196 KiB
Amplifier Piezoelectric Actuator APA300ML - Test Bench
- Introduction
- Model of an Amplified Piezoelectric Actuator and Sensor
- First Basic Measurements
- Dynamical measurements - APA
- Dynamical measurements - Struts
- Test Bench APA300ML - Simscape Model
- Test Bench Struts - Simscape Model
- Function
initializeBotFlexibleJoint
- Initialize Flexible JointinitializeTopFlexibleJoint
- Initialize Flexible JointinitializeAPA
- Initialize APAgenerateSweepExc
: Generate sweep sinus excitationgenerateShapedNoise
: Generate Shaped Noise excitationgenerateSinIncreasingAmpl
: Generate Sinus with increasing amplitude
- Bibliography
This report is also available as a pdf.
Introduction ignore
The goal of this test bench is to extract all the important parameters of the Amplified Piezoelectric Actuator APA300ML.
This include:
- Stroke
- Stiffness
- Hysteresis
- Gain from the applied voltage $V_a$ to the generated Force $F_a$
- Gain from the sensor stack strain $\delta L$ to the generated voltage $V_s$
- Dynamical behavior
Model of an Amplified Piezoelectric Actuator and Sensor
Consider a schematic of the Amplified Piezoelectric Actuator in Figure fig:apa_model_schematic.
A voltage $V_a$ applied to the actuator stacks will induce an actuator force $F_a$:
\begin{equation} F_a = g_a \cdot V_a \end{equation}A change of length $dl$ of the sensor stack will induce a voltage $V_s$:
\begin{equation} V_s = g_s \cdot dl \end{equation}We wish here to experimental measure $g_a$ and $g_s$.
The block-diagram model of the piezoelectric actuator is then as shown in Figure fig:apa-model-simscape-schematic.
\begin{tikzpicture}
\node[block={2.0cm}{2.0cm}, align=center] (model) at (0,0){Simscape\\Model};
\node[block, left=1.0 of model] (ga){$g_a(s)$};
\node[block, right=1.0 of model] (gs){$g_s(s)$};
\draw[<-] (ga.west) -- node[midway, above]{$V_a$} node[midway, below]{$[V]$} ++(-1.0, 0);
\draw[->] (ga.east) --node[midway, above]{$F_a$} node[midway, below]{$[N]$} (model.west);
\draw[->] (model.east) --node[midway, above]{$dl$} node[midway, below]{$[m]$} (gs.west);
\draw[->] (gs.east) -- node[midway, above]{$V_s$} node[midway, below]{$[V]$} ++(1.0, 0);
\end{tikzpicture}
First Basic Measurements
<<sec:first_measurements>>
Introduction ignore
- Section sec:geometrical_measurements:
- Section sec:electrical_measurements:
- Section sec:stroke_measurements:
- Section sec:spurious_resonances:
Geometrical Measurements
<<sec:geometrical_measurements>>
Introduction ignore
The received APA are shown in Figure fig:received_apa.
Measurement Setup
The flatness corresponding to the two interface planes are measured as shown in Figure fig:flatness_meas_setup.
Measurement Results
The height (Z) measurements at the 8 locations (4 points by plane) are defined below.
apa1 = 1e-6*[0, -0.5 , 3.5 , 3.5 , 42 , 45.5, 52.5 , 46];
apa2 = 1e-6*[0, -2.5 , -3 , 0 , -1.5 , 1 , -2 , -4];
apa3 = 1e-6*[0, -1.5 , 15 , 17.5 , 6.5 , 6.5 , 21 , 23];
apa4 = 1e-6*[0, 6.5 , 14.5 , 9 , 16 , 22 , 29.5 , 21];
apa5 = 1e-6*[0, -12.5, 16.5 , 28.5 , -43 , -52 , -22.5, -13.5];
apa6 = 1e-6*[0, -8 , -2 , 5 , -57.5, -62 , -55.5, -52.5];
apa7 = 1e-6*[0, 19.5 , -8 , -29.5, 75 , 97.5, 70 , 48];
apa7b = 1e-6*[0, 9 , -18.5, -30 , 31 , 46.5, 16.5 , 7.5];
apa = {apa1, apa2, apa3, apa4, apa5, apa6, apa7b};
The X/Y Positions of the 8 measurement points are defined below.
W = 20e-3; % Width [m]
L = 61e-3; % Length [m]
d = 1e-3; % Distance from border [m]
l = 15.5e-3; % [m]
pos = [[-L/2 + d; W/2 - d], [-L/2 + l - d; W/2 - d], [-L/2 + l - d; -W/2 + d], [-L/2 + d; -W/2 + d], [L/2 - l + d; W/2 - d], [L/2 - d; W/2 - d], [L/2 - d; -W/2 + d], [L/2 - l + d; -W/2 + d]];
Finally, the flatness is estimated by fitting a plane through the 8 points using the fminsearch
command.
apa_d = zeros(1, 7);
for i = 1:7
fun = @(x)max(abs(([pos; apa{i}]-[0;0;x(1)])'*([x(2:3);1]/norm([x(2:3);1]))));
x0 = [0;0;0];
[x, min_d] = fminsearch(fun,x0);
apa_d(i) = min_d;
end
The obtained flatness are shown in Table tab:flatness_meas.
Flatness $[\mu m]$ | |
---|---|
APA 1 | 8.9 |
APA 2 | 3.1 |
APA 3 | 9.1 |
APA 4 | 3.0 |
APA 5 | 1.9 |
APA 6 | 7.1 |
APA 7 | 18.7 |
Electrical Measurements
<<sec:electrical_measurements>>
The capacitance of the stacks is measure with the LCR-800 Meter (doc)
The excitation frequency is set to be 1kHz.
Sensor Stack | Actuator Stacks | |
---|---|---|
APA 1 | 5.10 | 10.03 |
APA 2 | 4.99 | 9.85 |
APA 3 | 1.72 | 5.18 |
APA 4 | 4.94 | 9.82 |
APA 5 | 4.90 | 9.66 |
APA 6 | 4.99 | 9.91 |
APA 7 | 4.85 | 9.85 |
There is clearly a problem with APA300ML number 3
The APA number 3 has ben sent back to Cedrat, and a new APA300ML has been shipped back.
Stroke measurement
<<sec:stroke_measurements>>
Introduction ignore
We here wish to estimate the stroke of the APA.
To do so, one side of the APA is fixed, and a displacement probe is located on the other side as shown in Figure fig:stroke_test_bench.
Then, a voltage is applied on either one or two stacks using a DAC and a voltage amplifier.
Here are the documentation of the equipment used for this test bench:
- Voltage Amplifier: PD200 with a gain of 20
- 16bits DAC: IO313 Speedgoat card
- Displacement Probe: Millimar C1216 electronics and Millimar 1318 probe
Voltage applied on one stack
Let's first look at the relation between the voltage applied to one stack to the displacement of the APA as measured by the displacement probe.
The applied voltage is shown in Figure fig:apa_stroke_voltage_time.
The obtained displacement is shown in Figure fig:apa_stroke_time_1s. The displacement is set to zero at initial time when the voltage applied is -20V.
Finally, the displacement is shown as a function of the applied voltage in Figure fig:apa_d_vs_V_1s. We can clearly see that there is a problem with the APA 3. Also, there is a large hysteresis.
We can clearly see from Figure fig:apa_d_vs_V_1s that there is a problem with the APA number 3.
Voltage applied on two stacks
Now look at the relation between the voltage applied to the two other stacks to the displacement of the APA as measured by the displacement probe.
The obtained displacement is shown in Figure fig:apa_stroke_time_2s. The displacement is set to zero at initial time when the voltage applied is -20V.
Finally, the displacement is shown as a function of the applied voltage in Figure fig:apa_d_vs_V_2s. We can clearly see that there is a problem with the APA 3. Also, there is a large hysteresis.
Voltage applied on all three stacks
Finally, we can combine the two measurements to estimate the relation between the displacement and the voltage applied to the three stacks (Figure fig:apa_d_vs_V_3s).
The obtained maximum stroke for all the APA are summarized in Table tab:apa_measured_stroke.
Stroke $[\mu m]$ | |
---|---|
APA 1 | 373.2 |
APA 2 | 365.5 |
APA 3 | 181.7 |
APA 4 | 359.7 |
APA 5 | 361.5 |
APA 6 | 363.9 |
APA 7 | 358.4 |
Spurious resonances
<<sec:spurious_resonances>>
Introduction
Three main resonances are foreseen to be problematic for the control of the APA300ML (Figure fig:apa_mode_shapes):
- Mode in X-bending at 189Hz
- Mode in Y-bending at 285Hz
- Mode in Z-torsion at 400Hz
These modes are present when flexible joints are fixed to the ends of the APA300ML.
In this section, we try to find the resonance frequency of these modes when one end of the APA is fixed and the other is free.
Setup
The measurement setup is shown in Figure fig:measurement_setup_torsion. A Laser vibrometer is measuring the difference of motion of two points. The APA is excited with an instrumented hammer and the transfer function from the hammer to the measured rotation is computed.
- Laser Doppler Vibrometer Polytec OFV512
- Instrumented hammer
Bending - X
The setup to measure the X-bending motion is shown in Figure fig:measurement_setup_X_bending. The APA is excited with an instrumented hammer having a solid metallic tip. The impact point is on the back-side of the APA aligned with the top measurement point.
The data is loaded.
bending_X = load('apa300ml_bending_X_top.mat');
The config for tfestimate
is performed:
Ts = bending_X.Track1_X_Resolution; % Sampling frequency [Hz]
win = hann(ceil(1/Ts));
The transfer function from the input force to the output "rotation" (difference between the two measured distances).
