update scripts
This commit is contained in:
parent
94fa35e357
commit
409efbdbc7
BIN
matlab/frf_data.mat
Normal file
BIN
matlab/frf_data.mat
Normal file
Binary file not shown.
94
matlab/identif_analyze_all.m
Normal file
94
matlab/identif_analyze_all.m
Normal file
@ -0,0 +1,94 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
addpath('./src/');
|
||||
|
||||
% Test with one APA
|
||||
|
||||
%% Load measurement data for APA number 1
|
||||
meas_data = {};
|
||||
for i = 1:6
|
||||
meas_data(i) = {load(sprintf('mat/frf_data_exc_strut_%i_noise_lf.mat', i), 't', 'Va', 'Vs', 'de')};
|
||||
% load(sprintf('mat/frf_data_exc_strut_%i_noise_hf.mat', i), 't', 'Va', 'Vs', 'de');
|
||||
end
|
||||
|
||||
%%
|
||||
Ts = (meas_data{1}.t(end) - (meas_data{1}.t(1)))/(length(meas_data{1}.t)-1);
|
||||
Fs = 1/Ts;
|
||||
|
||||
win = hanning(ceil(1*Fs)); % Hannning Windows
|
||||
|
||||
%% DVF
|
||||
[~, f] = tfestimate(meas_data{1}.Va, meas_data{1}.de, win, [], [], 1/Ts);
|
||||
|
||||
G_dvf = zeros(length(f), 6, 6);
|
||||
for i = 1:6
|
||||
G_dvf(:, :, i) = tfestimate(meas_data{i}.Va, meas_data{i}.de, win, [], [], 1/Ts);
|
||||
end
|
||||
|
||||
%% IFF
|
||||
[~, f] = tfestimate(meas_data{1}.Va, meas_data{1}.de, win, [], [], 1/Ts);
|
||||
|
||||
G_iff = zeros(length(f), 6, 6);
|
||||
for i = 1:6
|
||||
G_iff(:, :, i) = tfestimate(meas_data{i}.Va, meas_data{i}.Vs, win, [], [], 1/Ts);
|
||||
end
|
||||
|
||||
%%
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i =1:6
|
||||
plot(f, abs(G_dvf(:,i, i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $V_{out}/V_{in}$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i =1:6
|
||||
plot(f, 180/pi*angle(G_dvf(:,i, i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([5, 5e3]);
|
||||
|
||||
%%
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
for i =1:6
|
||||
plot(f, abs(G_iff(:,i, i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude $V_{out}/V_{in}$ [V/V]'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i =1:6
|
||||
plot(f, 180/pi*angle(G_iff(:,i, i)));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
yticks(-360:90:360);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([5, 5e3]);
|
@ -24,7 +24,7 @@ t = data(:, end); % Time [s]
|
||||
|
||||
|
||||
% And we save this to a =mat= file:
|
||||
strut_number = 1;
|
||||
strut_number = 6;
|
||||
|
||||
% save(sprintf('mat/frf_data_exc_strut_%i_noise.mat', strut_number), 't', 'Va', 'Vs', 'de');
|
||||
% save(sprintf('mat/frf_data_exc_strut_%i_noise_lf.mat', strut_number), 't', 'Va', 'Vs', 'de');
|
||||
|
53
matlab/src/generateShapedNoise.m
Normal file
53
matlab/src/generateShapedNoise.m
Normal file
@ -0,0 +1,53 @@
|
||||
function [U_exc] = generateShapedNoise(args)
|
||||
% generateShapedNoise - Generate a Shaped Noise excitation signal
|
||||
%
|
||||
% Syntax: [U_exc] = generateShapedNoise(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Optinal arguments:
|
||||
% - Ts - Sampling Time - [s]
|
||||
% - V_mean - Mean value of the excitation voltage - [V]
|
||||
% - V_exc - Excitation Amplitude, could be numeric or TF - [V rms]
|
||||
% - t_start - Time at which the noise begins - [s]
|
||||
% - exc_duration - Duration of the noise - [s]
|
||||
% - smooth_ends - 'true' or 'false': smooth transition between 0 and V_mean - [-]
|
||||
|
||||
arguments
|
||||
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4
|
||||
args.V_mean (1,1) double {mustBeNumeric} = 0
|
||||
args.V_exc = 1
|
||||
args.t_start (1,1) double {mustBeNumeric, mustBePositive} = 5
|
||||
args.exc_duration (1,1) double {mustBeNumeric, mustBePositive} = 10
|
||||
args.smooth_ends logical {mustBeNumericOrLogical} = true
|
||||
end
|
||||
|
||||
t_noise = 0:args.Ts:args.exc_duration;
|
