which then gives:
|
||||
At low frequency, the gain is very large and thus no force is transmitted between the payload and the rotating stage.
|
||||
This means that at low frequency, the system is decoupled (the force sensor removed) and thus the system is unstable.
|
||||
|
||||
|
||||
\section{Integral Force Feedback with High Pass Filters}
|
||||
\label{sec:org54452db}
|
||||
\label{sec:org2e1883a}
|
||||
\subsection{Modification of the Control Low}
|
||||
\label{sec:org325cdd4}
|
||||
\label{sec:org218110f}
|
||||
\begin{equation}
|
||||
\bm{K}_{F}(s) = \frac{1}{s} \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = \frac{1}{s + \omega_i}
|
||||
\end{equation}
|
||||
|
||||
|
||||
\subsection{Feedback Analysis}
|
||||
\label{sec:org5efee77}
|
||||
\label{sec:org03090fc}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -320,7 +311,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\end{figure}
|
||||
|
||||
\subsection{Optimal Cut-Off Frequency}
|
||||
\label{sec:orgd5828e4}
|
||||
\label{sec:org6ba4e55}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -335,9 +326,9 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\end{figure}
|
||||
|
||||
\section{Integral Force Feedback with Parallel Springs}
|
||||
\label{sec:org22884d6}
|
||||
\label{sec:org90ec20f}
|
||||
\subsection{Stiffness in Parallel with the Force Sensor}
|
||||
\label{sec:orgb871bfd}
|
||||
\label{sec:org60d6640}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -345,25 +336,59 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\caption{\label{fig:system_parallel_springs}System with added springs \(k_p\) in parallel with the actuators}
|
||||
\end{figure}
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
|
||||
\bm{G}_k
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
|
||||
\frac{1}{G_{kp}}
|
||||
\begin{bmatrix}
|
||||
G_{kz} & -G_{kc} \\
|
||||
G_{kc} & G_{kz}
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
With:
|
||||
\begin{align}
|
||||
G_{kp} &= \left( \frac{s^2}{{\omega_0^\prime}^2} + 2\xi^\prime \frac{s}{{\omega_0^\prime}^2} + 1 - \frac{\Omega^2}{{\omega_0^\prime}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)^2 \\
|
||||
G_{kz} &= \left( \frac{s^2}{{\omega_0^\prime}^2} + \frac{k_p}{k + k_p} - \frac{\Omega^2}{{\omega_0^\prime}^2} \right) \left( \frac{s^2}{{\omega_0^\prime}^2} + 2\xi^\prime \frac{s}{{\omega_0^\prime}^2} + 1 - \frac{\Omega^2}{{\omega_0^\prime}^2} \right) + \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)^2 \\
|
||||
G_{kc} &= \left( 2 \xi^\prime \frac{s}{\omega_0^\prime} + \frac{k}{k + k_p} \right) \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)
|
||||
\end{align}
|
||||
|
||||
where:
|
||||
\begin{itemize}
|
||||
\item \(\omega_0^\prime = \frac{k + k_p}{m}\)
|
||||
\item \(\xi^\prime = \frac{c}{2 \sqrt{(k + k_p) m}}\)
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Effect of the Parallel Stiffness on the Plant Dynamics}
|
||||
\label{sec:org4d37cce}
|
||||
\label{sec:org3ec34fe}
|
||||
|
||||
\begin{equation}
|
||||
\frac{k_p}{k + k_p} - \frac{\Omega^2}{{\omega_0^\prime}^2} > 0
|
||||
\end{equation}
|
||||
Which is equivalent to
|
||||
\begin{equation}
|
||||
k_p > m \Omega^2
|
||||
\end{equation}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/plant_iff_kp.pdf}
|
||||
\caption{\label{fig:plant_iff_kp}Bode Plot of \(f_u/F_u\) without any parallel stiffness, with a parallel stiffness \(k_p < m \Omega^2\) and with \(k_p > m \Omega^2\)}
|
||||
\caption{\label{fig:plant_iff_kp}Bode Plot of \(f_u/F_u\) without parallel spring, with parallel springs with stiffness \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\)}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_iff_kp.pdf}
|
||||
\caption{\label{fig:root_locus_iff_kp}Root Locus for IFF without any parallel stiffness, with a parallel stiffness \(k_p < m \Omega^2\) and with \(k_p > m \Omega^2\)}
|
||||
\caption{\label{fig:root_locus_iff_kp}Root Locus for IFF without parallel spring, with parallel springs with stiffness \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\)}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Optimal Parallel Stiffness}
|
||||
\label{sec:orgd19b212}
|
||||
\label{sec:org9c47159}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -379,9 +404,9 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\end{figure}
|
||||
|
||||
\section{Direct Velocity Feedback}
|
||||
\label{sec:org6904969}
|
||||
\label{sec:org5cb3076}
|
||||
\subsection{Control Schematic}
|
||||
\label{sec:org103e18b}
|
||||
