379 lines
13 KiB
Org Mode
379 lines
13 KiB
Org Mode
#+TITLE: Encoder Renishaw Vionic - Test Bench
|
|
:DRAWER:
|
|
#+LANGUAGE: en
|
|
#+EMAIL: dehaeze.thomas@gmail.com
|
|
#+AUTHOR: Dehaeze Thomas
|
|
|
|
#+HTML_LINK_HOME: ../index.html
|
|
#+HTML_LINK_UP: ../index.html
|
|
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
|
|
#+HTML_HEAD: <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
|
|
|
|
#+BIND: org-latex-image-default-option "scale=1"
|
|
#+BIND: org-latex-image-default-width ""
|
|
|
|
#+LaTeX_CLASS: scrreprt
|
|
#+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full]
|
|
#+LaTeX_HEADER_EXTRA: \input{preamble.tex}
|
|
|
|
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
#+PROPERTY: header-args:matlab+ :comments org
|
|
#+PROPERTY: header-args:matlab+ :exports both
|
|
#+PROPERTY: header-args:matlab+ :results none
|
|
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
#+PROPERTY: header-args:matlab+ :noweb yes
|
|
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
|
|
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
|
|
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
|
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
|
|
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
|
|
#+PROPERTY: header-args:latex+ :results file raw replace
|
|
#+PROPERTY: header-args:latex+ :buffer no
|
|
#+PROPERTY: header-args:latex+ :tangle no
|
|
#+PROPERTY: header-args:latex+ :eval no-export
|
|
#+PROPERTY: header-args:latex+ :exports results
|
|
#+PROPERTY: header-args:latex+ :mkdirp yes
|
|
#+PROPERTY: header-args:latex+ :output-dir figs
|
|
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
|
:END:
|
|
|
|
#+begin_export html
|
|
<hr>
|
|
<p>This report is also available as a <a href="./test-bench-vionic.pdf">pdf</a>.</p>
|
|
<hr>
|
|
#+end_export
|
|
|
|
* Introduction :ignore:
|
|
|
|
#+begin_note
|
|
You can find below the document of:
|
|
- [[file:doc/L-9517-9678-05-A_Data_sheet_VIONiC_series_en.pdf][Vionic Encoder]]
|
|
- [[file:doc/L-9517-9862-01-C_Data_sheet_RKLC_EN.pdf][Linear Scale]]
|
|
#+end_note
|
|
|
|
We would like to characterize the encoder measurement system.
|
|
|
|
In particular, we would like to measure:
|
|
- Power Spectral Density of the measurement noise
|
|
- Bandwidth of the sensor
|
|
- Linearity of the sensor
|
|
|
|
#+name: fig:encoder_vionic
|
|
#+caption: Picture of the Vionic Encoder
|
|
#+attr_latex: :width 0.6\linewidth
|
|
[[file:figs/encoder_vionic.png]]
|
|
|
|
- 1: 2YA275
|
|
- 2: 2YA274
|
|
- 3: 2YA273
|
|
- 4: 2YA270
|
|
- 5: 2YA272
|
|
- 6: 2YA271
|
|
- 7: 2YJ313
|
|
|
|
* Encoder Model
|
|
The Encoder is characterized by its dynamics $G_m(s)$ from the "true" displacement $y$ to measured displacement $y_m$.
|
|
Ideally, this dynamics is constant over a wide frequency band with very small phase drop.
|
|
|
|
It is also characterized by its measurement noise $n$ that can be described by its Power Spectral Density (PSD).
|
|
|
|
The model of the encoder is shown in Figure [[fig:encoder-model-schematic]].
