Add equations
Before Width: | Height: | Size: 163 KiB After Width: | Height: | Size: 162 KiB |
BIN
inkscape/system_bis.svg
Normal file
After Width: | Height: | Size: 76 KiB |
105
paper/paper.org
@ -249,7 +249,7 @@ Stiff positioning platforms should be used if high rotational speeds or heavy pa
|
||||
| <<fig:campbell_diagram_real>> Real Part | <<fig:campbell_diagram_imag>> Imaginary Part |
|
||||
|
||||
* Decentralized Integral Force Feedback
|
||||
** Control Schematic
|
||||
** System Schematic and Control Architecture
|
||||
|
||||
Force Sensors are added in series with the actuators as shown in Figure [[fig:system_iff]].
|
||||
|
||||
@ -332,7 +332,7 @@ It increase with the rotational speed $\Omega$.
|
||||
** Decentralized Integral Force Feedback
|
||||
|
||||
\begin{equation}
|
||||
\bm{K}_F(s) = g \cdot \frac{1}{s}
|
||||
K_F(s) = g \cdot \frac{1}{s}
|
||||
\end{equation}
|
||||
|
||||
# Problem of zero with a positive real part
|
||||
@ -341,10 +341,9 @@ This is due to the fact that the zeros of the plant are the poles of the closed
|
||||
Thus, for some finite IFF gain, one pole will have a positive real part and the system will be unstable.
|
||||
|
||||
# General explanation for the Root Locus Plot
|
||||
|
||||
# MIMO root locus: gain is simultaneously increased for both decentralized controllers
|
||||
|
||||
# Explain the circles, crosses and black crosses (poles of the controller)
|
||||
# transmission zeros
|
||||
|
||||
#+name: fig:root_locus_pure_iff
|
||||
#+caption: Root Locus for the Decentralized Integral Force Feedback
|
||||
@ -370,7 +369,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
|
||||
# Equation with the new control law
|
||||
\begin{equation}
|
||||
\bm{K}_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
|
||||
K_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
|
||||
\end{equation}
|
||||
|
||||
|
||||
@ -429,19 +428,32 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
|
||||
* Integral Force Feedback with Parallel Springs
|
||||
** Stiffness in Parallel with the Force Sensor
|
||||
|
||||
# Zeros = remove force sensor
|
||||
# We want to have stable zeros => add stiffnesses in parallel
|
||||
|
||||
#+name: fig:system_parallel_springs
|
||||
#+caption: System with added springs $k_p$ in parallel with the actuators
|
||||
#+caption: System with added springs in parallel with the actuators
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/system_parallel_springs.pdf]]
|
||||
|
||||
# Maybe add the fact that this is equivalent to amplified piezo for instance
|
||||
# Add reference to cite:souleille18_concep_activ_mount_space_applic
|
||||
|
||||
** Plant Dynamics
|
||||
|
||||
We define an adimensional parameter $\alpha$, $0 \le \alpha < 1$, that describes the proportion of the stiffness in parallel with the actuator and force sensor:
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
k_p &= \alpha k \\
|
||||
k_a &= (1 - \alpha) k
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The overall stiffness $k$ stays constant:
|
||||
\begin{equation}
|
||||
k = k_a + k_p
|
||||
\end{equation}
|
||||
|
||||
# Equations: sensed force
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
|
||||
@ -459,30 +471,27 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
With:
|
||||
\begin{align}
|
||||
G_{kp} &= \left( \frac{s^2}{{\omega_0^\prime}^2} + 2\xi^\prime \frac{s}{{\omega_0^\prime}^2} + 1 - \frac{\Omega^2}{{\omega_0^\prime}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)^2 \\
|
||||
G_{kz} &= \left( \frac{s^2}{{\omega_0^\prime}^2} + \frac{k_p}{k + k_p} - \frac{\Omega^2}{{\omega_0^\prime}^2} \right) \left( \frac{s^2}{{\omega_0^\prime}^2} + 2\xi^\prime \frac{s}{{\omega_0^\prime}^2} + 1 - \frac{\Omega^2}{{\omega_0^\prime}^2} \right) + \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)^2 \\
|
||||
G_{kc} &= \left( 2 \xi^\prime \frac{s}{\omega_0^\prime} + \frac{k}{k + k_p} \right) \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)
|
||||
\end{align}
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
G_{kp} &= \left( \frac{s^2}{{\omega_0}^2} + 2\xi \frac{s}{\omega_0} + 1 - \frac{\Omega^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)^2 \\
|
||||
G_{kz} &= \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \right) \left( \frac{s^2}{{\omega_0}^2} + 2\xi \frac{s}{\omega_0} + 1 - \frac{\Omega^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)^2 \\
|
||||
G_{kc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
# New parameters
|
||||
where:
|
||||
- $\omega_0^\prime = \frac{k + k_p}{m}$
|
||||
- $\xi^\prime = \frac{c}{2 \sqrt{(k + k_p) m}}$
|
||||
# News terms with \alpha are added
|
||||
# w0 and xi are the same as before => only the zeros are changing and not the poles.
|
||||
|
||||
** Effect of the Parallel Stiffness on the Plant Dynamics
|
||||
|
||||
# Negative Stiffness due to rotation => the stiffness should be larger than that
|
||||
|
||||
# TODO: Verify that
|
||||
# For kp < negative stiffness => real zeros
|
||||
# For kp > negative stiffness => complex conjugate zeros
|
||||
# For kp < negative stiffness => real zeros => non-minimum phase
|
||||
# For kp > negative stiffness => complex conjugate zeros => minimum phase
|
||||
\begin{equation}
|
||||
\frac{k_p}{k + k_p} - \frac{\Omega^2}{{\omega_0^\prime}^2} > 0
|
||||
\end{equation}
|
||||
Which is equivalent to
|
||||
\begin{equation}
|
||||
k_p > m \Omega^2
|
||||
\begin{align}
|
||||
\alpha > \frac{\Omega^2}{{\omega_0}^2} \\
|
||||
\Leftrightarrow k_p > m \Omega^2
|
||||
\end{align}
|
||||
\end{equation}
|
||||
|
||||
#+name: fig:plant_iff_kp
|
||||
@ -490,7 +499,8 @@ Which is equivalent to
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/plant_iff_kp.pdf]]
|
||||
|
||||
# Location of the zeros as a function of kp
|
||||
# Location of the zeros as a function of kp => maybe to complex
|
||||
# Do we talk about siso zeros of mimo (transmission zeros)?
|
||||
|
||||
# Try to show that we don't have anymore real zeros that was making the system non-minimum phase
|
||||
|
||||
@ -504,36 +514,31 @@ Which is equivalent to
|
||||
# For kp > m Omega => unconditionally stable
|
||||
|
||||
** Optimal Parallel Stiffness
|
||||
|
||||
# Explain that we have k = ka + kp constant in order to have the same resonance
|
||||
|
||||
# Attainable damping generally proportional to the distance between the poles and zeros (add reference, probably preumont)
|
||||
# The zero is the poles of the system without the force sensors => w =
|
||||
# The zero is the poles of the system without the force sensors => w0 = sqrt(kp/m) +/- Omega ?? => seems not true
|
||||
# Thus, small kp is wanted: kp close to m Omega^2 should give the optimal damping but is not acceptable for robustness reasons
|
||||
|
||||
|
||||
# Large Stiffness decreases the attainable damping
|
||||
|
||||
#+name: fig:root_locus_iff_kps
|
||||
#+caption: Root Locus for IFF for several parallel spring stiffnesses $k_p$
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_iff_kps.pdf]]
|
||||
|
||||
|
||||
# Example with kp = 5 m Omega
|
||||
|
||||
#+name: fig:root_locus_opt_gain_iff_kp
|
||||
#+caption: Root Locus for IFF with $k_p = 5 m \Omega^2$. The poles of the system using the gain that yields the maximum damping ratio are shown by black crosses
|
||||
#+attr_latex: :scale 1
|
||||
[[file:figs/root_locus_opt_gain_iff_kp.pdf]]
|
||||
#+name: fig:root_locus_iff_kps_opt
|
||||
#+caption: Root Locus for IFF when parallel stiffness is used
|
||||
#+attr_latex: :environment subfigure :width 0.49\linewidth :align c
|
||||
| file:figs/root_locus_iff_kps.pdf | file:figs/root_locus_opt_gain_iff_kp.pdf |
|
||||