[G_bending_X, f] = tfestimate(bending_X.Track1, bending_X.Track2, win, [], [], 1/Ts);
The result is shown in Figure fig:apa300ml_meas_freq_bending_x.
The can clearly observe a nice peak at 280Hz, and then peaks at the odd "harmonics" (third "harmonic" at 840Hz, and fifth "harmonic" at 1400Hz).
Bending - Y
The setup to measure the Y-bending is shown in Figure fig:measurement_setup_Y_bending.
The impact point of the instrumented hammer is located on the back surface of the top interface (on the back of the 2 measurements points).
The data is loaded, and the transfer function from the force to the measured rotation is computed.
bending_Y = load('apa300ml_bending_Y_top.mat');
[G_bending_Y, ~] = tfestimate(bending_Y.Track1, bending_Y.Track2, win, [], [], 1/Ts);
The results are shown in Figure fig:apa300ml_meas_freq_bending_y. The main resonance is at 412Hz, and we also see the third "harmonic" at 1220Hz.
Torsion - Z
Finally, we measure the Z-torsion resonance as shown in Figure fig:measurement_setup_torsion_bis.
The excitation is shown on the other side of the APA, on the side to excite the torsion motion.
The data is loaded, and the transfer function computed.
torsion = load('apa300ml_torsion_left.mat');
[G_torsion, ~] = tfestimate(torsion.Track1, torsion.Track2, win, [], [], 1/Ts);
The results are shown in Figure fig:apa300ml_meas_freq_torsion_z. We observe a first peak at 267Hz, which corresponds to the X-bending mode that was measured at 280Hz. And then a second peak at 415Hz, which corresponds to the X-bending mode that was measured at 412Hz. The mode in pure torsion is probably at higher frequency (peak around 1kHz?).
In order to verify that, the APA is excited on the top part such that the torsion mode should not be excited.
torsion = load('apa300ml_torsion_top.mat');
[G_torsion_top, ~] = tfestimate(torsion.Track1, torsion.Track2, win, [], [], 1/Ts);
The two FRF are compared in Figure fig:apa300ml_meas_freq_torsion_z_comp. It is clear that the first two modes does not correspond to the torsional mode. Maybe the resonance at 800Hz, or even higher resonances. It is difficult to conclude here.
Compare
The three measurements are shown in Figure fig:apa300ml_meas_freq_compare.
Conclusion
When two flexible joints are fixed at each ends of the APA, the APA is mostly in a free/free condition in terms of bending/torsion (the bending/torsional stiffness of the joints being very small).
In the current tests, the APA are in a fixed/free condition. Therefore, it is quite obvious that we measured higher resonance frequencies than what is foreseen for the struts. It is however quite interesting that there is a factor $\approx \sqrt{2}$ between the two (increased of the stiffness by a factor 2?).
Mode | Strut Mode | Measured Frequency |
---|---|---|
X-Bending | 189Hz | 280Hz |
Y-Bending | 285Hz | 410Hz |
Z-Torsion | 400Hz | ? |
Dynamical measurements - APA
<<sec:dynamical_meas_apa>>
Introduction ignore
In this section, a measurement test bench is used to identify the dynamics of the APA.
The bench is shown in Figure fig:picture_apa_bench, and a zoom picture on the APA and encoder is shown in Figure fig:picture_apa_bench_encoder.
Here are the documentation of the equipment used for this test bench:
- Voltage Amplifier: PD200
- Amplified Piezoelectric Actuator: APA300ML
- DAC/ADC: Speedgoat IO313
- Encoder: Renishaw Vionic and used Ruler
- Interferometer: Attocube IDS3010
The bench is schematically shown in Figure fig:test_bench_apa_alone and the signal used are summarized in Table tab:test_bench_apa_variables.
Variable | Description | Unit | Hardware |
---|---|---|---|
Va |
Output DAC voltage | [V] | DAC - Ch. 1 => PD200 => APA |
Vs |
Measured stack voltage (ADC) | [V] | APA => ADC - Ch. 1 |
de |
Encoder Measurement | [m] | PEPU Ch. 1 - IO318(1) - Ch. 1 |
da |
Attocube Measurement | [m] | PEPU Ch. 2 - IO318(1) - Ch. 2 |
t |
Time | [s] |
This section is structured as follows:
- Section sec:meas_apa_speedgoat_setup: the Speedgoat setup is described (excitation signals, saved signals, etc.)
- Section sec:meas_one_apa: the measurements are first performed on one APA.
- Section sec:meas_all_apa: the same measurements are performed on all the APA and are compared.
Speedgoat Setup
<<sec:meas_apa_speedgoat_setup>>
Introduction ignore
frf_setup.m
- Measurement Setup
First is defined the sampling frequency:
%% Simulation configuration
Fs = 10e3; % Sampling Frequency [Hz]
Ts = 1/Fs; % Sampling Time [s]
%% Data record configuration
Trec_start = 5; % Start time for Recording [s]
Trec_dur = 100; % Recording Duration [s]
Tsim = 2*Trec_start + Trec_dur; % Simulation Time [s]
A white noise excitation signal can be very useful in order to obtain a first idea of the plant FRF. The gain can be gradually increased until satisfactory output is obtained.
%% Shaped Noise
V_noise = generateShapedNoise('Ts', 1/Fs, ...
'V_mean', 3.25, ...
't_start', Trec_start, ...
'exc_duration', Trec_dur, ...
'smooth_ends', true, ...
'V_exc', 0.05/(1 + s/2/pi/10));
The maximum excitation voltage at resonance is 9Vrms, therefore corresponding to 0.6V of output DAC voltage.
%% Sweep Sine
gc = 0.1;
xi = 0.5;
wn = 2*pi*94.3;
% Notch filter at the resonance of the APA
G_sweep = 0.2*(s^2 + 2*gc*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2);
V_sweep = generateSweepExc('Ts', Ts, ...
'f_start', 10, ...
'f_end', 400, ...
'V_mean', 3.25, ...
't_start', Trec_start, ...
'exc_duration', Trec_dur, ...
'sweep_type', 'log', ...
'V_exc', G_sweep*1/(1 + s/2/pi/500));
In order to better estimate the high frequency dynamics, a band-limited noise can be used (Figure fig:frf_meas_noise_hf_exc). The frequency content of the noise can be precisely controlled.
%% High Frequency Shaped Noise
[b,a] = cheby1(10, 2, 2*pi*[300 2e3], 'bandpass', 's');
wL = 0.005*tf(b, a);
V_noise_hf = generateShapedNoise('Ts', 1/Fs, ...
'V_mean', 3.25, ...
't_start', Trec_start, ...
'exc_duration', Trec_dur, ...
'smooth_ends', true, ...
'V_exc', wL);
Then a sinus excitation can be used to estimate the hysteresis.
%% Sinus excitation with increasing amplitude
V_sin = generateSinIncreasingAmpl('Ts', 1/Fs, ...
'V_mean', 3.25, ...
'sin_ampls', [0.1, 0.2, 0.4, 1, 2, 4], ...
'sin_period', 1, ...
'sin_num', 5, ...
't_start', Trec_start, ...
'smooth_ends', true);
Then, we select the wanted excitation signal.
%% Select the excitation signal
V_exc = timeseries(V_noise(2,:), V_noise(1,:));
%% Save data that will be loaded in the Simulink file
save('./frf_data.mat', 'Fs', 'Ts', 'Tsim', 'Trec_start', 'Trec_dur', 'V_exc');
frf_save.m
- Save Data
First, we get data from the Speedgoat:
tg = slrt;
f = SimulinkRealTime.openFTP(tg);
mget(f, 'data/data.dat');
close(f);
And we load the data on the Workspace:
data = SimulinkRealTime.utils.getFileScopeData('data/data.dat').data;
da = data(:, 1); % Excitation Voltage (input of PD200) [V]
de = data(:, 2); % Measured voltage (force sensor) [V]
Vs = data(:, 3); % Measurment displacement (encoder) [m]
Va = data(:, 4); % Measurement displacement (attocube) [m]
t = data(:, end); % Time [s]
And we save this to a mat
file:
apa_number = 1;
save(sprintf('mat/frf_data_%i_huddle.mat', apa_number), 't', 'Va', 'Vs', 'de', 'da');
Measurements on APA 1
<<sec:meas_one_apa>>
Introduction ignore
Measurements are first performed on only one APA. Once the measurement procedure is validated, it is performed on all the other APA.
Excitation Signal
For this first measurement, a basic logarithmic sweep is used between 10Hz and 2kHz.
The data are loaded.
apa_sweep = load(sprintf('mat/frf_data_%i_sweep.mat', 1), 't', 'Va', 'Vs', 'da', 'de');
The initial time is set to zero.
%% Time vector
t = apa_sweep.t - apa_sweep.t(1) ; % Time vector [s]
The excitation signal is shown in Figure fig:apa_bench_exc_sweep. It is a sweep sine from 10Hz up to 2kHz filtered with a notch centered with the main resonance of the system and a low pass filter.
FRF Identification - Setup
Let's define the sampling time/frequency.
%% Sampling
Ts = (t(end) - t(1))/(length(t)-1); % Sampling Time [s]
Fs = 1/Ts; % Sampling Frequency [Hz]
Then we defined a "Hanning" windows that will be used for the spectral analysis:
win = hanning(ceil(1*Fs)); % Hannning Windows
We get the frequency vector that will be the same for all the frequency domain analysis.