\label{sec:orgaaa522f}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -389,14 +414,34 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\caption{\label{fig:system_dvf}System with relative velocity sensors and with decentralized controllers \(K_V\)}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Equations}
|
||||
\label{sec:org793c22d}
|
||||
\label{sec:orge0a4555}
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
|
||||
\bm{G}_v
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
|
||||
\frac{s}{k} \frac{1}{G_{vp}}
|
||||
\begin{bmatrix}
|
||||
G_{vz} & G_{vc} \\
|
||||
-G_{vc} & G_{vz}
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
With:
|
||||
\begin{align}
|
||||
G_{vp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{vz} &= \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
|
||||
G_{vc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
|
||||
\end{align}
|
||||
|
||||
|
||||
\subsection{Relative Direct Velocity Feedback}
|
||||
\label{sec:orgc28d518}
|
||||
\label{sec:org5401110}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -405,14 +450,14 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\end{figure}
|
||||
|
||||
\section{Comparison of the Proposed Active Damping Techniques for Rotating Positioning Stages}
|
||||
\label{sec:org6af1fdb}
|
||||
\label{sec:org4cbf163}
|
||||
\subsection{Physical Comparison}
|
||||
\label{sec:orgdff3aa2}
|
||||
\label{sec:org5eba275}
|
||||
|
||||
|
||||
|
||||
\subsection{Attainable Damping}
|
||||
\label{sec:org22c8f42}
|
||||
\label{sec:org44635e0}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -422,7 +467,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
|
||||
|
||||
\subsection{Transmissibility and Compliance}
|
||||
\label{sec:org3e2cf56}
|
||||
\label{sec:org58e9594}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
@ -438,13 +483,12 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\centering
|
||||
\end{figure}
|
||||
|
||||
|
||||
\section{Conclusion}
|
||||
\label{sec:orge292803}
|
||||
\label{sec:org292b448}
|
||||
\label{sec:conclusion}
|
||||
|
||||
\section*{Acknowledgment}
|
||||
\label{sec:orgaf681fb}
|
||||
\label{sec:orgff7af07}
|
||||
|
||||
\bibliography{ref.bib}
|
||||
\end{document}
|
||||
|
@ -56,3 +56,16 @@
|
||||
year = {2018},
|
||||
publisher = {Springer},
|
||||
}
|
||||
|
||||
@inproceedings{preumont91_activ,
|
||||
author = {Andre Preumont and Jean-Paul Dufour and Christian Malekian},
|
||||
title = {Active damping by a local force feedback with piezoelectric
|
||||
actuators},
|
||||
booktitle = {32nd Structures, Structural Dynamics, and Materials
|
||||
Conference},
|
||||
year = 1991,
|
||||
doi = {10.2514/6.1991-989},
|
||||
url = {https://doi.org/10.2514/6.1991-989},
|
||||
month = {apr},
|
||||
publisher = {American Institute of Aeronautics and Astronautics},
|
||||
}
|
||||
|
Before Width: | Height: | Size: 88 KiB After Width: | Height: | Size: 87 KiB |
@ -63,14 +63,14 @@
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-1">
|
||||
<path style="stroke:none;" d="M 2.3125 -8.0625 C 2.125 -8.46875 1.59375 -8.484375 1.21875 -8.3125 C 0.921875 -8.171875 0.421875 -7.75 0.578125 -6.734375 C 0.59375 -6.5 0.625 -6.421875 0.9375 -5.171875 L 0.3125 -4.875 C 0.140625 -4.796875 0.046875 -4.75 0.125 -4.5625 C 0.171875 -4.46875 0.25 -4.515625 0.421875 -4.59375 L 1.015625 -4.875 L 2.015625 -0.984375 C 2.265625 -0.046875 2.484375 0.859375 2.015625 1.078125 C 1.96875 1.09375 1.75 1.203125 1.5 1.109375 C 1.921875 0.875 1.828125 0.53125 1.765625 0.390625 C 1.671875 0.1875 1.453125 0.15625 1.296875 0.234375 C 1.046875 0.34375 0.890625 0.65625 1.0625 1.015625 C 1.25 1.40625 1.734375 1.453125 2.109375 1.28125 C 2.59375 1.046875 2.703125 0.328125 2.71875 -0.078125 C 2.734375 -0.78125 2.453125 -1.96875 2.4375 -2.046875 L 1.625 -5.15625 L 2.40625 -5.515625 C 2.578125 -5.59375 2.671875 -5.640625 2.59375 -5.828125 C 2.546875 -5.921875 2.453125 -5.875 2.296875 -5.8125 L 1.5625 -5.46875 C 1.421875 -6.03125 1.40625 -6 1.25 -6.5625 C 1.203125 -6.78125 1.015625 -7.484375 1.03125 -7.59375 C 1.046875 -7.828125 1.125 -8.03125 1.3125 -8.109375 C 1.359375 -8.125 1.578125 -8.234375 1.828125 -8.15625 C 1.453125 -7.9375 1.515625 -7.59375 1.59375 -7.453125 C 1.6875 -7.25 1.890625 -7.203125 2.0625 -7.296875 C 2.296875 -7.40625 2.46875 -7.71875 2.3125 -8.0625 Z M 2.3125 -8.0625 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-2">
|
||||