||||
|
||||
if isnumeric(args.V_exc)
|
||||
V_noise = args.V_mean + args.V_exc*sqrt(1/args.Ts/2)*randn(length(t_noise), 1)';
|
||||
elseif isct(args.V_exc)
|
||||
V_noise = args.V_mean + lsim(args.V_exc, sqrt(1/args.Ts/2)*randn(length(t_noise), 1), t_noise)';
|
||||
end
|
||||
|
||||
t_smooth_start = args.Ts:args.Ts:args.t_start;
|
||||
|
||||
V_smooth_start = zeros(size(t_smooth_start));
|
||||
V_smooth_end = zeros(size(t_smooth_start));
|
||||
|
||||
if args.smooth_ends
|
||||
Vd_max = args.V_mean/(0.7*args.t_start);
|
||||
|
||||
V_d = zeros(size(t_smooth_start));
|
||||
V_d(t_smooth_start < 0.2*args.t_start) = t_smooth_start(t_smooth_start < 0.2*args.t_start)*Vd_max/(0.2*args.t_start);
|
||||
V_d(t_smooth_start > 0.2*args.t_start & t_smooth_start < 0.7*args.t_start) = Vd_max;
|
||||
V_d(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) = Vd_max - (t_smooth_start(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) - 0.7*args.t_start)*Vd_max/(0.2*args.t_start);
|
||||
|
||||
V_smooth_start = cumtrapz(V_d)*args.Ts;
|
||||
|
||||
V_smooth_end = args.V_mean - V_smooth_start;
|
||||
end
|
||||
|
||||
V_exc = [V_smooth_start, V_noise, V_smooth_end];
|
||||
t_exc = args.Ts*[0:1:length(V_exc)-1];
|
||||
|
||||
U_exc = [t_exc; V_exc];
|
54
matlab/src/generateSinIncreasingAmpl.m
Normal file
54
matlab/src/generateSinIncreasingAmpl.m
Normal file
@ -0,0 +1,54 @@
|
||||
function [U_exc] = generateSinIncreasingAmpl(args)
|
||||
% generateSinIncreasingAmpl - Generate Sinus with increasing amplitude
|
||||
%
|
||||
% Syntax: [U_exc] = generateSinIncreasingAmpl(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Optinal arguments:
|
||||
% - Ts - Sampling Time - [s]
|
||||
% - V_mean - Mean value of the excitation voltage - [V]
|
||||
% - sin_ampls - Excitation Amplitudes - [V]
|
||||
% - sin_freq - Excitation Frequency - [Hz]
|
||||
% - sin_num - Number of period for each amplitude - [-]
|
||||
% - t_start - Time at which the excitation begins - [s]
|
||||
% - smooth_ends - 'true' or 'false': smooth transition between 0 and V_mean - [-]
|
||||
|
||||
arguments
|
||||
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4
|
||||
args.V_mean (1,1) double {mustBeNumeric} = 0
|
||||
args.sin_ampls double {mustBeNumeric, mustBePositive} = [0.1, 0.2, 0.3]
|
||||
args.sin_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
args.sin_num (1,1) double {mustBeNumeric, mustBePositive, mustBeInteger} = 3
|
||||
args.t_start (1,1) double {mustBeNumeric, mustBePositive} = 5
|
||||
args.smooth_ends logical {mustBeNumericOrLogical} = true
|
||||
end
|
||||
|
||||
t_noise = 0:args.Ts:args.sin_period*args.sin_num;
|
||||
sin_exc = [];
|
||||
|
||||
for sin_ampl = args.sin_ampls
|
||||
sin_exc = [sin_exc, args.V_mean + sin_ampl*sin(2*pi/args.sin_period*t_noise)];
|
||||
end
|
||||
|
||||
t_smooth_start = args.Ts:args.Ts:args.t_start;
|
||||
|
||||
V_smooth_start = zeros(size(t_smooth_start));
|
||||
V_smooth_end = zeros(size(t_smooth_start));
|
||||
|
||||
if args.smooth_ends
|
||||
Vd_max = args.V_mean/(0.7*args.t_start);
|
||||
|
||||
V_d = zeros(size(t_smooth_start));
|
||||
V_d(t_smooth_start < 0.2*args.t_start) = t_smooth_start(t_smooth_start < 0.2*args.t_start)*Vd_max/(0.2*args.t_start);
|
||||
V_d(t_smooth_start > 0.2*args.t_start & t_smooth_start < 0.7*args.t_start) = Vd_max;
|
||||
V_d(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) = Vd_max - (t_smooth_start(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) - 0.7*args.t_start)*Vd_max/(0.2*args.t_start);
|
||||
|
||||
V_smooth_start = cumtrapz(V_d)*args.Ts;
|
||||
|
||||
V_smooth_end = args.V_mean - V_smooth_start;
|
||||
end
|
||||
|
||||
V_exc = [V_smooth_start, sin_exc, V_smooth_end];
|
||||
t_exc = args.Ts*[0:1:length(V_exc)-1];