% Only used to have the frequency vector "f"
[~, f] = tfestimate(apa_sweep.Va, apa_sweep.de, win, [], [], 1/Ts);
FRF Identification - Displacement
In this section, the transfer function from the excitation voltage $V_a$ to the encoder measured displacement $d_e$ and interferometer measurement $d_a$.
The coherence from $V_a$ to $d_e$ is computed and shown in Figure fig:apa_1_coh_dvf. It is quite good from 10Hz up to 500Hz.
%% TF - Encoder
[coh_sweep, ~] = mscohere(apa_sweep.Va, apa_sweep.de, win, [], [], 1/Ts);
The transfer functions are then estimated and shown in Figure fig:apa_1_frf_dvf.
%% TF - Encoder
[dvf_sweep, ~] = tfestimate(apa_sweep.Va, apa_sweep.de, win, [], [], 1/Ts);
%% TF - Interferometer
[int_sweep, ~] = tfestimate(apa_sweep.Va, apa_sweep.da, win, [], [], 1/Ts);
It seems that using the interferometer, we have a lot more time delay than when using the encoder.
FRF Identification - Force Sensor
Now the dynamics from excitation voltage $V_a$ to the force sensor stack voltage $V_s$ is identified.
The coherence is computed and shown in Figure fig:apa_1_coh_iff and found very good from 10Hz up to 2kHz.
%% TF - Encoder
[coh_sweep, ~] = mscohere(apa_sweep.Va, apa_sweep.Vs, win, [], [], 1/Ts);
The transfer function is estimated and shown in Figure fig:apa_1_frf_iff.
%% Transfer function estimation
[iff_sweep, ~] = tfestimate(apa_sweep.Va, apa_sweep.Vs, win, [], [], 1/Ts);
Hysteresis
We here wish to visually see the amount of hysteresis present in the APA.
To do so, a quasi static sinusoidal excitation $V_a$ at different voltages is used.
The offset is 65V, and the sin amplitude is ranging from 1V up to 80V.
For each excitation amplitude, the vertical displacement $d$ of the mass is measured.
Then, $d$ is plotted as a function of $V_a$ for all the amplitudes.
We expect to obtained something like the hysteresis shown in Figure fig:expected_hysteresis.
The data is loaded.
apa_hyst = load('frf_data_1_hysteresis.mat', 't', 'Va', 'de');
% Initial time set to zero
apa_hyst.t = apa_hyst.t - apa_hyst.t(1);
The excitation voltage amplitudes are:
ampls = [0.1, 0.2, 0.4, 1, 2, 4]; % Excitation voltage amplitudes
The excitation voltage and the measured displacement are shown in Figure fig:hyst_exc_signal_time.
For each amplitude, we only take the last sinus in order to reduce possible transients. Also, it is centered on zero.
The measured displacement at a function of the output voltage are shown in Figure fig:hyst_results_multi_ampl.
It is quite clear that hysteresis is increasing with the excitation amplitude.
Also, no hysteresis is found on the sensor stack voltage.
Estimation of the APA axial stiffness
In order to estimate the stiffness of the APA, a weight with known mass $m_a$ is added on top of the suspended granite and the deflection $d_e$ is measured using the encoder. The APA stiffness is then:
\begin{equation} k_{\text{apa}} = \frac{m_a g}{d} \end{equation}Here, a mass of 6.4 kg is used:
added_mass = 6.4; % Added mass [kg]
The data is loaded, and the measured displacement is shown in Figure fig:apa_1_meas_stiffness.
apa_mass = load(sprintf('frf_data_%i_add_mass_closed_circuit.mat', 1), 't', 'de');
apa_mass.de = apa_mass.de - mean(apa_mass.de(apa_mass.t<11));
There is some imprecision in the measurement as there are some drifts that are probably due to some creep.
The stiffness is then computed as follows:
k = 9.8 * added_mass / (mean(apa_mass.de(apa_mass.t > 12 & apa_mass.t < 12.5)) - mean(apa_mass.de(apa_mass.t > 20 & apa_mass.t < 20.5)));
And the stiffness obtained is very close to the one specified in the documentation ($k = 1.794\,[N/\mu m]$).
k = 1.68 [N/um]
Stiffness change due to electrical connections
We wish here to see if the stiffness changes when the actuator stacks are not connected to the amplifier and the sensor stacks are not connected to the ADC.
Note here that the resistor in parallel to the sensor stack is present in both cases.
First, the data are loaded.
add_mass_oc = load(sprintf('frf_data_%i_add_mass_open_circuit.mat', 1), 't', 'de');
add_mass_cc = load(sprintf('frf_data_%i_add_mass_closed_circuit.mat', 1), 't', 'de');
And the initial displacement is set to zero.
add_mass_oc.de = add_mass_oc.de - mean(add_mass_oc.de(add_mass_oc.t<11));
add_mass_cc.de = add_mass_cc.de - mean(add_mass_cc.de(add_mass_cc.t<11));
The measured displacements are shown in Figure fig:apa_meas_k_time_oc_cc.
And the stiffness is estimated in both case. The results are shown in Table tab:APA_measured_k_oc_cc.
apa_k_oc = 9.8 * added_mass / (mean(add_mass_oc.de(add_mass_oc.t > 12 & add_mass_oc.t < 12.5)) - mean(add_mass_oc.de(add_mass_oc.t > 20 & add_mass_oc.t < 20.5)));
apa_k_cc = 9.8 * added_mass / (mean(add_mass_cc.de(add_mass_cc.t > 12 & add_mass_cc.t < 12.5)) - mean(add_mass_cc.de(add_mass_cc.t > 20 & add_mass_cc.t < 20.5)));
$k [N/\mu m]$ | |
---|---|
Not connected | 2.3 |
Connected | 1.7 |
Clearly, connecting the actuator stacks to the amplified (basically equivalent as to short circuiting them) lowers the stiffness.
Effect of the resistor on the IFF Plant
A resistor $R \approx 80.6\,k\Omega$ is added in parallel with the sensor stack. This has the effect to form a high pass filter with the capacitance of the stack.
We here measured the low frequency transfer function from $V_a$ to $V_s$ with and without this resistor.
% With the resistor
wi_k = load('frf_data_1_sweep_lf_with_R.mat', 't', 'Vs', 'Va');
% Without the resistor
wo_k = load('frf_data_1_sweep_lf.mat', 't', 'Vs', 'Va');
We use a very long "Hanning" window for the spectral analysis in order to estimate the low frequency behavior.
win = hanning(ceil(50*Fs)); % Hannning Windows
And we estimate the transfer function from $V_a$ to $V_s$ in both cases:
[frf_wo_k, f] = tfestimate(wo_k.Va, wo_k.Vs, win, [], [], 1/Ts);
[frf_wi_k, ~] = tfestimate(wi_k.Va, wi_k.Vs, win, [], [], 1/Ts);
With the following values of the resistor and capacitance, we obtain a first order high pass filter with a crossover frequency equal to:
C = 5.1e-6; % Sensor Stack capacitance [F]
R = 80.6e3; % Parallel Resistor [Ohm]
f0 = 1/(2*pi*R*C); % Crossover frequency of RC HPF [Hz]
f0 = 0.39 [Hz]
The transfer function of the corresponding high pass filter is:
G_hpf = 0.6*(s/2*pi*f0)/(1 + s/2*pi*f0);
Let's compare the transfer function from actuator stack to sensor stack with and without the added resistor in Figure fig:frf_iff_effect_R.
The added resistor has indeed the expected effect.
Comparison of all the APA
<<sec:meas_all_apa>>
Introduction ignore
The same measurements that was performed in Section sec:meas_one_apa are now performed on all the APA and then compared.
Axial Stiffnesses - Comparison
Let's first compare the APA axial stiffnesses.
The added mass is:
added_mass = 6.4; % Added mass [kg]
Here are the number of the APA that have been measured:
apa_nums = [1 2 4 5 6 7 8];
The data are loaded.
apa_mass = {};
for i = 1:length(apa_nums)
apa_mass(i) = {load(sprintf('frf_data_%i_add_mass_closed_circuit.mat', apa_nums(i)), 't', 'de')};
% The initial displacement is set to zero
apa_mass{i}.de = apa_mass{i}.de - mean(apa_mass{i}.de(apa_mass{i}.t<11));
end
The raw measurements are shown in Figure fig:apa_meas_k_time. All the APA seems to have similar stiffness except the APA 7 which should have an higher stiffness.
It is however strange that the displacement $d_e$ when the mass is removed is higher for the APA 7 than for the other APA. What could cause that?
The stiffnesses are computed for all the APA and are summarized in Table tab:APA_measured_k.
APA Num | $k [N/\mu m]$ |
---|---|
1 | 1.68 |
2 | 1.69 |
4 | 1.7 |
5 | 1.7 |
6 | 1.7 |
7 | 1.93 |
8 | 1.73 |
The APA300ML manual specifies the nominal stiffness to be $1.8\,[N/\mu m]$ which is very close to what have been measured. Only the APA number 7 is a little bit off.
FRF Identification - Setup
The identification is performed in three steps:
- White noise excitation with small amplitude. This is used to determine the main resonance of the system.
- Sweep sine excitation with the amplitude lowered around the resonance. The sweep sine is from 10Hz to 400Hz.
- High frequency noise. The noise is band-passed between 300Hz and 2kHz.
Then, the result of the second identification is used between 10Hz and 350Hz and the result of the third identification if used between 350Hz and 2kHz.