<path style="stroke:none;" d="M 3.828125 -3.34375 C 3.78125 -3.4375 3.6875 -3.390625 3.671875 -3.375 C 3.578125 -3.34375 3.578125 -3.3125 3.625 -3.171875 C 3.75 -2.421875 3.75 -1.859375 3.359375 -1.671875 C 3.1875 -1.59375 3.015625 -1.65625 2.859375 -1.984375 C 2.796875 -2.140625 2.734375 -2.34375 2.703125 -2.515625 C 2.671875 -2.671875 2.65625 -2.71875 2.609375 -2.796875 C 2.328125 -3.390625 1.640625 -3.390625 0.84375 -3.125 C 1.046875 -3.4375 1.1875 -3.84375 1.296875 -4.15625 C 1.515625 -4.84375 1.75 -5.4375 2.1875 -5.640625 C 2.234375 -5.671875 2.234375 -5.671875 2.265625 -5.65625 C 2.390625 -5.6875 2.40625 -5.703125 2.484375 -5.671875 C 2.515625 -5.671875 2.515625 -5.671875 2.5625 -5.65625 C 2.125 -5.421875 2.203125 -5.046875 2.25 -4.9375 C 2.3125 -4.796875 2.5 -4.671875 2.75 -4.78125 C 2.96875 -4.890625 3.15625 -5.21875 3 -5.546875 C 2.875 -5.84375 2.515625 -6.046875 2.109375 -5.84375 C 1.84375 -5.734375 1.46875 -5.4375 1.15625 -4.421875 C 1.015625 -3.9375 0.84375 -3.4375 0.5625 -3.109375 L -0.28125 -7.359375 C -0.28125 -7.359375 -0.328125 -7.46875 -0.4375 -7.421875 C -0.65625 -7.328125 -1.296875 -6.9375 -1.5 -6.8125 C -1.578125 -6.765625 -1.65625 -6.703125 -1.59375 -6.546875 C -1.53125 -6.4375 -1.453125 -6.46875 -1.3125 -6.53125 C -0.875 -6.734375 -0.84375 -6.6875 -0.796875 -6.59375 L -0.75 -6.40625 L 0.359375 -0.609375 C 0.390625 -0.46875 0.40625 -0.453125 0.421875 -0.390625 C 0.53125 -0.171875 0.734375 -0.21875 0.8125 -0.265625 C 0.921875 -0.3125 1 -0.453125 1.015625 -0.578125 C 1.03125 -0.6875 0.65625 -2.546875 0.609375 -2.796875 C 0.921875 -2.921875 1.734375 -3.109375 2.015625 -2.515625 C 2.046875 -2.453125 2.0625 -2.421875 2.078125 -2.3125 C 2.109375 -2.203125 2.125 -2.078125 2.171875 -1.984375 C 2.421875 -1.4375 2.96875 -1.265625 3.4375 -1.484375 C 3.703125 -1.609375 3.875 -1.859375 3.921875 -2.28125 C 3.953125 -2.796875 3.828125 -3.34375 3.828125 -3.34375 Z M 3.828125 -3.34375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-3">
|
||||
<symbol overflow="visible" id="glyph2-2">
|
||||
<path style="stroke:none;" d="M 6.59375 -3.296875 C 6.546875 -3.390625 6.453125 -3.34375 6.375 -3.3125 C 6 -3.140625 5.828125 -3.171875 5.5625 -3.421875 L 2.890625 -5.78125 C 2.890625 -5.8125 2.796875 -5.859375 2.796875 -5.890625 C 2.796875 -5.890625 2.890625 -6.109375 2.953125 -6.234375 L 3.96875 -8.1875 C 4.515625 -9.1875 4.859375 -9.390625 5.125 -9.546875 C 5.1875 -9.59375 5.265625 -9.640625 5.1875 -9.796875 C 5.171875 -9.84375 5.109375 -9.875 5.046875 -9.84375 C 4.84375 -9.75 4.625 -9.625 4.421875 -9.515625 C 4.09375 -9.375 3.71875 -9.234375 3.390625 -9.078125 C 3.34375 -9.0625 3.234375 -9 3.328125 -8.8125 C 3.34375 -8.765625 3.390625 -8.75 3.484375 -8.78125 C 3.6875 -8.84375 3.78125 -8.84375 3.84375 -8.71875 C 3.921875 -8.546875 3.75 -8.234375 3.703125 -8.15625 L 1.4375 -3.8125 L 0.828125 -7.046875 C 0.75 -7.40625 0.734375 -7.5 1.40625 -7.796875 C 1.625 -7.90625 1.703125 -7.9375 1.609375 -8.125 C 1.578125 -8.203125 1.484375 -8.1875 1.4375 -8.15625 L 0.296875 -7.59375 L -0.875 -7.09375 C -0.953125 -7.046875 -1.0625 -7 -0.984375 -6.828125 C -0.921875 -6.71875 -0.84375 -6.765625 -0.65625 -6.84375 C -0.546875 -6.90625 -0.390625 -6.96875 -0.265625 -7.015625 C -0.125 -7.0625 -0.0625 -7.046875 -0.015625 -6.953125 C 0.015625 -6.90625 0 -6.890625 0.03125 -6.765625 L 1.09375 -1.359375 C 1.15625 -0.984375 1.171875 -0.890625 0.46875 -0.5625 C 0.3125 -0.484375 0.21875 -0.4375 0.296875 -0.265625 C 0.34375 -0.15625 0.453125 -0.21875 0.484375 -0.21875 L 1.609375 -0.796875 L 2.1875 -1.046875 C 2.390625 -1.125 2.59375 -1.203125 2.796875 -1.296875 C 2.84375 -1.328125 2.96875 -1.390625 2.890625 -1.578125 C 2.84375 -1.671875 2.765625 -1.625 2.59375 -1.546875 C 2.25 -1.390625 2 -1.265625 1.921875 -1.421875 C 1.890625 -1.5 1.859375 -1.71875 1.8125 -1.859375 L 1.53125 -3.453125 L 2.375 -5.125 L 4.546875 -3.1875 C 4.765625 -3 4.78125 -2.96875 4.8125 -2.90625 C 4.9375 -2.640625 4.5625 -2.46875 4.484375 -2.421875 C 4.375 -2.375 4.28125 -2.328125 4.359375 -2.140625 C 4.40625 -2.046875 4.53125 -2.109375 4.53125 -2.109375 C 4.890625 -2.28125 5.25 -2.484375 5.609375 -2.65625 C 5.796875 -2.75 6.3125 -2.9375 6.515625 -3.03125 C 6.5625 -3.0625 6.671875 -3.109375 6.59375 -3.296875 Z M 6.59375 -3.296875 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-3">
|
||||
