201 lines
9.5 KiB
Org Mode
201 lines
9.5 KiB
Org Mode
#+TITLE: Voltage Amplifier PD200 - Test Bench
|
|
:DRAWER:
|
|
#+LANGUAGE: en
|
|
#+EMAIL: dehaeze.thomas@gmail.com
|
|
#+AUTHOR: Dehaeze Thomas
|
|
|
|
#+HTML_LINK_HOME: ../index.html
|
|
#+HTML_LINK_UP: ../index.html
|
|
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
|
|
#+HTML_HEAD: <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
|
|
|
|
#+BIND: org-latex-image-default-option "scale=1"
|
|
#+BIND: org-latex-image-default-width ""
|
|
|
|
#+LaTeX_CLASS: scrreprt
|
|
#+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full]
|
|
#+LaTeX_HEADER_EXTRA: \input{preamble.tex}
|
|
|
|
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
#+PROPERTY: header-args:matlab+ :comments org
|
|
#+PROPERTY: header-args:matlab+ :exports both
|
|
#+PROPERTY: header-args:matlab+ :results none
|
|
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
#+PROPERTY: header-args:matlab+ :noweb yes
|
|
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
|
|
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
|
|
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
|
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
|
|
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
|
|
#+PROPERTY: header-args:latex+ :results file raw replace
|
|
#+PROPERTY: header-args:latex+ :buffer no
|
|
#+PROPERTY: header-args:latex+ :tangle no
|
|
#+PROPERTY: header-args:latex+ :eval no-export
|
|
#+PROPERTY: header-args:latex+ :exports results
|
|
#+PROPERTY: header-args:latex+ :mkdirp yes
|
|
#+PROPERTY: header-args:latex+ :output-dir figs
|
|
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
|
:END:
|
|
|
|
* Introduction
|
|
The goal of this test bench is to characterize the Voltage amplifier [[https://www.piezodrive.com/drivers/pd200-60-watt-voltage-amplifier/][PD200]] from PiezoDrive.
|
|
|
|
The documentation of the PD200 is accessible [[file:doc/PD200-V7-R1.pdf][here]].
|
|
|
|
#+name: fig:amplifier_PD200
|
|
#+caption: Picture of the PD200 Voltage Amplifier
|
|
#+attr_latex: :width 0.8\linewidth
|
|
[[file:figs/amplifier_PD200.png]]
|
|
|
|
* Voltage Amplifier Requirements
|
|
|
|
#+name: tab:voltage_amplifier_requirements
|
|
#+caption: Requirements for the Voltage Amplifier
|
|
#+attr_latex: :environment tabularx :width 0.5\linewidth :align lX
|
|
#+attr_latex: :center t :booktabs t :float t
|
|
| <l> | <c> |
|
|
| | *Specification* |
|
|
|--------------------------------+--------------------|
|
|
| Continuous Current | > 50 [mA] |
|
|
| Output Voltage Noise (1-200Hz) | < 2 [mV rms] |
|
|
| Voltage Input Range | +/- 10 [V] |
|
|
| Voltage Output Range | -20 [V] to 150 [V] |
|
|
| Small signal bandwidth (-3dB) | > 5 [kHz] |
|
|
|
|
* PD200 Expected characteristics
|
|
|
|
#+name: tab:pd200_characteristics
|
|
#+caption: Characteristics of the PD200
|
|
#+attr_latex: :environment tabularx :width \linewidth :align lXX
|
|
#+attr_latex: :center t :booktabs t :float t
|
|
| <l> | <c> | <c> |
|
|
| *Characteristics* | *Manual* | *Specification* |
|
|
|-------------------------------------+--------------+-----------------|
|
|
| Input Voltage Range | +/- 10 [V] | +/- 10 [V] |
|
|
| Output Voltage Range | -50/150 [V] | -20/150 [V] |
|
|
| Gain | 20 [V/V] | |
|
|
| Maximum RMS current | 0.9 [A] | > 50 [mA] |
|
|
| Maximum Pulse current | 10 [A] | |
|
|
| Slew Rate | 150 [V/us] | |
|
|
| Noise (10uF load) | 0.7 [mV RMS] | < 2 [mV rms] |
|
|
| Small Signal Bandwidth (10uF load) | 7.4 [kHz] | > 5 [kHz] |
|
|
| Large Signal Bandwidth (150V, 10uF) | 300 [Hz] | |
|
|
|
|
For a load capacitance of $10\,\mu F$, the expected $-3\,dB$ bandwidth is $6.4\,kHz$ (Figure [[fig:pd200_expected_small_signal_bandwidth]]) and the low frequency noise is $650\,\mu V\,\text{rms}$ (Figure [[fig:pd200_expected_noise]]).