Here are the APA numbers that have been measured.
apa_nums = [1 2 4 5 6 7 8];
The data are loaded for both the second and third identification:
%% Second identification
apa_sweep = {};
for i = 1:length(apa_nums)
apa_sweep(i) = {load(sprintf('frf_data_%i_sweep.mat', apa_nums(i)), 't', 'Va', 'Vs', 'de', 'da')};
end
%% Third identification
apa_noise_hf = {};
for i = 1:length(apa_nums)
apa_noise_hf(i) = {load(sprintf('frf_data_%i_noise_hf.mat', apa_nums(i)), 't', 'Va', 'Vs', 'de', 'da')};
end
The time is the same for all measurements.
%% Time vector
t = apa_sweep{1}.t - apa_sweep{1}.t(1) ; % Time vector [s]
%% Sampling
Ts = (t(end) - t(1))/(length(t)-1); % Sampling Time [s]
Fs = 1/Ts; % Sampling Frequency [Hz]
Then we defined a "Hanning" windows that will be used for the spectral analysis:
win = hanning(ceil(0.5*Fs)); % Hannning Windows
We get the frequency vector that will be the same for all the frequency domain analysis.
% Only used to have the frequency vector "f"
[~, f] = tfestimate(apa_sweep{1}.Va, apa_sweep{1}.de, win, [], [], 1/Ts);
FRF Identification - DVF
In this section, the dynamics from excitation voltage $V_a$ to encoder measured displacement $d_e$ is identified.
We compute the coherence for 2nd and 3rd identification:
%% Coherence computation
coh_sweep = zeros(length(f), length(apa_nums));
for i = 1:length(apa_nums)
[coh, ~] = mscohere(apa_sweep{i}.Va, apa_sweep{i}.de, win, [], [], 1/Ts);
coh_sweep(:, i) = coh;
end
coh_noise_hf = zeros(length(f), length(apa_nums));
for i = 1:length(apa_nums)
[coh, ~] = mscohere(apa_noise_hf{i}.Va, apa_noise_hf{i}.de, win, [], [], 1/Ts);
coh_noise_hf(:, i) = coh;
end
The coherence is shown in Figure fig:apa_frf_dvf_plant_coh. It is clear that the Sweep sine gives good coherence up to 400Hz and that the high frequency noise excitation signal helps increasing a little bit the coherence at high frequency.
Then, the transfer function from the DAC output voltage $V_a$ to the measured displacement by the encoders is computed:
%% Transfer function estimation
dvf_sweep = zeros(length(f), length(apa_nums));
for i = 1:length(apa_nums)
[frf, ~] = tfestimate(apa_sweep{i}.Va, apa_sweep{i}.de, win, [], [], 1/Ts);
dvf_sweep(:, i) = frf;
end
dvf_noise_hf = zeros(length(f), length(apa_nums));
for i = 1:length(apa_nums)
[frf, ~] = tfestimate(apa_noise_hf{i}.Va, apa_noise_hf{i}.de, win, [], [], 1/Ts);
dvf_noise_hf(:, i) = frf;
end
The obtained transfer functions are shown in Figure fig:apa_frf_dvf_plant_tf. They are all superimposed except for the APA7.
Why is the APA7 off? We could think that the APA7 is stiffer, but also the mass line is off.
It seems that there is a "gain" problem. The encoder seems fine (it measured the same as the Interferometer). Maybe it could be due to the amplifier?
A zoom on the main resonance is shown in Figure fig:apa_frf_dvf_zoom_res_plant_tf. It is clear that expect for the APA 7, the response around the resonances are well matching for all the APA.
It is also clear that there is not a single resonance but two resonances, a first one at 95Hz and a second one at 105Hz.
Why is there a double resonance at around 94Hz?
FRF Identification - IFF
In this section, the dynamics from $V_a$ to $V_s$ is identified.
First the coherence is computed and shown in Figure fig:apa_frf_iff_plant_coh. The coherence is very nice from 10Hz to 2kHz. It is only dropping near a zeros at 40Hz, and near the resonance at 95Hz (the excitation amplitude being lowered).
%% Coherence
coh_sweep = zeros(length(f), length(apa_nums));
for i = 1:length(apa_nums)
[coh, ~] = mscohere(apa_sweep{i}.Va, apa_sweep{i}.Vs, win, [], [], 1/Ts);
coh_sweep(:, i) = coh;
end
coh_noise_hf = zeros(length(f), length(apa_nums));
for i = 1:length(apa_nums)
[coh, ~] = mscohere(apa_noise_hf{i}.Va, apa_noise_hf{i}.Vs, win, [], [], 1/Ts);
coh_noise_hf(:, i) = coh;
end
Then the FRF are estimated and shown in Figure fig:apa_frf_iff_plant_tf
%% FRF estimation of the transfer function from Va to Vs
iff_sweep = zeros(length(f), length(apa_nums));
for i = 1:length(apa_nums)
[frf, ~] = tfestimate(apa_sweep{i}.Va, apa_sweep{i}.Vs, win, [], [], 1/Ts);
iff_sweep(:, i) = frf;
end
iff_noise_hf = zeros(length(f), length(apa_nums));
for i = 1:length(apa_nums)
[frf, ~] = tfestimate(apa_noise_hf{i}.Va, apa_noise_hf{i}.Vs, win, [], [], 1/Ts);
iff_noise_hf(:, i) = frf;
end
#+caption:Identified IFF Plant
Dynamical measurements - Struts
<<sec:dynamical_meas_struts>>
Introduction ignore
The same bench used in Section sec:dynamical_meas_apa is here used with the strut instead of only the APA.
The bench is shown in Figure fig:test_bench_leg_overview. Measurements are performed either when no encoder is fixed to the strut (Figure fig:test_bench_leg_front) or when one encoder is fixed to the strut (Figure fig:test_bench_leg_overview).
Measurement on Strut 1
<<sec:meas_strut_1>>
Introduction ignore
Measurements are first performed on the strut 1 that contains:
- APA 1
- flex 1 and flex 2
Without Encoder
<<sec:meas_strut_1_no_encoder>>
FRF Identification - Setup
The identification is performed in three steps:
- White noise excitation with small amplitude. This is used to determine the main resonance of the system.
- Sweep sine excitation with the amplitude lowered around the resonance. The sweep sine is from 10Hz to 400Hz.
- High frequency noise. The noise is band-passed between 300Hz and 2kHz.
Then, the result of the second identification is used between 10Hz and 350Hz and the result of the third identification if used between 350Hz and 2kHz.
leg_sweep = load(sprintf('frf_data_leg_%i_sweep.mat', 1), 't', 'Va', 'Vs', 'de', 'da');
leg_noise_hf = load(sprintf('frf_data_leg_%i_noise_hf.mat', 1), 't', 'Va', 'Vs', 'de', 'da');
The time is the same for all measurements.
%% Time vector
t = leg_sweep.t - leg_sweep.t(1) ; % Time vector [s]
%% Sampling
Ts = (t(end) - t(1))/(length(t)-1); % Sampling Time [s]
Fs = 1/Ts; % Sampling Frequency [Hz]
Then we defined a "Hanning" windows that will be used for the spectral analysis:
win = hanning(ceil(0.5*Fs)); % Hannning Windows
We get the frequency vector that will be the same for all the frequency domain analysis.
% Only used to have the frequency vector "f"
[~, f] = tfestimate(leg_sweep.Va, leg_sweep.de, win, [], [], 1/Ts);
FRF Identification - Displacement
In this section, the dynamics from the excitation voltage $V_a$ to the interferometer $d_a$ is identified.
We compute the coherence for 2nd and 3rd identification:
[coh_sweep, ~] = mscohere(leg_sweep.Va, leg_sweep.da, win, [], [], 1/Ts);
[coh_noise_hf, ~] = mscohere(leg_noise_hf.Va, leg_noise_hf.da, win, [], [], 1/Ts);
The transfer function from $V_a$ to the interferometer measured displacement $d_a$ is estimated and shown in Figure fig:strut_1_frf_dvf_plant_tf.
[dvf_sweep, ~] = tfestimate(leg_sweep.Va, leg_sweep.da, win, [], [], 1/Ts);
[dvf_noise_hf, ~] = tfestimate(leg_noise_hf.Va, leg_noise_hf.da, win, [], [], 1/Ts);
FRF Identification - IFF
In this section, the dynamics from $V_a$ to $V_s$ is identified.
First the coherence is computed and shown in Figure fig:strut_1_frf_iff_plant_coh. The coherence is very nice from 10Hz to 2kHz. It is only dropping near a zeros at 40Hz, and near the resonance at 95Hz (the excitation amplitude being lowered).
[coh_sweep, ~] = mscohere(leg_sweep.Va, leg_sweep.Vs, win, [], [], 1/Ts);
[coh_noise_hf, ~] = mscohere(leg_noise_hf.Va, leg_noise_hf.Vs, win, [], [], 1/Ts);
Then the FRF are estimated and shown in Figure fig:strut_1_frf_iff_plant_tf
[iff_sweep, ~] = tfestimate(leg_sweep.Va, leg_sweep.Vs, win, [], [], 1/Ts);
[iff_noise_hf, ~] = tfestimate(leg_noise_hf.Va, leg_noise_hf.Vs, win, [], [], 1/Ts);
#+caption:Identified IFF Plant for the Strut 1
With Encoder
<<sec:meas_strut_1_encoder>>
Measurement Data
leg_enc_sweep = load(sprintf('frf_data_leg_coder_badly_align_%i_noise.mat', 1), 't', 'Va', 'Vs', 'de', 'da');
leg_enc_noise_hf = load(sprintf('frf_data_leg_coder_badly_align_%i_noise_hf.mat', 1), 't', 'Va', 'Vs', 'de', 'da');
FRF Identification - DVF
In this section, the dynamics from $V_a$ to $d_e$ is identified.
