svd-control/index.org
2020-09-17 18:35:07 +02:00

11 KiB

SVD Control

Simscape Model

Simulink

  open('gravimeter.slx')
  %% Name of the Simulink File
  mdl = 'gravimeter';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/F1'], 1, 'openinput');  io_i = io_i + 1;
  io(io_i) = linio([mdl, '/F2'], 1, 'openinput');  io_i = io_i + 1;
  io(io_i) = linio([mdl, '/F3'], 1, 'openinput');  io_i = io_i + 1;
  io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
  io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
  io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
  io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;

  G = linearize(mdl, io);
  freqs = logspace(-1, 2, 1000);

  figure;
  for in_i = 1:3
      for out_i = 1:4
          subplot(4, 3, 3*(out_i-1)+in_i);
          plot(freqs, abs(squeeze(freqresp(G(out_i,in_i)/s^2, freqs, 'Hz'))), '-');
          set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
      end
  end

/tdehaeze/svd-control/media/commit/c73578da26a6ef6935a11d4ae7cd06427cda2ad6/figs/open_loop_tf.png

Open Loop Transfer Function from 3 Actuators to 4 Accelerometers

Matlab Code

  clc;
  % close all

  g = 100000;

  w0 = 2*pi*.5; % MinusK BM1 tablle
  l = 0.5; %[m]
  la = 1; %[m]
  h = 1.7; %[m]
  ha = 1.7;% %[m]
  m = 400; %[kg]
  k = 15e3;%[N/m]
  kv = k;
  kh = 15e3;
  I = 115;%[kg m^2]
          % c = 0.06;
          % l = 0.4719; %[m]
          % la = .477; %[m]
          % h = 1.8973; %[m]
          % ha = 1.9060;% %[m]
          % m = 98.1421; %[kg]
          % k = 14512;%[N/m]
          % I = 28.5372;%[kg m^2]
  cv = 0.03;
  ch = 0.03;

  %% System definition
  [Fr, x1, z1, x2, z2, wx, wz, x12, z12, PHIwx, PHIwz,xsum,zsum,xdelta,zdelta,rot]...
      = modelGeneration(m,I,k,h,ha,l,la,cv,ch,kv,kh);

  %% Bode options
  P = bodeoptions;
  P.FreqUnits = 'Hz';
  P.MagUnits = 'abs';
  P.MagScale = 'log';
  P.Grid = 'on';
  P.PhaseWrapping = 'on';
  P.Xlim = [1e-1,1e2];
  %P.PhaseVisible = 'off';
  w = 2*pi*logspace(-1,2,1000);

  %% curves points
  % slide 4
  F_sl4 = [2e-1 4e-1 7e-1 1 2 3 5];
  Amp_sl4 = [ 1 2 4 2.5 1 7e-1 7e-1];
  F_sl4_phase = [2e-1 4e-1 7e-1 1 ];
  Phase_sl4 = (180/pi).*[0 0 -0.5 -1.7];

  %slide 6
  F_sl6 = [2e-1 4e-1 1 2 3 5];
  Amp_sl6 = [1 1 6e-1 2e-1 3e-1 3e-1];
  F_sl6_phase = [2e-1 4e-1 1 ];
  Phase_sl6 = (180/pi).*[0 0 0 ];

  %slide 9
  F_sl9 = [2.5e-1 4e-1 6e-1 1 1.7 2.2 3 5 10];
  Amp_sl9 = [3 6 1 5e-1 1 2 7e-1 2.5e-1 7e-2];
  Phase_sl9 = (180/pi)*[0 -1 -pi 0 -1 -1.5 -pi -pi -pi];

  % slide 14
  F_sl14 = [ 2e-1 4e-1 6e-1 8e-1 1 2 3 5 10];
  Amp_sl14 = [9e-1 1.5 1.2 0.35 .3 1.2 .3 .1 5e-2];
  F_sl14_phase = [ 2e-1 4e-1 6e-1 8e-1 ];
  Phase_sl14 = (180/pi).*[0 0 -1.7 -2];

  %rotation
  F_rot = [1e-1 2e-1 4e-1 5e-1 7e-1 1 2 3 6.5 10 20];
  Amp_rot = [7e-8 2.2e-7 3e-7 1e-7 2e-8 9e-9 3e-8 9e-9 1e-9 4e-10 8e-11];

  %% Plots
  % %slide 3
  % figure
  % loglog(Fr,abs(x2).^.5,Fr,abs(x1).^.5,Fr,abs(xsum).^.5,Fr,abs(xdelta).^.5)
  % xlabel('Frequency [Hz]');ylabel('Acceleration [m/s^2/rtHz]')
  % legend('Top sensor','Bottom sensor','Half sum','Half difference');
  % title('Horizontal')
  % xlim([7e-2 1e1]);

  %slide 4
  figure
  subplot 211
  loglog(Fr, abs(x12)./abs(x1));hold on;
  loglog(F_sl4,Amp_sl4,'*');
  xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
  title('X direction Top/bottom sensor');
  xlim([7e-2 1e1]);
  subplot 212
  semilogx(Fr, (180/pi).*angle(x12./abs(x1)));hold on;
  loglog(F_sl4_phase,Phase_sl4,'*');
  xlabel('Frequency [Hz]');ylabel('Phase [deg]');
  xlim([7e-2 1e1]);

  %slide 6
  figure
  subplot 211
  loglog(Fr, abs(z12)./abs(z1));hold on;
  loglog(F_sl6,Amp_sl6,'*');
  xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
  title('Z direction Top/bottom sensor');
  xlim([7e-2 1e1]);
  subplot 212
  semilogx(Fr, (180/pi).*angle(z12./abs(z1)));hold on;
  loglog(F_sl6_phase,Phase_sl6,'*');
  xlabel('Frequency [Hz]');ylabel('Phase [deg]');
  xlim([7e-2 1e1]);ylim([-180 180]);