| <<fig:root_locus_iff_kps>> Three values of $k_p$ | <<fig:root_locus_opt_gain_iff_kp>> $k_p = 5 m \Omega^2$, optimal damping is shown |
|
||||
|
||||
|
||||
* Direct Velocity Feedback
|
||||
** Control Schematic
|
||||
|
||||
** System Schematic and Control Architecture
|
||||
# Basic Idea of DVF
|
||||
|
||||
|
||||
# Equation with the control law
|
||||
# Equation with the control law: pure gain
|
||||
\begin{equation}
|
||||
K_V(s) = g
|
||||
\end{equation}
|
||||
|
||||
#+name: fig:system_dvf
|
||||
#+caption: System with relative velocity sensors and with decentralized controllers $K_V$
|
||||
@ -556,7 +561,7 @@ Which is equivalent to
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
|
||||
\frac{s}{k} \frac{1}{G_{vp}}
|
||||
\frac{1}{k} \frac{1}{G_{vp}}
|
||||
\begin{bmatrix}
|
||||
G_{vz} & G_{vc} \\
|
||||
-G_{vc} & G_{vz}
|
||||
@ -564,11 +569,13 @@ Which is equivalent to
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
With:
|
||||
\begin{align}
|
||||
G_{vp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{vz} &= \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
|
||||
G_{vc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
|
||||
\end{align}
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
G_{vp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{vz} &= s \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) \\
|
||||
G_{vc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
# Show that the rotation have somehow less impact on the plant than for IFF
|
||||
|
||||
|
BIN
paper/paper.pdf
211
paper/paper.tex
@ -1,4 +1,4 @@
|
||||
% Created 2020-06-25 jeu. 10:07
|
||||
% Created 2020-06-25 jeu. 17:24
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass{ISMA_USD2020}
|
||||
\usepackage[utf8]{inputenc}
|
||||
@ -53,18 +53,20 @@
|
||||
}
|
||||
|
||||
\section{Introduction}
|
||||
\label{sec:org5780a8f}
|
||||
\label{sec:org7ff5c70}
|
||||
\label{sec:introduction}
|
||||
Controller Poles are shown by black crosses (
|
||||
\begin{tikzpicture} \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){}; \end{tikzpicture}
|
||||
).
|
||||
Due to gyroscopic effects, the guaranteed robustness properties of Integral Force Feedback do not hold.
|
||||
Either the control architecture can be slightly modfied or mechanical changes in the system can be performed.
|
||||
This paper has been published
|
||||
The Matlab code that was use to obtain the results are available in \cite{dehaeze20_activ_dampin_rotat_posit_platf}.
|
||||
|
||||
\section{Dynamics of Rotating Positioning Platforms}
|
||||
\label{sec:orga8db619}
|
||||
\label{sec:org029ca48}
|
||||
\subsection{Studied Rotating Positioning Platform}
|
||||
\label{sec:org70ddefe}
|
||||
\label{sec:org7eec6c5}
|
||||
Consider the rotating X-Y stage of Figure \ref{fig:system}.
|
||||
|
||||
\begin{itemize}
|
||||
@ -82,7 +84,7 @@ Consider the rotating X-Y stage of Figure \ref{fig:system}.
|
||||
\end{figure}
|
||||
|
||||
\subsection{Equations of Motion}
|
||||
\label{sec:org647b64d}
|
||||
\label{sec:orgca181a2}
|
||||
The system has two degrees of freedom and is thus fully described by the generalized coordinates \([q_1\ q_2] = [d_u\ d_v]\) (describing the position of the mass in the rotating frame).