We compute the coherence for 2nd and 3rd identification:
[coh_enc_sweep, ~] = mscohere(leg_enc_sweep.Va, leg_enc_sweep.de, win, [], [], 1/Ts);
[coh_enc_noise_hf, ~] = mscohere(leg_enc_noise_hf.Va, leg_enc_noise_hf.de, win, [], [], 1/Ts);
[dvf_enc_sweep, ~] = tfestimate(leg_enc_sweep.Va, leg_enc_sweep.de, win, [], [], 1/Ts);
[dvf_enc_noise_hf, ~] = tfestimate(leg_enc_noise_hf.Va, leg_enc_noise_hf.de, win, [], [], 1/Ts);
[dvf_int_sweep, ~] = tfestimate(leg_enc_sweep.Va, leg_enc_sweep.da, win, [], [], 1/Ts);
[dvf_int_noise_hf, ~] = tfestimate(leg_enc_noise_hf.Va, leg_enc_noise_hf.da, win, [], [], 1/Ts);
The obtained transfer functions are shown in Figure fig:strut_1_enc_frf_dvf_plant_tf.
They are all superimposed except for the APA7.
Why is the APA7 off? We could think that the APA7 is stiffer, but also the mass line is off.
It seems that there is a "gain" problem. The encoder seems fine (it measured the same as the Interferometer). Maybe it could be due to the amplifier?
Why is there a double resonance at around 94Hz?
Comparison of the Encoder and Interferometer
The interferometer could here represent the case where the encoders are fixed to the plates and not the APA.
The dynamics from $V_a$ to $d_e$ and from $V_a$ to $d_a$ are compared in Figure fig:strut_1_comp_enc_int.
It will clearly be difficult to do something (except some low frequency positioning) with the encoders fixed to the APA.
APA Resonances Frequency
As shown in Figure fig:strut_1_spurious_resonances, we can clearly see three spurious resonances at 197Hz, 290Hz and 376Hz.
These resonances correspond to parasitic resonances of the APA itself. They are very close to what was estimated using the FEM (Figure fig:apa_mode_shapes_bis):
- Mode in X-bending at 189Hz
- Mode in Y-bending at 285Hz
- Mode in Z-torsion at 400Hz
The resonances are indeed due to limited stiffness of the APA.
TODO Estimated Flexible Joint axial stiffness
load(sprintf('frf_data_leg_coder_%i_add_mass_closed_circuit.mat', 1), 't', 'Va', 'Vs', 'de', 'da');
de = de - de(1);
da = da - da(1);
figure;
hold on;
plot(t, de, 'DisplayName', 'Encoder')
plot(t, da, 'DisplayName', 'Interferometer')
hold off;
xlabel('Time [s]'); ylabel('Displacement [m]');
legend('location', 'northeast');
de_steps = [mean(de(t > 13 & t < 14));
mean(de(t > 19 & t < 20));
mean(de(t > 24 & t < 25));
mean(de(t > 28.5 & t < 29.5));
mean(de(t > 49 & t < 50))] - mean(de(t > 13 & t < 14));
da_steps = [mean(da(t > 13 & t < 14));
mean(da(t > 19 & t < 20));
mean(da(t > 24 & t < 25));
mean(da(t > 28.5 & t < 29.5));
mean(da(t > 49 & t < 50))] - mean(da(t > 13 & t < 14));
added_mass = [0; 1; 2; 3; 4];
lin_fit = (added_mass\abs(de_steps-da_steps) - abs(de_steps(1)-da_steps(1)));
figure;
hold on;
plot(added_mass, abs(de_steps-da_steps) - abs(de_steps(1)-da_steps(1)), 'ok')
plot(added_mass, added_mass*lin_fit, '-r')
hold off;
What is strange is that the encoder is measuring a larger displacement than the interferometer. That should be the opposite. Maybe is is caused by the fact that the APA is experiencing some bending and therefore a larger motion is measured on the encoder.
FRF Identification - IFF
In this section, the dynamics from $V_a$ to $V_s$ is identified.
First the coherence is computed and shown in Figure fig:strut_1_frf_iff_plant_coh. The coherence is very nice from 10Hz to 2kHz. It is only dropping near a zeros at 40Hz, and near the resonance at 95Hz (the excitation amplitude being lowered).
[coh_enc_sweep, ~] = mscohere(leg_enc_sweep.Va, leg_enc_sweep.Vs, win, [], [], 1/Ts);
[coh_enc_noise_hf, ~] = mscohere(leg_enc_noise_hf.Va, leg_enc_noise_hf.Vs, win, [], [], 1/Ts);
Then the FRF are estimated and shown in Figure fig:strut_1_enc_frf_iff_plant_tf
[iff_enc_sweep, ~] = tfestimate(leg_enc_sweep.Va, leg_enc_sweep.Vs, win, [], [], 1/Ts);
[iff_enc_noise_hf, ~] = tfestimate(leg_enc_noise_hf.Va, leg_enc_noise_hf.Vs, win, [], [], 1/Ts);
#+caption:Identified IFF Plant
Let's now compare the IFF plants whether the encoders are fixed to the APA or not (Figure fig:strut_1_frf_iff_comp_enc).
We can see that the IFF does not change whether of not the encoder are fixed to the struts.
Comparison of all the Struts
<<sec:meas_all_struts>>
Introduction ignore
Now all struts are measured using the same procedure and test bench.
FRF Identification - Setup
The identification is performed in two steps:
- White noise excitation with small amplitude. This is used to estimate the low frequency dynamics.
- High frequency noise. The noise is band-passed between 300Hz and 2kHz.
Then, the result of the first identification is used between 10Hz and 350Hz and the result of the second identification if used between 350Hz and 2kHz.
Here are the LEG numbers that have been measured.
leg_nums = [1 2 3 4 5];
The data are loaded for both the first and second identification:
%% Second identification
leg_noise = {};
for i = 1:length(leg_nums)
leg_noise(i) = {load(sprintf('frf_data_leg_coder_%i_noise.mat', leg_nums(i)), 't', 'Va', 'Vs', 'de', 'da')};
end
%% Third identification
leg_noise_hf = {};
for i = 1:length(leg_nums)
leg_noise_hf(i) = {load(sprintf('frf_data_leg_coder_%i_noise_hf.mat', leg_nums(i)), 't', 'Va', 'Vs', 'de', 'da')};
end
The time is the same for all measurements.
%% Time vector
t = leg_noise{1}.t - leg_noise{1}.t(1) ; % Time vector [s]
%% Sampling
Ts = (t(end) - t(1))/(length(t)-1); % Sampling Time [s]
Fs = 1/Ts; % Sampling Frequency [Hz]
Then we defined a "Hanning" windows that will be used for the spectral analysis:
win = hanning(ceil(0.5*Fs)); % Hannning Windows
We get the frequency vector that will be the same for all the frequency domain analysis.
% Only used to have the frequency vector "f"
[~, f] = tfestimate(leg_noise{1}.Va, leg_noise{1}.de, win, [], [], 1/Ts);
FRF Identification - DVF
In this section, the dynamics from $V_a$ to $d_e$ is identified.
We compute the coherence for 2nd and 3rd identification:
%% Coherence computation
coh_noise = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)
[coh, ~] = mscohere(leg_noise{i}.Va, leg_noise{i}.de, win, [], [], 1/Ts);
coh_noise(:, i) = coh;
end
coh_noise_hf = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)
[coh, ~] = mscohere(leg_noise_hf{i}.Va, leg_noise_hf{i}.de, win, [], [], 1/Ts);
coh_noise_hf(:, i) = coh;
end
The coherence is shown in Figure fig:struts_frf_dvf_plant_coh. It is clear that the Noise sine gives good coherence up to 400Hz and that the high frequency noise excitation signal helps increasing a little bit the coherence at high frequency.
Then, the transfer function from the DAC output voltage $V_a$ to the measured displacement by the encoders is computed:
%% Transfer function estimation
dvf_noise = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)
[frf, ~] = tfestimate(leg_noise{i}.Va, leg_noise{i}.de, win, [], [], 1/Ts);
dvf_noise(:, i) = frf;
end
dvf_noise_hf = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)
[frf, ~] = tfestimate(leg_noise_hf{i}.Va, leg_noise_hf{i}.de, win, [], [], 1/Ts);
dvf_noise_hf(:, i) = frf;
end
The obtained transfer functions are shown in Figure fig:struts_frf_dvf_plant_tf.
They are all superimposed except for the LEG7.
Depending on how the APA are mounted with the flexible joints, the dynamics can change a lot as shown in Figure fig:struts_frf_dvf_plant_tf. In the future, a "pin" will be used to better align the APA with the flexible joints. We can expect the amplitude of the spurious resonances to decrease.
FRF Identification - DVF with interferometer
In this section, the dynamics from $V_a$ to $d_a$ is identified.
We compute the coherence.
%% Coherence computation
coh_noise = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)
[coh, ~] = mscohere(leg_noise{i}.Va, leg_noise{i}.da, win, [], [], 1/Ts);
coh_noise(:, i) = coh;
end
coh_noise_hf = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)
[coh, ~] = mscohere(leg_noise_hf{i}.Va, leg_noise_hf{i}.da, win, [], [], 1/Ts);
coh_noise_hf(:, i) = coh;
end
The coherence is shown in Figure fig:struts_frf_int_plant_coh. It is clear that the Noise sine gives good coherence up to 400Hz and that the high frequency noise excitation signal helps increasing a little bit the coherence at high frequency.