|
|
|
|
#+begin_src latex :file encoder-model-schematic.pdf
|
|
\begin{tikzpicture}
|
|
\node[block] (G) at (0,0){$G_m(s)$};
|
|
\node[addb, left=0.8 of G] (add){};
|
|
|
|
\draw[<-] (add.west) -- ++(-1.0, 0) node[above right]{$y$};
|
|
\draw[->] (add.east) -- (G.west);
|
|
\draw[->] (G.east) -- ++(1.0, 0) node[above left]{$y_m$};
|
|
\draw[<-] (add.north) -- ++(0, 0.6) node[below right](n){$n$};
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(add.west|-G.south) (n.north-|G.east)}, inner sep=8pt, draw, dashed, fill=black!20!white] (P) {};
|
|
\node[below left] at (P.north east) {Encoder};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:encoder-model-schematic
|
|
#+caption: Model of the Encoder
|
|
#+RESULTS:
|
|
[[file:figs/encoder-model-schematic.png]]
|
|
|
|
We can also use a transfer function $G_n(s)$ to shape a noise $\tilde{n}$ with unity ASD as shown in Figure [[fig:vionic_expected_noise]].
|
|
|
|
#+begin_src latex :file encoder-model-schematic-with-asd.pdf
|
|
\begin{tikzpicture}
|
|
\node[block] (G) at (0,0){$G_m(s)$};
|
|
\node[addb, left=0.8 of G] (add){};
|
|
\node[block, above=0.5 of add] (Gn) {$G_n(s)$};
|
|
|
|
\draw[<-] (add.west) -- ++(-1.0, 0) node[above right]{$y$};
|
|
\draw[->] (add.east) -- (G.west);
|
|
\draw[->] (G.east) -- ++(1.0, 0) node[above left]{$y_m$};
|
|
\draw[->] (Gn.south) -- (add.north) node[above right]{$n$};
|
|
\draw[<-] (Gn.north) -- ++(0, 0.6) node[below right](n){$\tilde{n}$};
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(Gn.west|-G.south) (n.north-|G.east)}, inner sep=8pt, draw, dashed, fill=black!20!white] (P) {};
|
|
\node[below left] at (P.north east) {Encoder};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
[[file:figs/encoder-model-schematic-with-asd.png]]
|
|
|
|
#+name: tab:vionic_characteristics_manual
|
|
#+caption: Characteristics of the Vionic Encoder
|
|
#+attr_latex: :environment tabularx :width \linewidth :align lXX
|
|
#+attr_latex: :center t :booktabs t :float t
|
|
| <l> | <c> | <c> |
|
|
| *Characteristics* | *Manual* | *Specifications* |
|
|
|----------------------+----------------+------------------|
|
|
| Range | Ruler length | > 200 [um] |
|
|
| Resolution | 2.5 [nm] | < 50 [nm rms] |
|
|
| Sub-Divisional Error | $< \pm 15\,nm$ | |
|
|
| Bandwidth | To be checked | > 5 [kHz] |
|
|
|
|
#+name: fig:vionic_expected_noise
|
|
#+attr_latex: :width \linewidth
|
|
#+caption: Expected interpolation errors for the Vionic Encoder
|
|
[[file:./figs/vionic_expected_noise.png]]
|
|
|
|
|
|
* Noise Measurement
|
|
<<sec:noise_measurement>>
|
|
** Test Bench
|
|
|
|
To measure the noise $n$ of the encoder, one can rigidly fix the head and the ruler together such that no motion should be measured.
|
|
Then, the measured signal $y_m$ corresponds to the noise $n$.
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
#+end_src
|
|
|
|
** Results
|
|
First we load the data.
