test-bench-force-sensor/index.html

638 lines
20 KiB
HTML
Raw Normal View History

2020-11-10 12:55:51 +01:00
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-11-10 mar. 12:55 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Piezoelectric Force Sensor - Test Bench</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<link rel="stylesheet" type="text/css" href="./css/custom.css"/>
<script type="text/javascript" src="./js/jquery.min.js"></script>
<script type="text/javascript" src="./js/bootstrap.min.js"></script>
<script type="text/javascript" src="./js/readtheorg.js"></script>
<script>MathJax = {
tex: {
tags: 'ams',
macros: {bm: ["\\boldsymbol{#1}",1],}
}
};
</script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
<a accesskey="h" href="../index.html"> UP </a>
|
<a accesskey="H" href="../index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Piezoelectric Force Sensor - Test Bench</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#orga1465ad">1. Change of Stiffness due to Sensors stack being open/closed circuit</a>
<ul>
<li><a href="#orgd924c73">1.1. Load Data</a></li>
<li><a href="#org59cc20a">1.2. Transfer Functions</a></li>
</ul>
</li>
<li><a href="#org76a1832">2. Generated Number of Charge / Voltage</a>
<ul>
<li><a href="#org1fa991d">2.1. Steps</a></li>
<li><a href="#org5e9eb44">2.2. Add Parallel Resistor</a></li>
<li><a href="#org15676e1">2.3. Sinus</a></li>
</ul>
</li>
</ul>
</div>
</div>
<p>
In this document is studied how a piezoelectric stack can be used to measured the force.
</p>
<ul class="org-ul">
<li>Section <a href="#org887b61a">1</a>: the effect of the input impedance of the electronics connected to the force sensor stack on the stiffness of the stack is studied</li>
<li>Section <a href="#org2b5f630">2</a>:</li>
</ul>
<div id="outline-container-orga1465ad" class="outline-2">
<h2 id="orga1465ad"><span class="section-number-2">1</span> Change of Stiffness due to Sensors stack being open/closed circuit</h2>
<div class="outline-text-2" id="text-1">
<p>
<a id="org887b61a"></a>
</p>
</div>
<div id="outline-container-orgd924c73" class="outline-3">
<h3 id="orgd924c73"><span class="section-number-3">1.1</span> Load Data</h3>
<div class="outline-text-3" id="text-1-1">
<div class="org-src-container">
<pre class="src src-matlab">oc = load(<span class="org-string">'identification_open_circuit.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>);
sc = load(<span class="org-string">'identification_short_circuit.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>);
</pre>
</div>
</div>
</div>
<div id="outline-container-org59cc20a" class="outline-3">
<h3 id="org59cc20a"><span class="section-number-3">1.2</span> Transfer Functions</h3>
<div class="outline-text-3" id="text-1-2">
<div class="org-src-container">
<pre class="src src-matlab">Ts = 1e<span class="org-type">-</span>4; <span class="org-comment">% Sampling Time [s]</span>
win = hann(ceil(10<span class="org-type">/</span>Ts));
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">[tf_oc_est, f] = tfestimate(oc.u, oc.encoder, win, [], [], 1<span class="org-type">/</span>Ts);
[co_oc_est, <span class="org-type">~</span>] = mscohere( oc.u, oc.encoder, win, [], [], 1<span class="org-type">/</span>Ts);
[tf_sc_est, <span class="org-type">~</span>] = tfestimate(sc.u, sc.encoder, win, [], [], 1<span class="org-type">/</span>Ts);
[co_sc_est, <span class="org-type">~</span>] = mscohere( sc.u, sc.encoder, win, [], [], 1<span class="org-type">/</span>Ts);
</pre>
</div>
<div id="org3c75143" class="figure">
<p><img src="figs/stiffness_force_sensor_coherence.png" alt="stiffness_force_sensor_coherence.png" />
</p>
</div>
<div id="org4424b1c" class="figure">
<p><img src="figs/stiffness_force_sensor_bode.png" alt="stiffness_force_sensor_bode.png" />
</p>
</div>
<div id="org216fcc3" class="figure">
<p><img src="figs/stiffness_force_sensor_bode_zoom.png" alt="stiffness_force_sensor_bode_zoom.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Zoom on the change of resonance</p>
</div>
<div class="important" id="org9ea3712">
<p>
The change of resonance frequency / stiffness is very small and is not important here.