|
||||
|
||||
U_exc = [t_exc; V_exc];
|
76
matlab/src/generateSweepExc.m
Normal file
76
matlab/src/generateSweepExc.m
Normal file
@ -0,0 +1,76 @@
|
||||
function [U_exc] = generateSweepExc(args)
|
||||
% generateSweepExc - Generate a Sweep Sine excitation signal
|
||||
%
|
||||
% Syntax: [U_exc] = generateSweepExc(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - args - Optinal arguments:
|
||||
% - Ts - Sampling Time - [s]
|
||||
% - f_start - Start frequency of the sweep - [Hz]
|
||||
% - f_end - End frequency of the sweep - [Hz]
|
||||
% - V_mean - Mean value of the excitation voltage - [V]
|
||||
% - V_exc - Excitation Amplitude for the Sweep, could be numeric or TF - [V]
|
||||
% - t_start - Time at which the sweep begins - [s]
|
||||
% - exc_duration - Duration of the sweep - [s]
|
||||
% - sweep_type - 'logarithmic' or 'linear' - [-]
|
||||
% - smooth_ends - 'true' or 'false': smooth transition between 0 and V_mean - [-]
|
||||
|
||||
arguments
|
||||
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4
|
||||
args.f_start (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
args.f_end (1,1) double {mustBeNumeric, mustBePositive} = 1e3
|
||||
args.V_mean (1,1) double {mustBeNumeric} = 0
|
||||
args.V_exc = 1
|
||||
args.t_start (1,1) double {mustBeNumeric, mustBeNonnegative} = 5
|
||||
args.exc_duration (1,1) double {mustBeNumeric, mustBePositive} = 10
|
||||
args.sweep_type char {mustBeMember(args.sweep_type,{'log', 'lin'})} = 'lin'
|
||||
args.smooth_ends logical {mustBeNumericOrLogical} = true
|
||||
end
|
||||
|
||||
t_sweep = 0:args.Ts:args.exc_duration;
|
||||
|
||||
if strcmp(args.sweep_type, 'log')
|
||||
V_exc = sin(2*pi*args.f_start * args.exc_duration/log(args.f_end/args.f_start) * (exp(log(args.f_end/args.f_start)*t_sweep/args.exc_duration) - 1));
|
||||
elseif strcmp(args.sweep_type, 'lin')
|
||||
V_exc = sin(2*pi*(args.f_start + (args.f_end - args.f_start)/2/args.exc_duration*t_sweep).*t_sweep);
|
||||
else
|
||||
error('sweep_type should either be equal to "log" or to "lin"');
|
||||
end
|
||||
|
||||
if isnumeric(args.V_exc)
|
||||
V_sweep = args.V_mean + args.V_exc*V_exc;
|
||||
elseif isct(args.V_exc)
|
||||
if strcmp(args.sweep_type, 'log')
|
||||
V_sweep = args.V_mean + abs(squeeze(freqresp(args.V_exc, args.f_start*(args.f_end/args.f_start).^(t_sweep/args.exc_duration), 'Hz')))'.*V_exc;
|
||||
elseif strcmp(args.sweep_type, 'lin')
|
||||
V_sweep = args.V_mean + abs(squeeze(freqresp(args.V_exc, args.f_start+(args.f_end-args.f_start)/args.exc_duration*t_sweep, 'Hz')))'.*V_exc;
|
||||
end
|
||||
end
|
||||
|
||||
if args.t_start > 0
|
||||
t_smooth_start = args.Ts:args.Ts:args.t_start;
|
||||
|
||||
V_smooth_start = zeros(size(t_smooth_start));
|
||||
V_smooth_end = zeros(size(t_smooth_start));
|
||||
|
||||
if args.smooth_ends
|
||||
Vd_max = args.V_mean/(0.7*args.t_start);
|
||||
|
||||
V_d = zeros(size(t_smooth_start));
|
||||
V_d(t_smooth_start < 0.2*args.t_start) = t_smooth_start(t_smooth_start < 0.2*args.t_start)*Vd_max/(0.2*args.t_start);
|
||||
V_d(t_smooth_start > 0.2*args.t_start & t_smooth_start < 0.7*args.t_start) = Vd_max;
|
||||
V_d(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) = Vd_max - (t_smooth_start(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) - 0.7*args.t_start)*Vd_max/(0.2*args.t_start);
|
||||
|
||||
V_smooth_start = cumtrapz(V_d)*args.Ts;
|
||||
|
||||
V_smooth_end = args.V_mean - V_smooth_start;
|
||||
end
|
||||
else
|
||||
V_smooth_start = [];
|
||||
V_smooth_end = [];
|
||||
end
|
||||
|
||||
V_exc = [V_smooth_start, V_sweep, V_smooth_end];
|
||||
t_exc = args.Ts*[0:1:length(V_exc)-1];
|
||||
|
||||
U_exc = [t_exc; V_exc];
|
Loading…
Reference in New Issue
Block a user