|
|
#+begin_src matlab
|
|
%% Load Data
|
|
enc1 = load('noise_meas_100s_20kHz_1.mat', 't', 'x');
|
|
enc2 = load('noise_meas_100s_20kHz_2.mat', 't', 'x');
|
|
enc3 = load('noise_meas_100s_20kHz_3.mat', 't', 'x');
|
|
enc4 = load('noise_meas_100s_20kHz_4.mat', 't', 'x');
|
|
enc6 = load('noise_meas_100s_20kHz_6.mat', 't', 'x');
|
|
enc7 = load('noise_meas_100s_20kHz_7.mat', 't', 'x');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Remove initial offset
|
|
enc1.x = enc1.x - mean(enc1.x(1:1000));
|
|
enc2.x = enc2.x - mean(enc2.x(1:1000));
|
|
enc3.x = enc3.x - mean(enc3.x(1:1000));
|
|
enc4.x = enc4.x - mean(enc4.x(1:1000));
|
|
enc6.x = enc6.x - mean(enc6.x(1:1000));
|
|
enc7.x = enc7.x - mean(enc7.x(1:1000));
|
|
#+end_src
|
|
|
|
The raw measured data as well as the low pass filtered data (using a first order low pass filter with a cut-off at 10Hz) are shown in Figure [[fig:vionic_noise_raw_lpf]].
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(enc1.t, 1e9*enc1.x, '.', 'DisplayName', 'Enc 1 - Raw');
|
|
plot(enc1.t, 1e9*lsim(1/(1 + s/2/pi/10), enc1.x, enc1.t), '-', 'DisplayName', 'Enc 1 - LPF');
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Displacement [nm]');
|
|
legend('location', 'northwest');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/vionic_noise_raw_lpf.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:vionic_noise_raw_lpf
|
|
#+caption: Time domain measurement (raw data and low pass filtered data with first order 10Hz LPF)
|
|
#+RESULTS:
|
|
[[file:figs/vionic_noise_raw_lpf.png]]
|
|
|
|
The time domain data for all the encoders are compared in Figure [[fig:vionic_noise_time]].
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(enc1.t, 1e9*lsim(1/(1 + s/2/pi/10), enc1.x, enc1.t), '.', 'DisplayName', 'Enc 1');
|
|
plot(enc2.t, 1e9*lsim(1/(1 + s/2/pi/10), enc2.x, enc2.t), '.', 'DisplayName', 'Enc 2');
|
|
plot(enc3.t, 1e9*lsim(1/(1 + s/2/pi/10), enc3.x, enc3.t), '.', 'DisplayName', 'Enc 3');
|
|
plot(enc4.t, 1e9*lsim(1/(1 + s/2/pi/10), enc4.x, enc4.t), '.', 'DisplayName', 'Enc 4');
|
|
plot(enc6.t, 1e9*lsim(1/(1 + s/2/pi/10), enc6.x, enc6.t), '.', 'DisplayName', 'Enc 6');
|
|
plot(enc7.t, 1e9*lsim(1/(1 + s/2/pi/10), enc7.x, enc7.t), '.', 'DisplayName', 'Enc 7');
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Displacement [nm]');
|
|
legend('location', 'northwest');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/vionic_noise_time.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:vionic_noise_time
|
|
#+caption: Comparison of the time domain measurement
|
|
#+RESULTS:
|
|
[[file:figs/vionic_noise_time.png]]
|
|
|
|
The amplitude spectral density is computed and shown in Figure [[fig:vionic_noise_asd]].
|
|
#+begin_src matlab :exports none
|
|
% Compute sampling Frequency
|
|
Ts = (enc1.t(end) - enc1.t(1))/(length(enc1.t)-1);
|
|
Fs = 1/Ts;
|
|
|
|
% Hannning Windows
|
|
win = hanning(ceil(0.5/Ts));
|
|
|
|
[p1, f] = pwelch(enc1.x, win, [], [], Fs);
|
|
[p2, ~] = pwelch(enc2.x, win, [], [], Fs);
|
|
[p3, ~] = pwelch(enc3.x, win, [], [], Fs);
|
|
[p4, ~] = pwelch(enc4.x, win, [], [], Fs);
|
|
[p6, ~] = pwelch(enc6.x, win, [], [], Fs);
|
|
[p7, ~] = pwelch(enc7.x, win, [], [], Fs);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(f, sqrt(p1), 'DisplayName', 'Enc 1');
|
|
plot(f, sqrt(p2), 'DisplayName', 'Enc 2');
|
|
plot(f, sqrt(p3), 'DisplayName', 'Enc 3');
|
|
plot(f, sqrt(p4), 'DisplayName', 'Enc 4');
|
|
plot(f, sqrt(p6), 'DisplayName', 'Enc 6');
|
|
plot(f, sqrt(p7), 'DisplayName', 'Enc 7');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]');
|
|
xlim([10, Fs/2]);
|
|
ylim([1e-11, 1e-10]);
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/vionic_noise_asd.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:vionic_noise_asd
|
|
#+caption: Amplitude Spectral Density of the measured signal
|
|
#+RESULTS:
|
|
[[file:figs/vionic_noise_asd.png]]
|
|
|
|
Let's create a transfer function that approximate the measured noise of the encoder.