</p>
</div>
</div>
</div>
</div>
<div id="outline-container-org76a1832" class="outline-2">
<h2 id="org76a1832"><span class="section-number-2">2</span> Generated Number of Charge / Voltage</h2>
<div class="outline-text-2" id="text-2">
<p>
<a id="org2b5f630"></a>
</p>
<p>
Two stacks are used as actuator (in parallel) and one stack is used as sensor.
</p>
<p>
The amplifier gain is 20V/V (Cedrat LA75B).
</p>
</div>
<div id="outline-container-org1fa991d" class="outline-3">
<h3 id="org1fa991d"><span class="section-number-3">2.1</span> Steps</h3>
<div class="outline-text-3" id="text-2-1">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'force_sensor_steps.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'v'</span>);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-type">figure</span>;
tiledlayout(2, 1, <span class="org-string">'TileSpacing'</span>, <span class="org-string">'None'</span>, <span class="org-string">'Padding'</span>, <span class="org-string">'None'</span>);
nexttile;
plot(t, v);
xlabel(<span class="org-string">'Time [s]'</span>); ylabel(<span class="org-string">'Measured voltage [V]'</span>);
nexttile;
plot(t, u);
xlabel(<span class="org-string">'Time [s]'</span>); ylabel(<span class="org-string">'Actuator Voltage [V]'</span>);
</pre>
</div>
<div id="orgf889803" class="figure">
<p><img src="figs/force_sen_steps_time_domain.png" alt="force_sen_steps_time_domain.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Time domain signal during the 3 actuator voltage steps</p>
</div>
<p>
Three steps are performed at the following time intervals:
</p>
<div class="org-src-container">
<pre class="src src-matlab">t_s = [ 2.5, 23;
23.8, 35;
35.8, 50];
</pre>
</div>
<p>
Fit function:
</p>
<div class="org-src-container">
<pre class="src src-matlab">f = @(b,x) b(1)<span class="org-type">.*</span>exp(b(2)<span class="org-type">.*</span>x) <span class="org-type">+</span> b(3);
</pre>
</div>
<p>
We are interested by the <code>b(2)</code> term, which is the time constant of the exponential.
</p>
<div class="org-src-container">
<pre class="src src-matlab">tau = zeros(size(t_s, 1),1);
V0 = zeros(size(t_s, 1),1);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">for</span> <span class="org-variable-name">t_i</span> = <span class="org-constant">1:size(t_s, 1)</span>
t_cur = t(t_s(t_i, 1) <span class="org-type">&lt;</span> t <span class="org-type">&amp;</span> t <span class="org-type">&lt;</span> t_s(t_i, 2));
t_cur = t_cur <span class="org-type">-</span> t_cur(1);
y_cur = v(t_s(t_i, 1) <span class="org-type">&lt;</span> t <span class="org-type">&amp;</span> t <span class="org-type">&lt;</span> t_s(t_i, 2));
nrmrsd = @(b) norm(y_cur <span class="org-type">-</span> f(b,t_cur)); <span class="org-comment">% Residual Norm Cost Function</span>
B0 = [0.5, <span class="org-type">-</span>0.15, 2.2]; <span class="org-comment">% Choose Appropriate Initial Estimates</span>
[B,rnrm] = fminsearch(nrmrsd, B0); <span class="org-comment">% Estimate Parameters &#8216;B&#8217;</span>
tau(t_i) = 1<span class="org-type">/</span>B(2);
V0(t_i) = B(3);
<span class="org-keyword">end</span>
</pre>
</div>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-right">\(tau\) [s]</th>
<th scope="col" class="org-right">\(V_0\) [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-right">6.47</td>
<td class="org-right">2.26</td>
</tr>
<tr>
<td class="org-right">6.76</td>
<td class="org-right">2.26</td>
</tr>
<tr>
<td class="org-right">6.49</td>
<td class="org-right">2.25</td>
</tr>
</tbody>
</table>
<p>
With the capacitance being \(C = 4.4 \mu F\), the internal impedance of the Speedgoat ADC can be computed as follows:
</p>
<div class="org-src-container">
<pre class="src src-matlab">Cp = 4.4e<span class="org-type">-</span>6; <span class="org-comment">% [F]</span>
Rin = abs(mean(tau))<span class="org-type">/</span>Cp;
</pre>
</div>
<pre class="example">
1494100.0
</pre>
<p>
The input impedance of the Speedgoat&rsquo;s ADC should then be close to \(1.5\,M\Omega\) (specified at \(1\,M\Omega\)).