<path style="stroke:none;" d="M 2.3125 -8.0625 C 2.125 -8.46875 1.59375 -8.484375 1.21875 -8.3125 C 0.921875 -8.171875 0.421875 -7.75 0.578125 -6.734375 C 0.59375 -6.5 0.625 -6.421875 0.9375 -5.171875 L 0.3125 -4.875 C 0.140625 -4.796875 0.046875 -4.75 0.125 -4.5625 C 0.171875 -4.46875 0.25 -4.515625 0.421875 -4.59375 L 1.015625 -4.875 L 2.015625 -0.984375 C 2.265625 -0.046875 2.484375 0.859375 2.015625 1.078125 C 1.96875 1.09375 1.75 1.203125 1.5 1.109375 C 1.921875 0.875 1.828125 0.53125 1.765625 0.390625 C 1.671875 0.1875 1.453125 0.15625 1.296875 0.234375 C 1.046875 0.34375 0.890625 0.65625 1.0625 1.015625 C 1.25 1.40625 1.734375 1.453125 2.109375 1.28125 C 2.59375 1.046875 2.703125 0.328125 2.71875 -0.078125 C 2.734375 -0.78125 2.453125 -1.96875 2.4375 -2.046875 L 1.625 -5.15625 L 2.40625 -5.515625 C 2.578125 -5.59375 2.671875 -5.640625 2.59375 -5.828125 C 2.546875 -5.921875 2.453125 -5.875 2.296875 -5.8125 L 1.5625 -5.46875 C 1.421875 -6.03125 1.40625 -6 1.25 -6.5625 C 1.203125 -6.78125 1.015625 -7.484375 1.03125 -7.59375 C 1.046875 -7.828125 1.125 -8.03125 1.3125 -8.109375 C 1.359375 -8.125 1.578125 -8.234375 1.828125 -8.15625 C 1.453125 -7.9375 1.515625 -7.59375 1.59375 -7.453125 C 1.6875 -7.25 1.890625 -7.203125 2.0625 -7.296875 C 2.296875 -7.40625 2.46875 -7.71875 2.3125 -8.0625 Z M 2.3125 -8.0625 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-4">
|
||||
<path style="stroke:none;" d="M 4.5625 -7.390625 L 3.984375 -9.03125 C 3.90625 -9.28125 3.859375 -9.265625 3.640625 -9.15625 L -0.78125 -7.09375 C -0.96875 -7.015625 -1.046875 -6.96875 -0.953125 -6.796875 C -0.921875 -6.6875 -0.84375 -6.734375 -0.671875 -6.8125 C -0.34375 -6.953125 -0.09375 -7.078125 -0.015625 -6.921875 C 0 -6.890625 0.015625 -6.875 0.046875 -6.703125 L 1.09375 -1.359375 C 1.15625 -0.984375 1.171875 -0.890625 0.46875 -0.5625 C 0.3125 -0.484375 0.21875 -0.4375 0.296875 -0.265625 C 0.34375 -0.15625 0.453125 -0.21875 0.484375 -0.21875 L 1.65625 -0.8125 L 3.015625 -1.40625 C 3.09375 -1.4375 3.203125 -1.5 3.125 -1.671875 C 3.09375 -1.734375 3.015625 -1.734375 3.015625 -1.734375 C 2.984375 -1.734375 2.96875 -1.734375 2.765625 -1.625 C 2.5625 -1.53125 2.515625 -1.515625 2.28125 -1.421875 C 2.015625 -1.34375 1.96875 -1.359375 1.921875 -1.484375 C 1.921875 -1.484375 1.890625 -1.546875 1.875 -1.703125 L 1.375 -4.21875 L 2.25 -4.625 C 2.9375 -4.9375 3.0625 -4.828125 3.1875 -4.546875 C 3.203125 -4.5 3.265625 -4.375 3.328125 -4.078125 C 3.328125 -4.046875 3.34375 -3.96875 3.34375 -3.96875 C 3.375 -3.890625 3.4375 -3.890625 3.5 -3.921875 C 3.578125 -3.953125 3.5625 -3.96875 3.53125 -4.15625 L 3.140625 -6.359375 C 3.109375 -6.46875 3.109375 -6.484375 3.09375 -6.5 C 3.09375 -6.5 3.03125 -6.609375 2.9375 -6.5625 C 2.84375 -6.515625 2.859375 -6.46875 2.875 -6.3125 C 3.03125 -5.515625 2.890625 -5.265625 2.125 -4.90625 L 1.296875 -4.53125 L 0.828125 -7.09375 C 0.75 -7.4375 0.734375 -7.46875 1.125 -7.640625 L 2.328125 -8.203125 C 3.4375 -8.71875 3.78125 -8.515625 4.109375 -7.828125 C 4.203125 -7.625 4.21875 -7.578125 4.296875 -7.328125 C 4.34375 -7.21875 4.359375 -7.1875 4.359375 -7.15625 C 4.390625 -7.109375 4.4375 -7.078125 4.515625 -7.109375 C 4.625 -7.15625 4.609375 -7.203125 4.5625 -7.390625 Z M 4.5625 -7.390625 "/>
|
||||
</symbol>
|
||||
@ -84,13 +84,13 @@
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-1">
|
||||
<path style="stroke:none;" d="M 3.546875 -2.75 C 3.5 -2.828125 3.40625 -2.796875 3.390625 -2.78125 C 3.296875 -2.734375 3.3125 -2.71875 3.34375 -2.53125 C 3.40625 -2.203125 3.484375 -1.75 3.203125 -1.625 C 3.046875 -1.5625 2.921875 -1.671875 2.84375 -1.84375 C 2.796875 -1.953125 2.734375 -2.21875 2.71875 -2.390625 L 2.46875 -3.640625 C 2.4375 -3.828125 2.390625 -4.15625 2.375 -4.171875 C 2.3125 -4.296875 2.171875 -4.328125 2.0625 -4.265625 C 1.828125 -4.171875 1.859375 -3.953125 1.90625 -3.75 L 2.203125 -2.265625 C 2.21875 -2.125 2.28125 -1.859375 2.28125 -1.859375 C 2.234375 -1.59375 2.140625 -1.140625 1.765625 -0.953125 C 1.328125 -0.75 1.125 -1.171875 1.078125 -1.28125 C 0.90625 -1.640625 0.859375 -2.171875 0.84375 -2.734375 C 0.8125 -2.875 0.8125 -2.984375 0.765625 -3.078125 C 0.609375 -3.421875 0.234375 -3.515625 -0.078125 -3.359375 C -0.71875 -3.0625 -0.59375 -2.0625 -0.546875 -1.953125 C -0.515625 -1.875 -0.4375 -1.90625 -0.40625 -1.921875 C -0.3125 -1.96875 -0.328125 -2 -0.328125 -2.09375 C -0.421875 -2.65625 -0.265625 -3.046875 -0.03125 -3.15625 C 0.078125 -3.21875 0.15625 -3.15625 0.234375 -3.015625 C 0.296875 -2.859375 0.3125 -2.71875 0.3125 -2.546875 C 0.375 -1.515625 0.46875 -1.328125 0.546875 -1.15625 C 0.59375 -1.0625 0.734375 -0.765625 1.078125 -0.671875 C 1.3125 -0.59375 1.59375 -0.65625 1.8125 -0.765625 C 2.21875 -0.953125 2.3125 -1.265625 2.4375 -1.578125 C 2.78125 -1.21875 3.1875 -1.40625 3.28125 -1.453125 C 3.484375 -1.546875 3.59375 -1.75 3.609375 -2.015625 C 3.625 -2.34375 3.5625 -2.71875 3.546875 -2.75 Z M 3.546875 -2.75 "/>
|
||||