|
||||
|
||||
Let's express the kinetic energy \(T\), the potential energy \(V\) of the mass \(m\) (neglecting the rotational energy) as well as the deceptive function \(R\):
|
||||
@ -117,7 +119,7 @@ The Gyroscopic effects can be seen from the two following terms:
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Transfer Functions in the Laplace domain}
|
||||
\label{sec:org55c9228}
|
||||
\label{sec:orge7e184a}
|
||||
|
||||
Using the Laplace transformation on the equations of motion \eqref{eq:eom_coupled}, the transfer functions from \([F_u,\ F_v]\) to \([d_u,\ d_v]\) are obtained:
|
||||
\begin{subequations}
|
||||
@ -139,7 +141,7 @@ Without rotation \(\Omega = 0\) and the system corresponds to two uncoupled one
|
||||
\end{subequations}
|
||||
|
||||
\subsection{Change of Variables / Parameters for the study}
|
||||
\label{sec:orgb7d090c}
|
||||
\label{sec:org3cdb1ab}
|
||||
|
||||
In order this study is more independent on the system parameters, the following change of variable is performed:
|
||||
\begin{itemize}
|
||||
@ -171,8 +173,13 @@ With:
|
||||
|
||||
\(G_{dp}\) describes to poles of the system, \(G_{dz}\) the zeros of the diagonal terms and \(G_{dc}\) the coupling.
|
||||
|
||||
\begin{itemize}
|
||||
\item \(k = \SI{1}{N/m}\), \(m = \SI{1}{kg}\), \(c = \SI{0.05}{\newton\per\meter\second}\)
|
||||
\item \(\omega_0 = \SI{1}{\radian\per\second}\), \(\xi = 0.025\)
|
||||
\end{itemize}
|
||||
|
||||
\subsection{System Dynamics and Campbell Diagram}
|
||||
\label{sec:org24f5f5f}
|
||||
\label{sec:org42dee20}
|
||||
The bode plot of \(\bm{G}_d\) is shown in Figure \ref{fig:plant_compare_rotating_speed}.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
@ -189,6 +196,14 @@ The bode plot of \(\bm{G}_d\) is shown in Figure \ref{fig:plant_compare_rotating
|
||||
\end{figure}
|
||||
|
||||
|
||||
The poles are the roots of \(G_{dp}\).
|
||||
Two pairs of complex conjugate poles (supposing small damping \(\xi \approx 0\)):
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
p_1 &= \pm j (\omega_0 - \Omega) \\
|
||||
p_2 &= \pm j (\omega_0 + \Omega)
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
When the rotation speed in non-null, the resonance frequency is split into two pairs of complex conjugate poles.
|
||||
As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies.
|
||||
@ -213,9 +228,9 @@ Stiff positioning platforms should be used if high rotational speeds or heavy pa
|
||||
\end{figure}
|
||||
|
||||
\section{Decentralized Integral Force Feedback}
|
||||
\label{sec:orgd957fd6}
|
||||
\subsection{Control Schematic}
|
||||
\label{sec:orgc01d8cf}
|
||||
\label{sec:orgda38ad7}
|
||||
\subsection{System Schematic and Control Architecture}
|
||||
\label{sec:orgf08eb9d}
|
||||
|
||||
Force Sensors are added in series with the actuators as shown in Figure \ref{fig:system_iff}.
|
||||
|
||||
@ -225,8 +240,8 @@ Force Sensors are added in series with the actuators as shown in Figure \ref{fig
|
||||
\caption{\label{fig:system_iff}System with Force Sensors in Series with the Actuators. Decentralized Integral Force Feedback is used}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Equations}
|
||||
\label{sec:orge5896ec}
|
||||
\subsection{Plant Dynamics}
|
||||
\label{sec:orgf2f22c2}
|
||||
The forces measured by the force sensors are equal to:
|
||||
\begin{equation}
|
||||
\label{eq:measured_force}
|
||||
@ -235,11 +250,12 @@ The forces measured by the force sensors are equal to:
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
Reinjecting \eqref{eq:tf_d} into \eqref{eq:measured_force} yields:
|
||||
Re-injecting \eqref{eq:tf_d} into \eqref{eq:measured_force} yields:
|
||||
\begin{equation}
|
||||
\label{eq:tf_f}
|
||||
\begin{bmatrix} f_{u} \\ f_{v} \end{bmatrix} = \bm{G}_{f} \begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
Where \(\bm{G}_f\) is a \(2 \times 2\) transfer function matrix.