</p>
<div class="important" id="org572654b">
<p>
How can we explain the voltage offset?
</p>
</div>
<p>
As shown in Figure <a href="#org7c2c57f">5</a> (taken from (<a href="#citeproc_bib_item_1">Reza and Andrew 2006</a>)), an input voltage offset is due to the input bias current \(i_n\).
</p>
<div id="org7c2c57f" class="figure">
<p><img src="figs/force_sensor_model_electronics.png" alt="force_sensor_model_electronics.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Model of a piezoelectric transducer (left) and instrumentation amplifier (right)</p>
</div>
<p>
The estimated input bias current is then:
</p>
<div class="org-src-container">
<pre class="src src-matlab">in = mean(V0)<span class="org-type">/</span>Rin;
</pre>
</div>
<pre class="example">
1.5119e-06
</pre>
<p>
An additional resistor in parallel with \(R_{in}\) would have two effects:
</p>
<ul class="org-ul">
<li>reduce the input voltage offset
\[ V_{off} = \frac{R_a R_{in}}{R_a + R_{in}} i_n \]</li>
<li>increase the high pass corner frequency \(f_c\)
\[ C_p \frac{R_{in}R_a}{R_{in} + R_a} = \tau_c = \frac{1}{f_c} \]
\[ R_a = \frac{R_i}{f_c C_p R_i - 1} \]</li>
</ul>
<p>
If we allow the high pass corner frequency to be equals to 3Hz:
</p>
<div class="org-src-container">
<pre class="src src-matlab">fc = 3;
Ra = Rin<span class="org-type">/</span>(fc<span class="org-type">*</span>Cp<span class="org-type">*</span>Rin <span class="org-type">-</span> 1);
</pre>
</div>
<pre class="example">
79804
</pre>
<p>
With this parallel resistance value, the voltage offset would be:
</p>
<div class="org-src-container">
<pre class="src src-matlab">V_offset = Ra<span class="org-type">*</span>Rin<span class="org-type">/</span>(Ra <span class="org-type">+</span> Rin) <span class="org-type">*</span> in;
</pre>
</div>
<pre class="example">
0.11454
</pre>
<p>
Which is much more acceptable.
</p>
</div>
</div>
<div id="outline-container-org5e9eb44" class="outline-3">
<h3 id="org5e9eb44"><span class="section-number-3">2.2</span> Add Parallel Resistor</h3>
<div class="outline-text-3" id="text-2-2">
<p>
A resistor \(R_p \approx 100\,k\Omega\) is added in parallel with the force sensor as shown in Figure <a href="#org1fac5a7">6</a>.