<path style="stroke:none;" d="M 3.6875 -5.375 L 3.3125 -6.53125 C 3.21875 -6.734375 3.1875 -6.71875 3.03125 -6.640625 L -0.34375 -5.0625 C -0.46875 -5.015625 -0.546875 -4.984375 -0.484375 -4.84375 C -0.4375 -4.75 -0.359375 -4.78125 -0.234375 -4.828125 C -0.234375 -4.828125 -0.109375 -4.890625 0 -4.9375 C 0.15625 -4.96875 0.171875 -4.96875 0.203125 -4.921875 C 0.21875 -4.875 0.234375 -4.796875 0.234375 -4.765625 L 0.9375 -1.078125 C 1 -0.78125 1.015625 -0.75 0.515625 -0.53125 C 0.421875 -0.484375 0.328125 -0.4375 0.390625 -0.296875 C 0.421875 -0.234375 0.484375 -0.21875 0.53125 -0.25 C 0.71875 -0.34375 1.171875 -0.578125 1.359375 -0.671875 L 1.859375 -0.875 C 2.03125 -0.953125 2.1875 -1.03125 2.34375 -1.09375 C 2.390625 -1.109375 2.5 -1.15625 2.4375 -1.296875 C 2.390625 -1.390625 2.3125 -1.359375 2.171875 -1.296875 C 2.171875 -1.296875 2 -1.21875 1.828125 -1.140625 C 1.6875 -1.09375 1.625 -1.0625 1.578125 -1.171875 C 1.578125 -1.1875 1.5625 -1.203125 1.546875 -1.296875 L 1.21875 -3.0625 L 1.875 -3.375 C 2.359375 -3.59375 2.5 -3.53125 2.59375 -3.328125 C 2.640625 -3.234375 2.640625 -3.21875 2.671875 -3.015625 C 2.671875 -3 2.671875 -2.953125 2.6875 -2.9375 C 2.703125 -2.875 2.796875 -2.859375 2.84375 -2.890625 C 2.9375 -2.921875 2.90625 -2.96875 2.890625 -3.09375 L 2.609375 -4.609375 C 2.59375 -4.625 2.5625 -4.734375 2.5625 -4.734375 C 2.53125 -4.796875 2.46875 -4.8125 2.421875 -4.78125 C 2.328125 -4.75 2.34375 -4.6875 2.375 -4.5625 C 2.46875 -4 2.328125 -3.84375 1.78125 -3.59375 L 1.15625 -3.296875 L 0.828125 -5.078125 C 0.78125 -5.265625 0.78125 -5.3125 1.046875 -5.421875 L 2.015625 -5.890625 C 2.859375 -6.28125 3.109375 -6.140625 3.359375 -5.609375 C 3.453125 -5.40625 3.484375 -5.25 3.5 -5.21875 C 3.53125 -5.15625 3.578125 -5.109375 3.65625 -5.15625 C 3.75 -5.203125 3.734375 -5.265625 3.6875 -5.375 Z M 3.6875 -5.375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-2">
|
||||
<path style="stroke:none;" d="M 2.3125 -3.875 C 2.078125 -4.375 1.78125 -4.234375 1.765625 -4.21875 C 1.59375 -4.140625 1.5 -3.890625 1.578125 -3.71875 C 1.625 -3.609375 1.71875 -3.59375 1.75 -3.578125 C 1.921875 -3.53125 2.125 -3.4375 2.25 -3.171875 C 2.375 -2.890625 2.59375 -1.34375 1.84375 -0.984375 C 1.328125 -0.75 1.109375 -1.203125 1.0625 -1.328125 C 0.921875 -1.609375 0.875 -2 0.84375 -2.71875 C 0.8125 -2.875 0.8125 -2.984375 0.765625 -3.078125 C 0.609375 -3.421875 0.234375 -3.515625 -0.078125 -3.359375 C -0.71875 -3.0625 -0.59375 -2.0625 -0.546875 -1.953125 C -0.515625 -1.875 -0.4375 -1.90625 -0.40625 -1.921875 C -0.3125 -1.96875 -0.328125 -2 -0.328125 -2.09375 C -0.421875 -2.65625 -0.28125 -3.046875 -0.03125 -3.15625 C 0.078125 -3.21875 0.15625 -3.15625 0.234375 -3.015625 C 0.296875 -2.859375 0.3125 -2.71875 0.3125 -2.546875 C 0.375 -1.71875 0.421875 -1.40625 0.53125 -1.1875 C 0.828125 -0.5625 1.421875 -0.578125 1.90625 -0.8125 C 2.96875 -1.296875 2.546875 -3.34375 2.3125 -3.875 Z M 2.3125 -3.875 "/>
|
||||
<path style="stroke:none;" d="M 3.546875 -2.75 C 3.5 -2.828125 3.40625 -2.796875 3.390625 -2.78125 C 3.296875 -2.734375 3.3125 -2.71875 3.34375 -2.53125 C 3.40625 -2.203125 3.484375 -1.75 3.203125 -1.625 C 3.046875 -1.5625 2.921875 -1.671875 2.84375 -1.84375 C 2.796875 -1.953125 2.734375 -2.21875 2.71875 -2.390625 L 2.46875 -3.640625 C 2.4375 -3.828125 2.390625 -4.15625 2.375 -4.171875 C 2.3125 -4.296875 2.171875 -4.328125 2.0625 -4.265625 C 1.828125 -4.171875 1.859375 -3.953125 1.90625 -3.75 L 2.203125 -2.265625 C 2.21875 -2.125 2.28125 -1.859375 2.28125 -1.859375 C 2.234375 -1.59375 2.140625 -1.140625 1.765625 -0.953125 C 1.328125 -0.75 1.125 -1.171875 1.078125 -1.28125 C 0.90625 -1.640625 0.859375 -2.171875 0.84375 -2.734375 C 0.8125 -2.875 0.8125 -2.984375 0.765625 -3.078125 C 0.609375 -3.421875 0.234375 -3.515625 -0.078125 -3.359375 C -0.71875 -3.0625 -0.59375 -2.0625 -0.546875 -1.953125 C -0.515625 -1.875 -0.4375 -1.90625 -0.40625 -1.921875 C -0.3125 -1.96875 -0.328125 -2 -0.328125 -2.09375 C -0.421875 -2.65625 -0.265625 -3.046875 -0.03125 -3.15625 C 0.078125 -3.21875 0.15625 -3.15625 0.234375 -3.015625 C 0.296875 -2.859375 0.3125 -2.71875 0.3125 -2.546875 C 0.375 -1.515625 0.46875 -1.328125 0.546875 -1.15625 C 0.59375 -1.0625 0.734375 -0.765625 1.078125 -0.671875 C 1.3125 -0.59375 1.59375 -0.65625 1.8125 -0.765625 C 2.21875 -0.953125 2.3125 -1.265625 2.4375 -1.578125 C 2.78125 -1.21875 3.1875 -1.40625 3.28125 -1.453125 C 3.484375 -1.546875 3.59375 -1.75 3.609375 -2.015625 C 3.625 -2.34375 3.5625 -2.71875 3.546875 -2.75 Z M 3.546875 -2.75 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-3">
|
||||