|
||||
|
||||
\begin{equation}
|
||||
\bm{G}_f =
|
||||
@ -249,24 +265,38 @@ Reinjecting \eqref{eq:tf_d} into \eqref{eq:measured_force} yields:
|
||||
G_{fc} & G_{fz}
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
with:
|
||||
\begin{align}
|
||||
G_{fp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{fz} &= \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{fc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 \right) \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)
|
||||
\end{align}
|
||||
|
||||
The zeros of the diagonal terms are the roots of \(G_{fz}\) (supposing small damping):
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
z_1 &= \pm j \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} + \frac{\Omega^2}{{\omega_0}^2} + \frac{1}{2} } \\
|
||||
z_2 &= \pm \omega_0 \sqrt{\frac{1}{2} \sqrt{8 \frac{\Omega^2}{{\omega_0}^2} + 1} - \frac{\Omega^2}{{\omega_0}^2} - \frac{1}{2} }
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The frequency of the two complex conjugate zeros \(z_1\) is between the frequency of the two pairs of complex conjugate poles \(p_1\) and \(p_2\).
|
||||
This is the expected behavior of a collocated pair of actuator and sensor.
|
||||
|
||||
However, the two real zeros \(z_2\) induces an increase of +2 of the slope without change of phase (Figure \ref{fig:plant_iff_compare_rotating_speed}).
|
||||
This represents non-minimum phase behavior.
|
||||
|
||||
|
||||
The low frequency gain, for \(\Omega < \omega_0\), is no longer zero:
|
||||
\begin{equation}
|
||||
\bm{G}_f =
|
||||
\frac{1}{\left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2}
|
||||
\begin{bmatrix}
|
||||
\left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 & -G_{fc} \\
|
||||
G_{fc} & \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} \right) \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2
|
||||
\label{low_freq_gain_iff_plan}
|
||||
\bm{G}_{f0} = \lim_{\omega \to 0} \left| \bm{G}_f (j\omega) \right| = \begin{bmatrix}
|
||||
\frac{- \Omega^2}{{\omega_0}^2 - \Omega^2} & 0 \\
|
||||
0 & \frac{- \Omega^2}{{\omega_0}^2 - \Omega^2}
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\subsection{Plant Dynamics}
|
||||
\label{sec:org0a22a10}
|
||||
It increase with the rotational speed \(\Omega\).
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -274,8 +304,16 @@ Reinjecting \eqref{eq:tf_d} into \eqref{eq:measured_force} yields:
|
||||
\caption{\label{fig:plant_iff_compare_rotating_speed}Bode plot of \(\bm{G}_f\) for several rotational speeds \(\Omega\)}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Problems with Integral Force Feedback}
|
||||
\label{sec:orgd432439}
|
||||
\subsection{Decentralized Integral Force Feedback}
|
||||
\label{sec:orge1a14b4}
|
||||
|
||||
\begin{equation}
|
||||
\bm{K}_F(s) = g \cdot \frac{1}{s}
|
||||
\end{equation}
|
||||
|
||||
Also, as one zero has a positive real part, the \textbf{IFF control is no more unconditionally stable}.
|
||||
This is due to the fact that the zeros of the plant are the poles of the closed loop system with an infinite gain.
|
||||
Thus, for some finite IFF gain, one pole will have a positive real part and the system will be unstable.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -287,23 +325,26 @@ At low frequency, the gain is very large and thus no force is transmitted betwee
|
||||
This means that at low frequency, the system is decoupled (the force sensor removed) and thus the system is unstable.