|
|
|
|
#+name: fig:pd200_expected_small_signal_bandwidth
|
|
#+caption:Expected small signal bandwidth
|
|
#+attr_latex: :width 0.8\linewidth
|
|
[[file:./figs/pd200_expected_small_signal_bandwidth.png]]
|
|
|
|
#+name: fig:pd200_expected_noise
|
|
#+caption: Expected Low frequency noise from 0.03Hz to 20Hz
|
|
#+attr_latex: :width 0.8\linewidth
|
|
[[file:figs/pd200_expected_noise.png]]
|
|
|
|
* Voltage Amplifier Model
|
|
The Amplifier is characterized by its dynamics $G_a(s)$ from voltage inputs $V_{in}$ to voltage output $V_{out}$.
|
|
Ideally, the gain from $V_{in}$ to $V_{out}$ is constant over a wide frequency band with very small phase drop.
|
|
|
|
It is also characterized by its output noise $n$.
|
|
This noise is described by its Power Spectral Density.
|
|
|
|
The objective is therefore to determine the transfer function $G_a(s)$ from the input voltage to the output voltage as well as the Power Spectral Density $S_n(\omega)$ of the amplifier output noise.
|
|
|
|
As both $G_a$ and $S_n$ depends on the load capacitance, they should be measured when loading the amplifier with a $\SI{10}{\micro\farad}$ capacitor.
|
|
|
|
#+begin_src latex :file pd200-model-schematic.pdf
|
|
\begin{tikzpicture}
|
|
\node[block] (G) at (0,0){$G_a(s)$};
|
|
\node[addb, right=0.8 of G] (add){};
|
|
|
|
\draw[<-] (G.west) -- ++(-1.2, 0) node[above right]{$V_{in}$};
|
|
\draw[->] (G.east) -- (add.west);
|
|
\draw[->] (add.east) -- ++(1.2, 0) node[above left]{$V_{out}$};
|
|
\draw[<-] (add.north) -- ++(0, 0.6) node[below right](n){$n$};
|
|
|
|
\begin{scope}[on background layer]
|
|
\node[fit={(G.south west) (n.north-|add.east)}, inner sep=8pt, draw, dashed, fill=black!20!white] (P) {};
|
|
\node[below] at (P.north) {PD-200};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:pd200-model-schematic
|
|
#+caption: Model of the voltage amplifier
|
|
#+RESULTS:
|
|
[[file:figs/pd200-model-schematic.png]]
|
|
|
|
* Noise measurement
|
|
** Setup
|
|
#+begin_note
|
|
Here are the documentation of the equipment used for this test bench:
|
|
- Voltage Amplifier [[file:doc/PD200-V7-R1.pdf][PD200]]
|
|
- Load Capacitor [[file:doc/0900766b815ea422.pdf][EPCOS 10uF Multilayer Ceramic Capacitor]]
|
|
- Low Noise Voltage Amplifier [[file:doc/egg-5113-preamplifier.pdf][EG&G 5113]]
|
|
- Speedgoat ADC [[file:doc/IO131-OEM-Datasheet.pdf][IO313]]
|
|
#+end_note
|
|
|
|
The output noise of the voltage amplifier PD200 is foreseen to be around 1mV rms in a bandwidth from DC to 1MHz.