|
|
#+begin_src matlab
|
|
Gn_e = 1.8e-11/(1 + s/2/pi/1e4);
|
|
#+end_src
|
|
|
|
The amplitude of the transfer function and the measured ASD are shown in Figure [[fig:vionic_noise_asd_model]].
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(f, sqrt(p1), 'color', [0, 0, 0, 0.5], 'DisplayName', '$\Gamma_n(\omega)$');
|
|
plot(f, sqrt(p2), 'color', [0, 0, 0, 0.5], 'HandleVisibility', 'off');
|
|
plot(f, sqrt(p3), 'color', [0, 0, 0, 0.5], 'HandleVisibility', 'off');
|
|
plot(f, sqrt(p4), 'color', [0, 0, 0, 0.5], 'HandleVisibility', 'off');
|
|
plot(f, sqrt(p6), 'color', [0, 0, 0, 0.5], 'HandleVisibility', 'off');
|
|
plot(f, sqrt(p7), 'color', [0, 0, 0, 0.5], 'HandleVisibility', 'off');
|
|
plot(f, abs(squeeze(freqresp(Gn_e, f, 'Hz'))), 'r-', 'DisplayName', '$|G_n(j\omega)|$');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]');
|
|
xlim([10, Fs/2]);
|
|
ylim([1e-11, 1e-10]);
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/vionic_noise_asd_model.pdf', 'width', 'wide', 'height', 'normal');
|
|
#+end_src
|
|
|
|
#+name: fig:vionic_noise_asd_model
|
|
#+caption: Measured ASD of the noise and modelled one
|
|
#+RESULTS:
|
|
[[file:figs/vionic_noise_asd_model.png]]
|
|
|
|
* Linearity Measurement
|
|
<<sec:linearity_measurement>>
|
|
** Test Bench
|
|
In order to measure the linearity, we have to compare the measured displacement with a reference sensor with a known linearity.
|
|
An interferometer or capacitive sensor should work fine.
|
|
An actuator should also be there so impose a displacement.
|
|
|
|
One idea is to use the test-bench shown in Figure [[fig:test_bench_encoder_calibration]].
|
|
|
|
The APA300ML is used to excite the mass in a broad bandwidth.
|
|
The motion is measured at the same time by the Vionic Encoder and by an interferometer (most likely an Attocube).
|
|
|
|
As the interferometer has a very large bandwidth, we should be able to estimate the bandwidth of the encoder if it is less than the Nyquist frequency that can be around 10kHz.
|
|
|
|
#+name: fig:test_bench_encoder_calibration
|
|
#+caption: Schematic of the test bench
|
|
[[file:figs/test_bench_encoder_calibration.png]]
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
#+end_src
|
|
|
|
** Results
|
|
|
|
* Dynamical Measurement
|
|
<<sec:dynamical_measurement>>
|
|
** Test Bench
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
addpath('./matlab/mat/');
|
|
addpath('./matlab/');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :eval no
|
|
addpath('./mat/');
|
|
#+end_src
|
|
|
|
** Results
|