|
||||
|
||||
\section{Integral Force Feedback with High Pass Filters}
|
||||
\label{sec:org2e1883a}
|
||||
\label{sec:org7f551f8}
|
||||
\subsection{Modification of the Control Low}
|
||||
\label{sec:org218110f}
|
||||
\label{sec:org4c39c6d}
|
||||
\begin{equation}
|
||||
\bm{K}_{F}(s) = \frac{1}{s} \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = \frac{1}{s + \omega_i}
|
||||
\bm{K}_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}
|
||||
\end{equation}
|
||||
|
||||
|
||||
\subsection{Feedback Analysis}
|
||||
\label{sec:org03090fc}
|
||||
|
||||
\label{sec:org2673698}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/loop_gain_modified_iff.pdf}
|
||||
\caption{\label{fig:loop_gain_modified_iff}Bode Plot of the Loop Gain for IFF with and without the HPF}
|
||||
\end{figure}
|
||||
|
||||
\begin{equation}
|
||||
g_\text{max} = \omega_i \left( \frac{{\omega_0}^2}{\Omega^2} - 1 \right) \label{eq:iff_gmax}
|
||||
\end{equation}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_modified_iff.pdf}
|
||||
@ -311,7 +352,7 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\end{figure}
|
||||
|
||||
\subsection{Optimal Cut-Off Frequency}
|
||||
\label{sec:org6ba4e55}
|
||||
\label{sec:org7d8a789}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -326,16 +367,31 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\end{figure}
|
||||
|
||||
\section{Integral Force Feedback with Parallel Springs}
|
||||
\label{sec:org90ec20f}
|
||||
\label{sec:org9bc19d0}
|
||||
\subsection{Stiffness in Parallel with the Force Sensor}
|
||||
\label{sec:org60d6640}
|
||||
|
||||
\label{sec:orgdfd59fa}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/system_parallel_springs.pdf}
|
||||
\caption{\label{fig:system_parallel_springs}System with added springs \(k_p\) in parallel with the actuators}
|
||||
\caption{\label{fig:system_parallel_springs}System with added springs in parallel with the actuators}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Plant Dynamics}
|
||||
\label{sec:org70fc8fa}
|
||||
|
||||
We define an adimensional parameter \(\alpha\), \(0 \le \alpha < 1\), that describes the proportion of the stiffness in parallel with the actuator and force sensor:
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
k_p &= \alpha k \\
|
||||
k_a &= (1 - \alpha) k
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
The overall stiffness \(k\) stays constant:
|
||||
\begin{equation}
|
||||
k = k_a + k_p
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} f_u \\ f_v \end{bmatrix} =
|
||||
\bm{G}_k
|
||||
@ -352,27 +408,21 @@ This means that at low frequency, the system is decoupled (the force sensor remo
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
With:
|
||||
\begin{align}
|
||||
G_{kp} &= \left( \frac{s^2}{{\omega_0^\prime}^2} + 2\xi^\prime \frac{s}{{\omega_0^\prime}^2} + 1 - \frac{\Omega^2}{{\omega_0^\prime}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)^2 \\
|
||||
G_{kz} &= \left( \frac{s^2}{{\omega_0^\prime}^2} + \frac{k_p}{k + k_p} - \frac{\Omega^2}{{\omega_0^\prime}^2} \right) \left( \frac{s^2}{{\omega_0^\prime}^2} + 2\xi^\prime \frac{s}{{\omega_0^\prime}^2} + 1 - \frac{\Omega^2}{{\omega_0^\prime}^2} \right) + \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)^2 \\
|
||||
G_{kc} &= \left( 2 \xi^\prime \frac{s}{\omega_0^\prime} + \frac{k}{k + k_p} \right) \left( 2 \frac{\Omega}{\omega_0^\prime}\frac{s}{\omega_0^\prime} \right)