Then, the transfer function from the DAC output voltage $V_a$ to the measured displacement by the Attocube is computed:
%% Transfer function estimation
dvf_a_noise = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)
[frf, ~] = tfestimate(leg_noise{i}.Va, leg_noise{i}.da, win, [], [], 1/Ts);
dvf_a_noise(:, i) = frf;
end
dvf_a_noise_hf = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)
[frf, ~] = tfestimate(leg_noise_hf{i}.Va, leg_noise_hf{i}.da, win, [], [], 1/Ts);
dvf_a_noise_hf(:, i) = frf;
end
The obtained transfer functions are shown in Figure fig:struts_frf_int_plant_tf.
They are all superimposed except for the LEG7.
FRF Identification - IFF
In this section, the dynamics from $V_a$ to $V_s$ is identified.
First the coherence is computed and shown in Figure fig:struts_frf_iff_plant_coh. The coherence is very nice from 10Hz to 2kHz. It is only dropping near a zeros at 40Hz, and near the resonance at 95Hz (the excitation amplitude being lowered).
%% Coherence
coh_noise = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)
[coh, ~] = mscohere(leg_noise{i}.Va, leg_noise{i}.Vs, win, [], [], 1/Ts);
coh_noise(:, i) = coh;
end
coh_noise_hf = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)
[coh, ~] = mscohere(leg_noise_hf{i}.Va, leg_noise_hf{i}.Vs, win, [], [], 1/Ts);
coh_noise_hf(:, i) = coh;
end
Then the FRF are estimated and shown in Figure fig:struts_frf_iff_plant_tf
%% FRF estimation of the transfer function from Va to Vs
iff_noise = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)
[frf, ~] = tfestimate(leg_noise{i}.Va, leg_noise{i}.Vs, win, [], [], 1/Ts);
iff_noise(:, i) = frf;
end
iff_noise_hf = zeros(length(f), length(leg_nums));
for i = 1:length(leg_nums)
[frf, ~] = tfestimate(leg_noise_hf{i}.Va, leg_noise_hf{i}.Vs, win, [], [], 1/Ts);
iff_noise_hf(:, i) = frf;
end
#+caption:Identified IFF Plant
Test Bench APA300ML - Simscape Model
Introduction
A simscape model (Figure fig:model_bench_apa) of the measurement bench is used.
First Identification
The APA is first initialized with default parameters and the transfer function from excitation voltage $V_a$ (before the amplification of 20 due to the PD200 amplifier) to the sensor stack voltage $V_s$, encoder $d_L$ and interferometer $z$ is identified.
%% Initialize the structure containing the data used in the model
n_hexapod = struct();
n_hexapod.actuator = initializeAPA('type', '2dof');
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs
io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; % Vertical Motion
%% Run the linearization
Ga = linearize(mdl, io, 0.0, options);
Ga.InputName = {'Va'};
Ga.OutputName = {'Vs', 'dL', 'z'};
The obtain dynamics are shown in Figure fig:apa_model_bench_bode_vs and fig:apa_model_bench_bode_dl_z.
Identify Sensor/Actuator constants and compare with measured FRF
How to identify these constants?
Piezoelectric Actuator Constant
Using the measurement test-bench, it is rather easy the determine the static gain between the applied voltage $V_a$ to the induced displacement $d$.
\begin{equation} d = g_{d/V_a} \cdot V_a \end{equation}Using the Simscape model of the APA, it is possible to determine the static gain between the actuator force $F_a$ to the induced displacement $d$:
\begin{equation} d = g_{d/F_a} \cdot F_a \end{equation}From the two gains, it is then easy to determine $g_a$:
\begin{equation} g_a = \frac{F_a}{V_a} = \frac{F_a}{d} \cdot \frac{d}{V_a} = \frac{g_{d/V_a}}{g_{d/F_a}} \end{equation}Piezoelectric Sensor Constant
Similarly, it is easy to determine the gain from the excitation voltage $V_a$ to the voltage generated by the sensor stack $V_s$:
\begin{equation} V_s = g_{V_s/V_a} V_a \end{equation}Note here that there is an high pass filter formed by the piezo capacitor and parallel resistor.
The gain can be computed from the dynamical identification and taking the gain at the wanted frequency (above the first resonance).
Using the simscape model, compute the gain at the same frequency from the actuator force $F_a$ to the strain of the sensor stack $dl$:
\begin{equation} dl = g_{dl/F_a} F_a \end{equation}Then, the "sensor" constant is:
\begin{equation} g_s = \frac{V_s}{dl} = \frac{V_s}{V_a} \cdot \frac{V_a}{F_a} \cdot \frac{F_a}{dl} = \frac{g_{V_s/V_a}}{g_a \cdot g_{dl/F_a}} \end{equation}Identification Data
%% Load the identification Data
leg_sweep = load(sprintf('frf_data_%i_sweep.mat', 1), 't', 'Va', 'Vs', 'de', 'da');
leg_noise_hf = load(sprintf('frf_data_%i_noise_hf.mat', 1), 't', 'Va', 'Vs', 'de', 'da');
The time is the same for all measurements.
%% Time vector
t = leg_sweep.t - leg_sweep.t(1) ; % Time vector [s]
%% Sampling Time / Frequency
Ts = (t(end) - t(1))/(length(t)-1); % Sampling Time [s]
Fs = 1/Ts; % Sampling Frequency [Hz]
Then we defined a "Hanning" windows that will be used for the spectral analysis:
%% Window used for spectral analysis
win = hanning(ceil(0.5*Fs)); % Hannning Windows
We get the frequency vector that will be the same for all the frequency domain analysis.
%% Get the frequency vector "f" common to all further spectral data
[~, f] = tfestimate(leg_sweep.Va, leg_sweep.de, win, [], [], 1/Ts);
%% Estimate the transfer function from u to dLm
[dvf_sweep, ~] = tfestimate(leg_sweep.Va, leg_sweep.da, win, [], [], 1/Ts);
[dvf_noise_hf, ~] = tfestimate(leg_noise_hf.Va, leg_noise_hf.da, win, [], [], 1/Ts);
%% Estimate the transfer function from u to taum
[iff_sweep, ~] = tfestimate(leg_sweep.Va, leg_sweep.Vs, win, [], [], 1/Ts);
[iff_noise_hf, ~] = tfestimate(leg_noise_hf.Va, leg_noise_hf.Vs, win, [], [], 1/Ts);
2DoF APA
2DoF APA
%% Initialize a 2DoF APA with Ga=Gs=1
n_hexapod.actuator = initializeAPA('type', '2dof', 'ga', 1, 'gs', 1);
Identification without actuator or sensor constants
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs
io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; % Vertical Motion
%% Identification
Gs = linearize(mdl, io, 0.0, options);
Gs.InputName = {'Va'};
Gs.OutputName = {'Vs', 'dL', 'z'};
Actuator Constant
%% Estimated Actuator Constant
ga = -mean(abs(dvf_sweep(f>10 & f<20)))./dcgain(Gs('dL', 'Va')); % [N/V]
ga = -32.1 [N/V]
n_hexapod.actuator.Ga = ones(6,1)*ga; % Actuator gain [N/V]
Sensor Constant
%% Estimated Sensor Constant
gs = -mean(abs(iff_sweep(f>400 & f<500)))./(ga*abs(squeeze(freqresp(Gs('Vs', 'Va'), 1e3, 'Hz')))); % [V/m]
gs = 0.085 [V/m]
n_hexapod.actuator.Gs = ones(6,1)*gs; % Sensor gain [V/m]
Comparison
Identify the dynamics with included constants.
%% Identify again the dynamics with correct Ga,Gs
Gs = linearize(mdl, io, 0.0, options);
Gs = Gs*exp(-Ts*s);
Gs.InputName = {'Va'};
Gs.OutputName = {'Vs', 'dL', 'z'};
Flexible APA
Flexible APA
%% Initialize the APA as a flexible body
n_hexapod.actuator = initializeAPA('type', 'flexible', 'ga', 1, 'gs', 1);
Identification without actuator or sensor constants
%% Identify the dynamics
Gs = linearize(mdl, io, 0.0, options);
Gs.InputName = {'Va'};
Gs.OutputName = {'Vs', 'dL', 'z'};
Actuator Constant
%% Actuator Constant
ga = -mean(abs(dvf_sweep(f>10 & f<20)))./dcgain(Gs('dL', 'Va')); % [N/V]
ga = 23.4 [N/V]
n_hexapod.actuator.Ga = ones(6,1)*ga; % Actuator gain [N/V]
Sensor Constant
%% Sensor Constant
gs = -mean(abs(iff_sweep(f>400 & f<500)))./(ga*abs(squeeze(freqresp(Gs('Vs', 'Va'), 1e3, 'Hz')))); % [V/m]
gs = -4674826.805 [V/m]
n_hexapod.actuator.Gs = ones(6,1)*gs; % Sensor gain [V/m]
Comparison
%% Identify with updated constants
Gs = linearize(mdl, io, 0.0, options);
Gs = Gs*exp(-Ts*s);
Gs.InputName = {'Va'};
Gs.OutputName = {'Vs', 'dL', 'z'};
Optimize 2-DoF model to fit the experimental Data
%% Optimized parameters
n_hexapod.actuator = initializeAPA('type', '2dof', ...
'Ga', -30.0, ...
'Gs', 0.098, ...
'k', ones(6,1)*0.38e6, ...