<path style="stroke:none;" d="M 3.6875 -5.375 L 3.3125 -6.53125 C 3.21875 -6.734375 3.1875 -6.71875 3.03125 -6.640625 L -0.34375 -5.0625 C -0.46875 -5.015625 -0.546875 -4.984375 -0.484375 -4.84375 C -0.4375 -4.75 -0.359375 -4.78125 -0.234375 -4.828125 C -0.234375 -4.828125 -0.109375 -4.890625 0 -4.9375 C 0.15625 -4.96875 0.171875 -4.96875 0.203125 -4.921875 C 0.21875 -4.875 0.234375 -4.796875 0.234375 -4.765625 L 0.9375 -1.078125 C 1 -0.78125 1.015625 -0.75 0.515625 -0.53125 C 0.421875 -0.484375 0.328125 -0.4375 0.390625 -0.296875 C 0.421875 -0.234375 0.484375 -0.21875 0.53125 -0.25 C 0.71875 -0.34375 1.171875 -0.578125 1.359375 -0.671875 L 1.859375 -0.875 C 2.03125 -0.953125 2.1875 -1.03125 2.34375 -1.09375 C 2.390625 -1.109375 2.5 -1.15625 2.4375 -1.296875 C 2.390625 -1.390625 2.3125 -1.359375 2.171875 -1.296875 C 2.171875 -1.296875 2 -1.21875 1.828125 -1.140625 C 1.6875 -1.09375 1.625 -1.0625 1.578125 -1.171875 C 1.578125 -1.1875 1.5625 -1.203125 1.546875 -1.296875 L 1.21875 -3.0625 L 1.875 -3.375 C 2.359375 -3.59375 2.5 -3.53125 2.59375 -3.328125 C 2.640625 -3.234375 2.640625 -3.21875 2.671875 -3.015625 C 2.671875 -3 2.671875 -2.953125 2.6875 -2.9375 C 2.703125 -2.875 2.796875 -2.859375 2.84375 -2.890625 C 2.9375 -2.921875 2.90625 -2.96875 2.890625 -3.09375 L 2.609375 -4.609375 C 2.59375 -4.625 2.5625 -4.734375 2.5625 -4.734375 C 2.53125 -4.796875 2.46875 -4.8125 2.421875 -4.78125 C 2.328125 -4.75 2.34375 -4.6875 2.375 -4.5625 C 2.46875 -4 2.328125 -3.84375 1.78125 -3.59375 L 1.15625 -3.296875 L 0.828125 -5.078125 C 0.78125 -5.265625 0.78125 -5.3125 1.046875 -5.421875 L 2.015625 -5.890625 C 2.859375 -6.28125 3.109375 -6.140625 3.359375 -5.609375 C 3.453125 -5.40625 3.484375 -5.25 3.5 -5.21875 C 3.53125 -5.15625 3.578125 -5.109375 3.65625 -5.15625 C 3.75 -5.203125 3.734375 -5.265625 3.6875 -5.375 Z M 3.6875 -5.375 "/>
|
||||
<path style="stroke:none;" d="M 2.3125 -3.875 C 2.078125 -4.375 1.78125 -4.234375 1.765625 -4.21875 C 1.59375 -4.140625 1.5 -3.890625 1.578125 -3.71875 C 1.625 -3.609375 1.71875 -3.59375 1.75 -3.578125 C 1.921875 -3.53125 2.125 -3.4375 2.25 -3.171875 C 2.375 -2.890625 2.59375 -1.34375 1.84375 -0.984375 C 1.328125 -0.75 1.109375 -1.203125 1.0625 -1.328125 C 0.921875 -1.609375 0.875 -2 0.84375 -2.71875 C 0.8125 -2.875 0.8125 -2.984375 0.765625 -3.078125 C 0.609375 -3.421875 0.234375 -3.515625 -0.078125 -3.359375 C -0.71875 -3.0625 -0.59375 -2.0625 -0.546875 -1.953125 C -0.515625 -1.875 -0.4375 -1.90625 -0.40625 -1.921875 C -0.3125 -1.96875 -0.328125 -2 -0.328125 -2.09375 C -0.421875 -2.65625 -0.28125 -3.046875 -0.03125 -3.15625 C 0.078125 -3.21875 0.15625 -3.15625 0.234375 -3.015625 C 0.296875 -2.859375 0.3125 -2.71875 0.3125 -2.546875 C 0.375 -1.71875 0.421875 -1.40625 0.53125 -1.1875 C 0.828125 -0.5625 1.421875 -0.578125 1.90625 -0.8125 C 2.96875 -1.296875 2.546875 -3.34375 2.3125 -3.875 Z M 2.3125 -3.875 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph4-0">
|
||||
<path style="stroke:none;" d=""/>
|
||||
@ -195,27 +195,9 @@
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -29.975839 -29.618459 L -41.95923 -3.926913 L -36.820138 -1.529453 L -24.840658 -27.220998 Z M -29.975839 -29.618459 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -29.975839 -29.618459 L -36.820138 -1.529453 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -41.95923 -3.926913 L -24.840658 -27.220998 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-1" x="84.734346" y="120.805071"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-1" x="89.780064" y="120.09975"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-1" x="132.449976" y="138.872969"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-1" x="137.495694" y="138.167647"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3.924956 -41.957754 L 1.531407 -36.818662 L 27.222953 -24.839182 L 29.616502 -29.978274 Z M 3.924956 -41.957754 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 29.616502 -29.978274 L 1.531407 -36.818662 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3.924956 -41.957754 L 27.222953 -24.839182 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-1" x="125.254778" y="170.059819"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-2" x="130.300074" y="169.353592"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -51.901064 -42.966799 L -36.48379 -35.778329 L -38.88125 -30.643148 L -54.294614 -37.831619 Z M -51.901064 -42.966799 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -34.176283 -31.577884 L -37.230796 -33.001499 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.054516 0.0000829694 L 1.60962 1.684316 L 3.085219 -0.000595614 L 1.610657 -1.682163 Z M 6.054516 0.0000829694 " transform="matrix(0.905193,-0.422084,-0.422084,-0.905193,96.929687,155.53215)"/>
|