|
||||
\end{align}
|
||||
|
||||
where:
|
||||
\begin{itemize}
|
||||
\item \(\omega_0^\prime = \frac{k + k_p}{m}\)
|
||||
\item \(\xi^\prime = \frac{c}{2 \sqrt{(k + k_p) m}}\)
|
||||
\end{itemize}
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
G_{kp} &= \left( \frac{s^2}{{\omega_0}^2} + 2\xi \frac{s}{\omega_0} + 1 - \frac{\Omega^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)^2 \\
|
||||
G_{kz} &= \left( \frac{s^2}{{\omega_0}^2} - \frac{\Omega^2}{{\omega_0}^2} + \alpha \right) \left( \frac{s^2}{{\omega_0}^2} + 2\xi \frac{s}{\omega_0} + 1 - \frac{\Omega^2}{{\omega_0}^2} \right) + \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)^2 \\
|
||||
G_{kc} &= \left( 2 \xi \frac{s}{\omega_0} + 1 - \alpha \right) \left( 2 \frac{\Omega}{\omega_0}\frac{s}{\omega_0} \right)
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
\subsection{Effect of the Parallel Stiffness on the Plant Dynamics}
|
||||
\label{sec:org3ec34fe}
|
||||
|
||||
\label{sec:orge20adc9}
|
||||
\begin{equation}
|
||||
\frac{k_p}{k + k_p} - \frac{\Omega^2}{{\omega_0^\prime}^2} > 0
|
||||
\end{equation}
|
||||
Which is equivalent to
|
||||
\begin{equation}
|
||||
k_p > m \Omega^2
|
||||
\begin{align}
|
||||
\alpha > \frac{\Omega^2}{{\omega_0}^2} \\
|
||||
\Leftrightarrow k_p > m \Omega^2
|
||||
\end{align}
|
||||
\end{equation}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
@ -388,26 +438,25 @@ Which is equivalent to
|
||||
\end{figure}
|
||||
|
||||
\subsection{Optimal Parallel Stiffness}
|
||||
\label{sec:org9c47159}
|
||||
|
||||
\label{sec:orgb14b5c2}
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}[c]{0.49\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/root_locus_iff_kps.pdf}
|
||||
\caption{\label{fig:root_locus_iff_kps} Three values of \(k_p\)}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[c]{0.49\linewidth}
|
||||
\includegraphics[width=\linewidth]{figs/root_locus_opt_gain_iff_kp.pdf}
|
||||
\caption{\label{fig:root_locus_opt_gain_iff_kp} \(k_p = 5 m \Omega^2\), optimal damping is shown}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:root_locus_iff_kps_opt}Root Locus for IFF when parallel stiffness is used}
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_iff_kps.pdf}
|
||||
\caption{\label{fig:root_locus_iff_kps}Root Locus for IFF for several parallel spring stiffnesses \(k_p\)}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_opt_gain_iff_kp.pdf}
|
||||
\caption{\label{fig:root_locus_opt_gain_iff_kp}Root Locus for IFF with \(k_p = 5 m \Omega^2\). The poles of the system using the gain that yields the maximum damping ratio are shown by black crosses}
|
||||
\end{figure}
|
||||
|
||||
\section{Direct Velocity Feedback}
|
||||
\label{sec:org5cb3076}
|
||||
\subsection{Control Schematic}
|
||||
\label{sec:orgaaa522f}
|
||||
|
||||
\label{sec:org7628683}
|
||||
\subsection{System Schematic and Control Architecture}
|
||||
\label{sec:org6953bc7}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/system_dvf.pdf}
|
||||
@ -415,7 +464,7 @@ Which is equivalent to
|
||||
\end{figure}
|
||||
|
||||
\subsection{Equations}
|
||||
\label{sec:orge0a4555}
|
||||
\label{sec:orgfab42cd}
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
|
||||
@ -425,7 +474,7 @@ Which is equivalent to
|
||||
|
||||