'ke', ones(6,1)*1.75e6, ...
'ka', ones(6,1)*3e7, ...
'c', ones(6,1)*1.3e2, ...
'ce', ones(6,1)*1e1, ...
'ca', ones(6,1)*1e1 ...
);
Test Bench Struts - Simscape Model
Introduction
First Identification
The object containing all the data is created.
%% Initialize structure containing data for the Simscape model
n_hexapod = struct();
n_hexapod.flex_bot = initializeBotFlexibleJoint('type', '2dof');
n_hexapod.flex_top = initializeTopFlexibleJoint('type', '2dof');
n_hexapod.actuator = initializeAPA('type', '2dof');
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage
io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs
io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; % Vertical Motion
%% Run the linearization
Gs = linearize(mdl, io, 0.0, options);
Gs.InputName = {'Va'};
Gs.OutputName = {'Vs', 'dL', 'z'};
Effect of flexible joints
Perfect
%% Perfect Joints
n_hexapod.flex_bot = initializeBotFlexibleJoint('type', '2dof');
n_hexapod.flex_top = initializeTopFlexibleJoint('type', '3dof');
Gp = linearize(mdl, io, 0.0, options);
Gp.InputName = {'Va'};
Gp.OutputName = {'Vs', 'dL', 'z'};
Top Flexible
%% Top joint with Axial stiffness
n_hexapod.flex_bot = initializeBotFlexibleJoint('type', '2dof');
n_hexapod.flex_top = initializeTopFlexibleJoint('type', '4dof');
Gt = linearize(mdl, io, 0.0, options);
Gt.InputName = {'Va'};
Gt.OutputName = {'Vs', 'dL', 'z'};
Bottom Flexible
%% Bottom joint with Axial stiffness
n_hexapod.flex_bot = initializeBotFlexibleJoint('type', '4dof');
n_hexapod.flex_top = initializeTopFlexibleJoint('type', '3dof');
Gb = linearize(mdl, io, 0.0, options);
Gb.InputName = {'Va'};
Gb.OutputName = {'Vs', 'dL', 'z'};
Both Flexible
%% Both joints with Axial stiffness
n_hexapod.flex_bot = initializeBotFlexibleJoint('type', '4dof');
n_hexapod.flex_top = initializeTopFlexibleJoint('type', '4dof');
Gf = linearize(mdl, io, 0.0, options);
Gf.InputName = {'Va'};
Gf.OutputName = {'Vs', 'dL', 'z'};
Comparison in Figures fig:strut_effect_joint_comp_vs, fig:strut_effect_joint_comp_dl and fig:strut_effect_joint_comp_z.
Imperfection of the flexible joints has the largest impact on the transfer function from $V_a$ to $d_L$. However, it has relatively small impact on the transfer functions from $V_a$ to $V_s$ and to $z$.
Integral Force Feedback
Initialize the system
%% Initialize typical system
n_hexapod = struct();
n_hexapod.flex_bot = initializeBotFlexibleJoint('type', '2dof');
n_hexapod.flex_top = initializeTopFlexibleJoint('type', '3dof');
n_hexapod.actuator = initializeAPA('type', '2dof');
Plant Identification
%% Identify th edynamics
G = linearize(mdl, io, 0.0, options);
G.InputName = {'Va'};
G.OutputName = {'Vs', 'dL', 'z'};
%% IFF Plant (transfer function from u to taum)
Giff = G('Vs', 'Va');
Root Locus
%% Cut-off frequency of the LPF
wc = 2*pi*20;
Comparison with the experimental Data
%% Initialize Simscape data
n_hexapod.flex_bot = initializeBotFlexibleJoint('type', '4dof');
n_hexapod.flex_top = initializeTopFlexibleJoint('type', '4dof');
n_hexapod.actuator = initializeAPA('type', '2dof');
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage
io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs
%% Identification
Gs = exp(-s*Ts)*linearize(mdl, io, 0.0, options);
Gs.InputName = {'Va'};
Gs.OutputName = {'Vs', 'z'};
Function
initializeBotFlexibleJoint
- Initialize Flexible Joint
<<sec:initializeBotFlexibleJoint>>
Function description
function [flex_bot] = initializeBotFlexibleJoint(args)
% initializeBotFlexibleJoint -
%
% Syntax: [flex_bot] = initializeBotFlexibleJoint(args)
%
% Inputs:
% - args -
%
% Outputs:
% - flex_bot -
Optional Parameters
arguments
args.type char {mustBeMember(args.type,{'2dof', '3dof', '4dof'})} = '2dof'
args.kRx (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*5
args.kRy (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*5
args.kRz (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*260
args.kz (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*1e8
args.cRx (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.1
args.cRy (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.1
args.cRz (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.1
args.cz (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*1e2
end
Initialize the structure
flex_bot = struct();
Set the Joint's type
switch args.type
case '2dof'
flex_bot.type = 1;
case '3dof'
flex_bot.type = 2;
case '4dof'
flex_bot.type = 3;
end
Set parameters
flex_bot.kRx = args.kRx;
flex_bot.kRy = args.kRy;
flex_bot.kRz = args.kRz;
flex_bot.kz = args.kz;
flex_bot.cRx = args.cRx;
flex_bot.cRy = args.cRy;
flex_bot.cRz = args.cRz;
flex_bot.cz = args.cz;
initializeTopFlexibleJoint
- Initialize Flexible Joint
<<sec:initializeTopFlexibleJoint>>
Function description
function [flex_top] = initializeTopFlexibleJoint(args)
% initializeTopFlexibleJoint -
%
% Syntax: [flex_top] = initializeTopFlexibleJoint(args)
%
% Inputs:
% - args -
%
% Outputs:
% - flex_top -
Optional Parameters
arguments
args.type char {mustBeMember(args.type,{'2dof', '3dof', '4dof'})} = '2dof'
args.kRx (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*5
args.kRy (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*5
args.kRz (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*260
args.kz (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*1e8
args.cRx (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.1
args.cRy (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.1
args.cRz (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.1
args.cz (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*1e2
end
Initialize the structure
flex_top = struct();
Set the Joint's type
switch args.type
case '2dof'
flex_top.type = 1;
case '3dof'
flex_top.type = 2;
case '4dof'
flex_top.type = 3;
end
Set parameters
flex_top.kRx = args.kRx;
flex_top.kRy = args.kRy;
flex_top.kRz = args.kRz;
flex_top.kz = args.kz;
flex_top.cRx = args.cRx;
flex_top.cRy = args.cRy;
flex_top.cRz = args.cRz;
flex_top.cz = args.cz;
initializeAPA
- Initialize APA
<<sec:initializeAPA>>
Function description
function [actuator] = initializeAPA(args)
% initializeAPA -
%
% Syntax: [actuator] = initializeAPA(args)
%
% Inputs:
% - args -
%
% Outputs:
% - actuator -
Optional Parameters
arguments
args.type char {mustBeMember(args.type,{'2dof', 'flexible frame', 'flexible'})} = '2dof'
args.Ga (1,1) double {mustBeNumeric} = 0
args.Gs (1,1) double {mustBeNumeric} = 0
% For 2DoF
args.k (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.38e6
args.ke (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*1.75e6
args.ka (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*3e7
args.c (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*3e1
args.ce (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*2e1
args.ca (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*2e1
args.Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056
% Force Flexible APA
args.xi (1,1) double {mustBeNumeric, mustBePositive} = 0.5
% For Flexible Frame
args.ks (1,1) double {mustBeNumeric, mustBePositive} = 235e6
args.cs (1,1) double {mustBeNumeric, mustBePositive} = 1e1
end
Initialize Structure
actuator = struct();
Type
switch args.type
case '2dof'
actuator.type = 1;
case 'flexible frame'
actuator.type = 2;
case 'flexible'
actuator.type = 3;
end
Actuator/Sensor Constants
if args.Ga == 0
switch args.type
case '2dof'
actuator.Ga = -30.0;
case 'flexible frame'
actuator.Ga = 1; % TODO
case 'flexible'
actuator.Ga = 23.4;
end
else
actuator.Ga = args.Ga; % Actuator gain [N/V]
end
if args.Gs == 0
switch args.type
case '2dof'
actuator.Gs = 0.098;
case 'flexible frame'
actuator.Gs = 1; % TODO
case 'flexible'
actuator.Gs = -4674824;
end
else
actuator.Gs = args.Gs; % Sensor gain [V/m]
end
2DoF parameters
actuator.k = args.k; % [N/m]
actuator.ke = args.ke; % [N/m]
actuator.ka = args.ka; % [N/m]
actuator.c = args.c; % [N/(m/s)]
actuator.ce = args.ce; % [N/(m/s)]
actuator.ca = args.ca; % [N/(m/s)]
actuator.Leq = args.Leq; % [m]
Flexible frame and fully flexible
switch args.type
case 'flexible frame'
actuator.K = readmatrix('APA300ML_b_mat_K.CSV'); % Stiffness Matrix