||||
@ -223,7 +205,7 @@
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.055226 -0.0000854737 L 1.61033 1.684148 L 3.085929 -0.000764057 L 1.607822 -1.680679 Z M 6.055226 -0.0000854737 " transform="matrix(-0.905193,0.422084,0.422084,0.905193,79.668683,163.580984)"/>
|
||||
<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -41.95923 -3.926913 L -47.09441 -6.324373 L -47.39947 -9.210712 L -52.210035 -5.960648 L -52.816245 -11.737237 L -57.630721 -8.487172 L -58.233019 -14.263761 L -63.047495 -11.013697 L -63.649794 -16.790286 L -66.058987 -15.163298 L -72.785956 -18.303854 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-2" x="72.273589" y="128.860217"/>
|
||||
<use xlink:href="#glyph2-1" x="72.273589" y="128.860217"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 42.968753 -51.899588 L 35.780283 -36.486225 L 30.641191 -38.879774 L 37.829662 -54.297048 Z M 42.968753 -51.899588 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 31.575927 -34.178718 L 32.999542 -37.233231 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
@ -232,41 +214,53 @@
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.053061 -0.00123527 L 1.608165 1.682998 L 3.088961 -0.0000220341 L 1.609202 -1.683482 Z M 6.053061 -0.00123527 " transform="matrix(0.422084,0.905193,0.905193,-0.422084,174.418876,176.762479)"/>
|
||||
<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3.924956 -41.957754 L 6.322416 -47.096845 L 9.212666 -47.397994 L 5.958691 -52.21247 L 11.739191 -52.814769 L 8.485215 -57.629245 L 14.261804 -58.231543 L 11.01174 -63.046019 L 16.788329 -63.652229 L 15.165252 -66.057511 L 18.301897 -72.788391 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-2" x="137.85037" y="187.120948"/>
|
||||
<use xlink:href="#glyph2-1" x="137.85037" y="187.120948"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -24.336136 -55.134009 L -44.88859 -64.719939 L -37.70012 -80.133302 L -17.147665 -70.551283 Z M -24.336136 -55.134009 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-3" x="96.950402" y="195.936164"/>
|
||||
<use xlink:href="#glyph2-2" x="96.950402" y="195.937163"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-3" x="105.240367" y="193.718023"/>
|
||||
<use xlink:href="#glyph3-1" x="105.239945" y="193.718117"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -27.410204 -28.417773 L -13.033263 -59.24841 L -16.087777 -60.675936 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.051483 0.000205036 L 1.610132 1.682785 L 3.087383 0.00141827 L 1.607624 -1.682041 Z M 6.051483 0.000205036 " transform="matrix(-0.905193,0.422084,0.422084,0.905193,120.133922,182.199488)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-3" x="121.359543" y="193.460193"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-2" x="126.404839" y="192.753967"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -34.821603 -59.47525 L -42.236913 -43.573008 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.054581 -0.00172771 L 1.609684 1.682438 L 3.086951 0.00109892 L 1.607222 -1.682372 Z M 6.054581 -0.00172771 " transform="matrix(-0.422074,-0.905203,-0.905203,0.422074,92.647666,168.887603)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-4" x="80.009126" y="178.256791"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-1" x="86.439382" y="176.904746"/>
|
||||
<use xlink:href="#glyph3-2" x="86.439805" y="176.905651"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 74.319557 -18.51896 L 53.763192 -28.10098 L 60.951662 -43.514343 L 81.504116 -33.932323 Z M 74.319557 -18.51896 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-3" x="195.479873" y="159.362904"/>
|
||||
<use xlink:href="#glyph2-2" x="195.479873" y="159.363903"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-3" x="203.770743" y="157.144341"/>
|
||||
<use xlink:href="#glyph3-1" x="203.77032" y="157.144434"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 28.419727 -27.408728 L 59.250365 -13.031787 L 61.874665 -18.659757 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.05442 -0.000360265 L 1.609524 1.683873 L 3.086776 0.00250582 L 1.610561 -1.682607 Z M 6.05442 -0.000360265 " transform="matrix(0.422084,0.905193,0.905193,-0.422084,194.233917,138.863181)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-3" x="198.414283" y="138.804053"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-3" x="203.460001" y="138.098732"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 56.907658 -36.020812 L 43.574962 -42.235437 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.053839 0.00130487 L 1.607289 1.681926 L 3.088101 -0.00106596 L 1.608371 -1.684537 Z M 6.053839 0.00130487 " transform="matrix(-0.905203,0.422074,0.422074,0.905203,179.725495,163.783496)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-4" x="180.903703" y="174.943844"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-2" x="187.333055" y="173.592221"/>