</p>
<div id="org1fac5a7" class="figure">
<p><img src="figs/force_sensor_model_electronics_without_R.png" alt="force_sensor_model_electronics_without_R.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Model of a piezoelectric transducer (left) and instrumentation amplifier (right) with added resistor \(R_p\)</p>
</div>
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'force_sensor_steps_R_82k7.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'v'</span>);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-type">figure</span>;
tiledlayout(2, 1, <span class="org-string">'TileSpacing'</span>, <span class="org-string">'None'</span>, <span class="org-string">'Padding'</span>, <span class="org-string">'None'</span>);
nexttile;
plot(t, v);
xlabel(<span class="org-string">'Time [s]'</span>); ylabel(<span class="org-string">'Measured voltage [V]'</span>);
nexttile;
plot(t, u);
xlabel(<span class="org-string">'Time [s]'</span>); ylabel(<span class="org-string">'Actuator Voltage [V]'</span>);
</pre>
</div>
<div id="org29964b5" class="figure">
<p><img src="figs/force_sen_steps_time_domain_par_R.png" alt="force_sen_steps_time_domain_par_R.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Time domain signal during the actuator voltage steps</p>
</div>
<p>
Three steps are performed at the following time intervals:
</p>
<div class="org-src-container">
<pre class="src src-matlab">t_s = [1.9, 6;
8.5, 13;
15.5, 21;
22.6, 26;
30.0, 36;
37.5, 41;
46.2, 49.5]
</pre>
</div>
<p>
Fit function:
</p>
<div class="org-src-container">
<pre class="src src-matlab">f = @(b,x) b(1)<span class="org-type">.*</span>exp(b(2)<span class="org-type">.*</span>x) <span class="org-type">+</span> b(3);
</pre>
</div>
<p>
We are interested by the <code>b(2)</code> term, which is the time constant of the exponential.
</p>
<div class="org-src-container">
<pre class="src src-matlab">tau = zeros(size(t_s, 1),1);
V0 = zeros(size(t_s, 1),1);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">for</span> <span class="org-variable-name">t_i</span> = <span class="org-constant">1:size(t_s, 1)</span>
t_cur = t(t_s(t_i, 1) <span class="org-type">&lt;</span> t <span class="org-type">&amp;</span> t <span class="org-type">&lt;</span> t_s(t_i, 2));
t_cur = t_cur <span class="org-type">-</span> t_cur(1);
y_cur = v(t_s(t_i, 1) <span class="org-type">&lt;</span> t <span class="org-type">&amp;</span> t <span class="org-type">&lt;</span> t_s(t_i, 2));
nrmrsd = @(b) norm(y_cur <span class="org-type">-</span> f(b,t_cur)); <span class="org-comment">% Residual Norm Cost Function</span>
B0 = [0.5, <span class="org-type">-</span>0.2, 0.2]; <span class="org-comment">% Choose Appropriate Initial Estimates</span>
[B,rnrm] = fminsearch(nrmrsd, B0); <span class="org-comment">% Estimate Parameters &#8216;B&#8217;</span>
tau(t_i) = 1<span class="org-type">/</span>B(2);
V0(t_i) = B(3);
<span class="org-keyword">end</span>
</pre>
</div>
<p>
And indeed, we obtain a much smaller offset voltage and a much faster time constant.
</p>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-right">\(tau\) [s]</th>
<th scope="col" class="org-right">\(V_0\) [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-right">0.43</td>
<td class="org-right">0.15</td>
</tr>
<tr>
<td class="org-right">0.45</td>
<td class="org-right">0.16</td>
</tr>
<tr>
<td class="org-right">0.43</td>
<td class="org-right">0.15</td>
</tr>
<tr>
<td class="org-right">0.43</td>
<td class="org-right">0.15</td>
</tr>
<tr>
<td class="org-right">0.45</td>
<td class="org-right">0.15</td>
</tr>
<tr>
<td class="org-right">0.46</td>
<td class="org-right">0.16</td>
</tr>
<tr>
<td class="org-right">0.48</td>
<td class="org-right">0.16</td>
</tr>
</tbody>
</table>
<p>
Knowing the capacitance value, we can estimate the value of the added resistor (neglecting the input impedance of \(\approx 1\,M\Omega\)):
</p>
<div class="org-src-container">
<pre class="src src-matlab">Cp = 4.4e<span class="org-type">-</span>6; <span class="org-comment">% [F]</span>
Rin = abs(mean(tau))<span class="org-type">/</span>Cp;
</pre>
</div>
<pre class="example">
101200.0
</pre>
<p>
And we can verify that the bias current estimation stays the same:
</p>
<div class="org-src-container">
<pre class="src src-matlab">in = mean(V0)<span class="org-type">/</span>Rin;
</pre>
</div>
<pre class="example">
1.5305e-06
</pre>
<p>
This validates the model of the ADC and the effectiveness of the added resistor.