actuator.M = readmatrix('APA300ML_b_mat_M.CSV'); % Mass Matrix
actuator.P = extractNodes('APA300ML_b_out_nodes_3D.txt'); % Node coordinates [m]
case 'flexible'
actuator.K = readmatrix('full_APA300ML_K.CSV'); % Stiffness Matrix
actuator.M = readmatrix('full_APA300ML_M.CSV'); % Mass Matrix
actuator.P = extractNodes('full_APA300ML_out_nodes_3D.txt'); % Node coordiantes [m]
end
actuator.xi = args.xi; % Damping ratio
actuator.ks = args.ks; % Stiffness of one stack [N/m]
actuator.cs = args.cs; % Damping of one stack [N/m]
generateSweepExc
: Generate sweep sinus excitation
<<sec:generateSweepExc>>
Function description
function [U_exc] = generateSweepExc(args)
% generateSweepExc - Generate a Sweep Sine excitation signal
%
% Syntax: [U_exc] = generateSweepExc(args)
%
% Inputs:
% - args - Optinal arguments:
% - Ts - Sampling Time - [s]
% - f_start - Start frequency of the sweep - [Hz]
% - f_end - End frequency of the sweep - [Hz]
% - V_mean - Mean value of the excitation voltage - [V]
% - V_exc - Excitation Amplitude for the Sweep, could be numeric or TF - [V]
% - t_start - Time at which the sweep begins - [s]
% - exc_duration - Duration of the sweep - [s]
% - sweep_type - 'logarithmic' or 'linear' - [-]
% - smooth_ends - 'true' or 'false': smooth transition between 0 and V_mean - [-]
Optional Parameters
arguments
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4
args.f_start (1,1) double {mustBeNumeric, mustBePositive} = 1
args.f_end (1,1) double {mustBeNumeric, mustBePositive} = 1e3
args.V_mean (1,1) double {mustBeNumeric} = 0
args.V_exc = 1
args.t_start (1,1) double {mustBeNumeric, mustBeNonnegative} = 5
args.exc_duration (1,1) double {mustBeNumeric, mustBePositive} = 10
args.sweep_type char {mustBeMember(args.sweep_type,{'log', 'lin'})} = 'lin'
args.smooth_ends logical {mustBeNumericOrLogical} = true
end
Sweep Sine part
t_sweep = 0:args.Ts:args.exc_duration;
if strcmp(args.sweep_type, 'log')
V_exc = sin(2*pi*args.f_start * args.exc_duration/log(args.f_end/args.f_start) * (exp(log(args.f_end/args.f_start)*t_sweep/args.exc_duration) - 1));
elseif strcmp(args.sweep_type, 'lin')
V_exc = sin(2*pi*(args.f_start + (args.f_end - args.f_start)/2/args.exc_duration*t_sweep).*t_sweep);
else
error('sweep_type should either be equal to "log" or to "lin"');
end
if isnumeric(args.V_exc)
V_sweep = args.V_mean + args.V_exc*V_exc;
elseif isct(args.V_exc)
if strcmp(args.sweep_type, 'log')
V_sweep = args.V_mean + abs(squeeze(freqresp(args.V_exc, args.f_start*(args.f_end/args.f_start).^(t_sweep/args.exc_duration), 'Hz')))'.*V_exc;
elseif strcmp(args.sweep_type, 'lin')
V_sweep = args.V_mean + abs(squeeze(freqresp(args.V_exc, args.f_start+(args.f_end-args.f_start)/args.exc_duration*t_sweep, 'Hz')))'.*V_exc;
end
end
Smooth Ends
if args.t_start > 0
t_smooth_start = args.Ts:args.Ts:args.t_start;
V_smooth_start = zeros(size(t_smooth_start));
V_smooth_end = zeros(size(t_smooth_start));
if args.smooth_ends
Vd_max = args.V_mean/(0.7*args.t_start);
V_d = zeros(size(t_smooth_start));
V_d(t_smooth_start < 0.2*args.t_start) = t_smooth_start(t_smooth_start < 0.2*args.t_start)*Vd_max/(0.2*args.t_start);
V_d(t_smooth_start > 0.2*args.t_start & t_smooth_start < 0.7*args.t_start) = Vd_max;
V_d(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) = Vd_max - (t_smooth_start(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) - 0.7*args.t_start)*Vd_max/(0.2*args.t_start);
V_smooth_start = cumtrapz(V_d)*args.Ts;
V_smooth_end = args.V_mean - V_smooth_start;
end
else
V_smooth_start = [];
V_smooth_end = [];
end
Combine Excitation signals
V_exc = [V_smooth_start, V_sweep, V_smooth_end];
t_exc = args.Ts*[0:1:length(V_exc)-1];
U_exc = [t_exc; V_exc];
generateShapedNoise
: Generate Shaped Noise excitation
<<sec:generateShapedNoise>>
Function description
function [U_exc] = generateShapedNoise(args)
% generateShapedNoise - Generate a Shaped Noise excitation signal
%
% Syntax: [U_exc] = generateShapedNoise(args)
%
% Inputs:
% - args - Optinal arguments:
% - Ts - Sampling Time - [s]
% - V_mean - Mean value of the excitation voltage - [V]
% - V_exc - Excitation Amplitude, could be numeric or TF - [V rms]
% - t_start - Time at which the noise begins - [s]
% - exc_duration - Duration of the noise - [s]
% - smooth_ends - 'true' or 'false': smooth transition between 0 and V_mean - [-]
Optional Parameters
arguments
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4
args.V_mean (1,1) double {mustBeNumeric} = 0
args.V_exc = 1
args.t_start (1,1) double {mustBeNumeric, mustBePositive} = 5
args.exc_duration (1,1) double {mustBeNumeric, mustBePositive} = 10
args.smooth_ends logical {mustBeNumericOrLogical} = true
end
Shaped Noise
t_noise = 0:args.Ts:args.exc_duration;
if isnumeric(args.V_exc)
V_noise = args.V_mean + args.V_exc*sqrt(1/args.Ts/2)*randn(length(t_noise), 1)';
elseif isct(args.V_exc)
V_noise = args.V_mean + lsim(args.V_exc, sqrt(1/args.Ts/2)*randn(length(t_noise), 1), t_noise)';
end
Smooth Ends
t_smooth_start = args.Ts:args.Ts:args.t_start;
V_smooth_start = zeros(size(t_smooth_start));
V_smooth_end = zeros(size(t_smooth_start));
if args.smooth_ends
Vd_max = args.V_mean/(0.7*args.t_start);
V_d = zeros(size(t_smooth_start));
V_d(t_smooth_start < 0.2*args.t_start) = t_smooth_start(t_smooth_start < 0.2*args.t_start)*Vd_max/(0.2*args.t_start);
V_d(t_smooth_start > 0.2*args.t_start & t_smooth_start < 0.7*args.t_start) = Vd_max;
V_d(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) = Vd_max - (t_smooth_start(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) - 0.7*args.t_start)*Vd_max/(0.2*args.t_start);
V_smooth_start = cumtrapz(V_d)*args.Ts;
V_smooth_end = args.V_mean - V_smooth_start;
end
Combine Excitation signals
V_exc = [V_smooth_start, V_noise, V_smooth_end];
t_exc = args.Ts*[0:1:length(V_exc)-1];
U_exc = [t_exc; V_exc];
generateSinIncreasingAmpl
: Generate Sinus with increasing amplitude
<<sec:generateSinIncreasingAmpl>>
Function description
function [U_exc] = generateSinIncreasingAmpl(args)
% generateSinIncreasingAmpl - Generate Sinus with increasing amplitude
%
% Syntax: [U_exc] = generateSinIncreasingAmpl(args)
%
% Inputs:
% - args - Optinal arguments:
% - Ts - Sampling Time - [s]
% - V_mean - Mean value of the excitation voltage - [V]
% - sin_ampls - Excitation Amplitudes - [V]
% - sin_freq - Excitation Frequency - [Hz]
% - sin_num - Number of period for each amplitude - [-]
% - t_start - Time at which the excitation begins - [s]
% - smooth_ends - 'true' or 'false': smooth transition between 0 and V_mean - [-]
Optional Parameters
arguments
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-4
args.V_mean (1,1) double {mustBeNumeric} = 0
args.sin_ampls double {mustBeNumeric, mustBePositive} = [0.1, 0.2, 0.3]
args.sin_period (1,1) double {mustBeNumeric, mustBePositive} = 1
args.sin_num (1,1) double {mustBeNumeric, mustBePositive, mustBeInteger} = 3
args.t_start (1,1) double {mustBeNumeric, mustBePositive} = 5
args.smooth_ends logical {mustBeNumericOrLogical} = true
end
Sinus excitation
t_noise = 0:args.Ts:args.sin_period*args.sin_num;
sin_exc = [];
for sin_ampl = args.sin_ampls
sin_exc = [sin_exc, args.V_mean + sin_ampl*sin(2*pi/args.sin_period*t_noise)];
end
Smooth Ends
t_smooth_start = args.Ts:args.Ts:args.t_start;
V_smooth_start = zeros(size(t_smooth_start));
V_smooth_end = zeros(size(t_smooth_start));
if args.smooth_ends
Vd_max = args.V_mean/(0.7*args.t_start);
V_d = zeros(size(t_smooth_start));
V_d(t_smooth_start < 0.2*args.t_start) = t_smooth_start(t_smooth_start < 0.2*args.t_start)*Vd_max/(0.2*args.t_start);
V_d(t_smooth_start > 0.2*args.t_start & t_smooth_start < 0.7*args.t_start) = Vd_max;
V_d(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) = Vd_max - (t_smooth_start(t_smooth_start > 0.7*args.t_start & t_smooth_start < 0.9*args.t_start) - 0.7*args.t_start)*Vd_max/(0.2*args.t_start);
V_smooth_start = cumtrapz(V_d)*args.Ts;
V_smooth_end = args.V_mean - V_smooth_start;
end
Combine Excitation signals
V_exc = [V_smooth_start, sin_exc, V_smooth_end];
t_exc = args.Ts*[0:1:length(V_exc)-1];
U_exc = [t_exc; V_exc];