\begin{equation}
|
||||
\begin{bmatrix} v_u \\ v_v \end{bmatrix} =
|
||||
\frac{s}{k} \frac{1}{G_{vp}}
|
||||
\frac{1}{k} \frac{1}{G_{vp}}
|
||||
\begin{bmatrix}
|
||||
G_{vz} & G_{vc} \\
|
||||
-G_{vc} & G_{vz}
|
||||
@ -433,15 +482,17 @@ Which is equivalent to
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
With:
|
||||
\begin{align}
|
||||
G_{vp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{vz} &= \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \\
|
||||
G_{vc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
|
||||
\end{align}
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
G_{vp} &= \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0} \right)^2 \\
|
||||
G_{vz} &= s \left( \frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right) \\
|
||||
G_{vc} &= 2 \frac{\Omega}{\omega_0} \frac{s}{\omega_0}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
|
||||
\subsection{Relative Direct Velocity Feedback}
|
||||
\label{sec:org5401110}
|
||||
\label{sec:org5cf0d6b}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -450,14 +501,14 @@ With:
|
||||
\end{figure}
|
||||
|
||||
\section{Comparison of the Proposed Active Damping Techniques for Rotating Positioning Stages}
|
||||
\label{sec:org4cbf163}
|
||||
\label{sec:orga2b60a8}
|
||||
\subsection{Physical Comparison}
|
||||
\label{sec:org5eba275}
|
||||
\label{sec:orgb69316c}
|
||||
|
||||
|
||||
|
||||
\subsection{Attainable Damping}
|
||||
\label{sec:org44635e0}
|
||||
\label{sec:org5c23e13}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -467,7 +518,7 @@ With:
|
||||
|
||||
|
||||
\subsection{Transmissibility and Compliance}
|
||||
\label{sec:org58e9594}
|
||||
\label{sec:org723fb63}
|
||||
|
||||
|
||||
\begin{figure}[htbp]
|
||||
@ -484,11 +535,11 @@ With:
|
||||
\end{figure}
|
||||
|
||||
\section{Conclusion}
|
||||
\label{sec:org292b448}
|
||||
\label{sec:orgd52b568}
|
||||
\label{sec:conclusion}
|
||||
|
||||
\section*{Acknowledgment}
|
||||
\label{sec:orgff7af07}
|
||||
\label{sec:orge4d73e9}
|
||||
|
||||
\bibliography{ref.bib}
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 83 KiB After Width: | Height: | Size: 84 KiB |
Before Width: | Height: | Size: 58 KiB After Width: | Height: | Size: 60 KiB |
@ -358,12 +358,12 @@ Configuration file is accessible [[file:config.org][here]].
|
||||
|
||||
% Spring and Actuator for U
|
||||
\draw[actuator={0.6}{0.2}] (actu) -- node[below=0.1, rotate=\thetau]{$F_u$} (actu-|-2.6,0);
|
||||
\draw[spring=0.2] (ku) -- node[below=0.1, rotate=\thetau]{$k$} (ku-|-2.6,0);
|
||||
\draw[spring=0.2] (-1, 0.8) -- node[above=0.1, rotate=\thetau]{$k_{p}$} (-1, 0.8-|-2.6,0);
|
||||
\draw[spring=0.2] (ku) -- node[below=0.1, rotate=\thetau]{$k_a$} (ku-|-2.6,0);
|
||||
\draw[spring=0.2] (-1, 0.8) -- node[above=0.1, rotate=\thetau]{$k_p$} (-1, 0.8-|-2.6,0);
|
||||
|
||||
\draw[actuator={0.6}{0.2}] (actv) -- node[right=0.1, rotate=\thetau]{$F_v$} (actv|-0,-2.6);
|
||||
\draw[spring=0.2] (kv) -- node[right=0.1, rotate=\thetau]{$k$} (kv|-0,-2.6);
|
||||
\draw[spring=0.2] (-0.8, -1) -- node[left=0.1, rotate=\thetau]{$k_{p}$} (-0.8, -1|-0,-2.6);
|
||||
\draw[spring=0.2] (kv) -- node[right=0.1, rotate=\thetau]{$k_a$} (kv|-0,-2.6);
|
||||
\draw[spring=0.2] (-0.8, -1) -- node[left=0.1, rotate=\thetau]{$k_p$} (-0.8, -1|-0,-2.6);
|
||||
\end{scope}
|
||||
|
||||
% Inertial Frame
|
||||
|