</p>
</div>
</div>
<div id="outline-container-org15676e1" class="outline-3">
<h3 id="org15676e1"><span class="section-number-3">2.3</span> Sinus</h3>
<div class="outline-text-3" id="text-2-3">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'force_sensor_sin.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'v'</span>);
u = u(t<span class="org-type">&gt;</span>25);
v = v(t<span class="org-type">&gt;</span>25);
encoder = encoder(t<span class="org-type">&gt;</span>25) <span class="org-type">-</span> mean(encoder(t<span class="org-type">&gt;</span>25));
t = t(t<span class="org-type">&gt;</span>25);
</pre>
</div>
<p>
The driving voltage is a sinus at 0.5Hz centered on 3V and with an amplitude of 3V (Figure <a href="#org1fbf89d">8</a>).
</p>
<div id="org1fbf89d" class="figure">
<p><img src="figs/force_sensor_sin_u.png" alt="force_sensor_sin_u.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Driving Voltage</p>
</div>
<p>
The full stroke as measured by the encoder is:
</p>
<div class="org-src-container">
<pre class="src src-matlab">max(encoder)<span class="org-type">-</span>min(encoder)
</pre>
</div>
<pre class="example">
5.005e-05
</pre>
<p>
Its signal is shown in Figure <a href="#org1d74efa">9</a>.
</p>
<div id="org1d74efa" class="figure">
<p><img src="figs/force_sensor_sin_encoder.png" alt="force_sensor_sin_encoder.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Encoder measurement</p>
</div>
<p>
The generated voltage by the stack is shown in Figure
</p>
<div id="org077a6d7" class="figure">
<p><img src="figs/force_sensor_sin_stack.png" alt="force_sensor_sin_stack.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Voltage measured on the stack used as a sensor</p>
</div>
<p>
The capacitance of the stack is
</p>
<div class="org-src-container">
<pre class="src src-matlab">Cp = 4.4e<span class="org-type">-</span>6; <span class="org-comment">% [F]</span>
</pre>
</div>
<p>
The corresponding generated charge is then shown in Figure <a href="#org4baf062">11</a>.
</p>
<div id="org4baf062" class="figure">
<p><img src="figs/force_sensor_sin_charge.png" alt="force_sensor_sin_charge.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Generated Charge</p>
</div>
<p>
The relation between the generated voltage and the measured displacement is almost linear as shown in Figure <a href="#org8b9df34">12</a>.
</p>
<div class="org-src-container">
<pre class="src src-matlab">b1 = encoder<span class="org-type">\</span>(v<span class="org-type">-</span>mean(v));
</pre>
</div>
<div id="org8b9df34" class="figure">
<p><img src="figs/force_sensor_linear_relation.png" alt="force_sensor_linear_relation.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Almost linear relation between the relative displacement and the generated voltage</p>
</div>
<p>
With a 16bits ADC, the resolution will then be equals to (in [nm]):
</p>
<div class="org-src-container">
<pre class="src src-matlab">abs((20<span class="org-type">/</span>2<span class="org-type">^</span>16)<span class="org-type">/</span>(b1<span class="org-type">/</span>1e9))
</pre>
</div>
<pre class="example">
3.9838
</pre>
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><h2 class='citeproc-org-bib-h2'>Bibliography</h2>
<div class="csl-bib-body">
<div class="csl-entry"><a name="citeproc_bib_item_1"></a>Reza, Moheimani, and Fleming Andrew. 2006. <i>Piezoelectric Transducers for Vibration Control and Damping</i>. London: Springer.</div>
</div>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-11-10 mar. 12:55</p>
</div>
</body>
</html>