|
||||
<use xlink:href="#glyph3-3" x="187.333055" y="173.592221"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -113.386342 -113.388777 L -61.326643 -113.388777 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.053923 -0.00153737 L 1.607083 1.684116 L 3.089363 -0.00153737 L 1.607083 -1.68328 Z M 6.053923 -0.00153737 " transform="matrix(0.998778,0,0,-0.998778,69.547224,236.04534)"/>
|
||||
@ -277,7 +271,7 @@
|
||||
<use xlink:href="#glyph4-2" x="72.791955" y="249.244953"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph5-1" x="76.219762" y="250.737127"/>
|
||||
<use xlink:href="#glyph5-1" x="76.219762" y="250.738126"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -113.386342 -113.388777 L -113.386342 -61.329078 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.051488 -0.000897507 L 1.608559 1.684756 L 3.086928 -0.000897507 L 1.608559 -1.68264 Z M 6.051488 -0.000897507 " transform="matrix(0,-0.998778,-0.998778,0,20.385822,186.883938)"/>
|
||||
@ -312,7 +306,7 @@
|
||||
<use xlink:href="#glyph2-6" x="178.799278" y="95.880561"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-1" x="182.537461" y="95.783852"/>
|
||||
<use xlink:href="#glyph3-2" x="182.537461" y="95.783852"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -0.00171655 -0.000240399 L -22.001252 47.182407 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.053998 0.00178742 L 1.607449 1.682476 L 3.088245 -0.000544017 L 1.608486 -1.684004 Z M 6.053998 0.00178742 " transform="matrix(-0.422084,-0.905193,-0.905193,0.422084,112.857693,78.240999)"/>
|
||||
@ -323,7 +317,7 @@
|
||||
<use xlink:href="#glyph2-6" x="100.524031" y="80.113848"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-2" x="104.261731" y="80.018466"/>
|
||||
<use xlink:href="#glyph3-3" x="104.261731" y="80.018466"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-dasharray:2.98883,2.98883;stroke-miterlimit:10;" d="M -0.00171655 -0.000240399 L 56.692552 -0.000240399 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 42.518985 -0.000240399 C 42.518985 6.206562 41.157947 12.346876 38.537558 17.970935 " transform="matrix(0.998778,0,0,-0.998778,133.634527,122.796635)"/>
|
||||
|
Before Width: | Height: | Size: 64 KiB After Width: | Height: | Size: 63 KiB |
@ -192,13 +192,11 @@ Configuration file is accessible [[file:config.org][here]].
|
||||
% Force Sensors
|
||||
\draw[fill=white] ($(au) + (-0.2, -0.5)$) rectangle ($(au) + (0, 0.5)$);
|
||||
\draw[] ($(au) + (-0.2, -0.5)$)coordinate(actu) -- ($(au) + (0, 0.5)$);
|
||||
\draw[] ($(au) + (-0.2, 0.5)$)coordinate(ku) node[above=0.1, rotate=\thetau]{$f_{u}$} -- ($(au) + (0, -0.5)$);
|
||||
\node[above, rotate=\thetau] at ($(av) + (-0.1, 0.5)$) {$f_{u}$};
|
||||
\draw[] ($(au) + (-0.2, 0.5)$)coordinate(ku) -- ($(au) + (0, -0.5)$);
|
||||
|
||||
\draw[fill=white] ($(av) + (-0.5, -0.2)$) rectangle ($(av) + (0.5, 0)$);
|
||||
\draw[] ($(av) + ( 0.5, -0.2)$)coordinate(actv) -- ($(av) + (-0.5, 0)$);
|
||||
\draw[] ($(av) + (-0.5, -0.2)$)coordinate(kv) -- ($(av) + ( 0.5, 0)$);
|
||||
\node[left, rotate=\thetau] at ($(av) + (-0.5, -0.1)$) {$f_{v}$};
|
||||
\draw[] ($(av) + ( 0.5, -0.2)$)coordinate(actv) -- ($(av) + (-0.5, 0)$);
|
||||
\draw[] ($(av) + (-0.5, -0.2)$)coordinate(kv) -- ($(av) + ( 0.5, 0)$);
|
||||
|
||||
% Spring and Actuator for U
|
||||
\draw[actuator={0.6}{0.2}] (actu) -- coordinate[midway](actumid) (actu-|-2.6,0);
|
||||
@ -209,11 +207,11 @@ Configuration file is accessible [[file:config.org][here]].
|
||||
\draw[spring=0.2] (kv) -- node[left, rotate=\thetau]{$k$} (kv|-0,-2.6);
|
||||
|
||||
\node[block={0.8cm}{0.6cm}, rotate=\thetau] (Ku) at ($(actumid) + (0, -1.2)$) {$K_{F}$};
|
||||
\draw[->] ($(au) + (-0.1, -0.5)$) |- (Ku.east);
|
||||
\draw[->] ($(au) + (-0.1, -0.5)$) |- (Ku.east) node[below right, rotate=\thetau]{$f_{u}$};
|
||||
\draw[->] (Ku.north) -- ($(actumid) + (0, -0.1)$) node[below left, rotate=\thetau]{$F_u$};
|
||||
|
||||
\node[block={0.8cm}{0.6cm}, rotate=\thetau] (Kv) at ($(actvmid) + (1.2, 0)$) {$K_{F}$};
|
||||
\draw[->] ($(av) + (0.5, -0.1)$) -| (Kv.north);
|
||||
\draw[->] ($(av) + (0.5, -0.1)$) -| (Kv.north) node[above right, rotate=\thetau]{$f_{v}$};
|
||||
\draw[->] (Kv.west) -- ($(actvmid) + (0.1, 0)$) node[below right, rotate=\thetau]{$F_v$};
|
||||
\end{scope}
|
||||
|
||||
|