|
|
If we suppose a white noise, this correspond to an amplitude spectral density:
|
|
\begin{equation}
|
|
\phi_{n} \approx \frac{1\,mV}{\sqrt{1\,MHz}} = 1 \frac{\mu V}{\sqrt{Hz}}
|
|
\end{equation}
|
|
|
|
The RMS noise begin very small compare to the ADC resolution, we must amplify the noise before digitizing the signal.
|
|
The added noise of the instrumentation amplifier should be much smaller than the noise of the PD200.
|
|
We use the amplifier EG&G 5113 that has a noise of $\approx 4 nV/\sqrt{Hz}$ referred to its input which is much smaller than the noise induced by the PD200.
|
|
|
|
The gain of the low-noise amplifier can be increased until the full range of the ADC is used.
|
|
This gain should be around 1000.
|
|
|
|
#+name: fig:setup-noise-measurement
|
|
#+caption: Schematic of the test bench to measure the Power Spectral Density of the Voltage amplifier noise $n$
|
|
#+attr_latex: :width \linewidth
|
|
[[file:figs/setup-noise-measurement.png]]
|
|
|
|
A low pass filter at 10kHz can be included in the EG&G amplifier in order to limit aliasing.
|
|
An high pass filter at low frequency can be added if there is a problem of large offset.
|
|
|
|
** Results
|
|
|
|
* Transfer Function measurement
|
|
** Setup
|
|
In order to measure the transfer function from the input voltage $V_{in}$ to the output voltage $V_{out}$, the test bench shown in Figure [[fig:setup-dynamics-measurement]] is used.
|
|
|
|
#+begin_note
|
|
Here are the documentation of the equipment used for this test bench:
|
|
- Voltage Amplifier [[file:doc/PD200-V7-R1.pdf][PD200]]
|
|
- Load Capacitor [[file:doc/0900766b815ea422.pdf][EPCOS 10uF Multilayer Ceramic Capacitor]]
|
|
- Speedgoat DAC/ADC [[file:doc/IO131-OEM-Datasheet.pdf][IO313]]
|
|
#+end_note
|
|
|
|
For this measurement, the sampling frequency of the Speedgoat ADC should be as high as possible.
|
|
|
|
#+name: fig:setup-dynamics-measurement
|
|
#+caption: Schematic of the test bench to estimate the dynamics from voltage input $V_{in}$ to voltage output $V_{out}$
|
|
[[file:figs/setup-dynamics-measurement.png]]
|
|
|
|
** Results
|
|
* Conclusion
|
|
|
|
#+name: tab:table_name
|
|
#+caption: Measured characteristics, Manual characterstics and specified ones
|
|
#+attr_latex: :environment tabularx :width \linewidth :align lXXX
|
|
#+attr_latex: :center t :booktabs t :float t
|
|
| <l> | <c> | <c> | <c> |
|
|
| *Characteristics* | *Measurement* | *Manual* | *Specification* |
|
|
|-------------------------------------+---------------+--------------+-----------------|
|
|
| Input Voltage Range | - | +/- 10 [V] | +/- 10 [V] |
|
|
| Output Voltage Range | - | -50/150 [V] | -20/150 [V] |
|
|
| Gain | | 20 [V/V] | - |
|
|
| Maximum RMS current | | 0.9 [A] | > 50 [mA] |
|
|
| Maximum Pulse current | | 10 [A] | - |
|
|
| Slew Rate | | 150 [V/us] | - |
|
|
| Noise (10uF load) | | 0.7 [mV RMS] | < 2 [mV rms] |
|
|
| Small Signal Bandwidth (10uF load) | | 7.4 [kHz] | > 5 [kHz] |
|
|
| Large Signal Bandwidth (150V, 10uF) | | 300 [Hz] | - |
|