  % %slide 6
  % figure
  % loglog(Fr,abs(z2).^.5,Fr,abs(z1).^.5,Fr,abs(zsum).^.5,Fr,abs(zdelta).^.5)
  % xlabel('Frequency [Hz]');ylabel('Acceleration [m/s^2/rtHz]')
  % legend('Top sensor','Bottom sensor','Half sum','Half difference');
  % title('Vertical')
  % xlim([7e-2 1e1]);

  %slide 9
  figure
  subplot 211
  loglog(Fr, abs(PHIwx)./abs(wx));hold on;
  loglog(F_sl9,Amp_sl9,'*');
  xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
  title('X direction bottom/ground sensor');
  xlim([7e-2 1e1]);
  ylim([0.01 10]);
  subplot 212
  semilogx(Fr, (180/pi).*angle(PHIwx./abs(wx)));hold on;
  loglog(F_sl9,Phase_sl9,'*');
  xlabel('Frequency [Hz]');ylabel('Phase [deg]');
  xlim([7e-2 1e1]);

  % %slide 8
  % figure
  % loglog(Fr,abs(wx).^.5,Fr,abs(x1).^.5,'-.',Fr,abs(x2).^.5,'.');
  % grid on;xlabel('Frequency [Hz]');
  % ylabel('ASD [m/s^2/rtHz]');
  % xlim([7e-2 1e1]);
  % legend('Ground','Bottom sensor','Top sensor');
  % title('Horizontal');
  %
  % %slide 13
  % figure
  % loglog(Fr,abs(wz).^.5,Fr,abs(z1).^.5,'-.',Fr,abs(z2).^.5,'.');
  % grid on;xlabel('Frequency [Hz]');
  % ylabel('ASD [m/s^2/rtHz]');
  % xlim([7e-2 1e1]);
  % legend('Ground','Bottom sensor','Top sensor');
  % title('Vertical');

  %slide 14
  figure
  subplot 211
  loglog(Fr, abs(PHIwz)./abs(wz));hold on;
  loglog(F_sl14,Amp_sl14,'*');
  xlabel('Frequency [Hz]');ylabel('Amplitude [-]');
  title('Z direction bottom/ground sensor');
  xlim([7e-2 1e1]);
  ylim([0.01 10]);
  subplot 212
  semilogx(Fr, (180/pi).*angle(PHIwz./abs(wz)));hold on;
  loglog(F_sl14_phase,Phase_sl14,'*');
  xlabel('Frequency [Hz]');ylabel('Phase [deg]');
  xlim([7e-2 1e1]);

  %rotation
  figure
  loglog(Fr,abs(rot).^.5./((2*pi*Fr').^2),F_rot,Amp_rot,'*');
  xlabel('Frequency [Hz]');ylabel('Rotation [rad/rtHz]')
  xlim([7e-2 1e1]);

Model Generation

  function [Fr, x1, z1, x2, z2, wx, wz, x12, z12, PHIwx, PHIwz,xsum,zsum,xdelta,zdelta,rot] = modelGeneration(m,I,k,h,ha,l,la,dampv,damph,kv,kh)
      %% generation of the state space model
      M = [m 0 0
           0 m 0
           0 0 I];

      %Jacobian of the bottom sensor
      Js1 = [1 0 h/2
             0 1 -l/2];
      %Jacobian of the top sensor
      Js2 = [1 0 -h/2
             0 1 0];

      %Jacobian of the actuators
      Ja = [1 0 ha/2 %Left horizontal actuator
                     %1 0 h/2 %Right horizontal actuator
            0 1 -la/2 %Left vertical actuator
            0 1 la/2]; %Right vertical actuator
      Jah = [1 0 ha/2];
      Jav = [0 1 -la/2 %Left vertical actuator
             0 1 la/2]; %Right vertical actuator
      Jta = Ja';
      Jtah = Jah';
      Jtav = Jav';
      K = kv*Jtav*Jav + kh*Jtah*Jah;
      C = dampv*kv*Jtav*Jav+damph*kh*Jtah*Jah;

      E = [1 0 0
           0 1 0
           0 0 1]; %projecting ground motion in the directions of the legs

      AA = [zeros(3) eye(3)
            -M\K -M\C];

      BB = [zeros(3,6)
            M\Jta M\(k*Jta*E)];

      CC = [[Js1;Js2] zeros(4,3);
            zeros(2,6)
            (Js1+Js2)./2 zeros(2,3)
            (Js1-Js2)./2 zeros(2,3)
            (Js1-Js2)./(2*h) zeros(2,3)];

      DD = [zeros(4,6)
            zeros(2,3) eye(2,3)
            zeros(6,6)];

      system_dec = ss(AA,BB,CC,DD);
      %input = three actuators and three ground motions
      %output = the bottom sensor; the top sensor; the ground motion; the half
      %sum; the half difference; the rotation

      %% Injecting ground motion in the system to have the output
      Fr = logspace(-2,3,1e3);
      w=2*pi*Fr*1i;
      %fit of the ground motion data in m/s^2/rtHz
      Fr_ground_x = [0.07 0.1 0.15 0.3 0.7 0.8 0.9 1.2 5 10];
      n_ground_x1 = [4e-7 4e-7 2e-6 1e-6 5e-7 5e-7 5e-7 1e-6 1e-5 3.5e-5];
      Fr_ground_v = [0.07 0.08 0.1 0.11 0.12 0.15 0.25 0.6 0.8 1 1.2 1.6 2 6 10];
      n_ground_v1 = [7e-7 7e-7 7e-7 1e-6 1.2e-6 1.5e-6 1e-6 9e-7 7e-7 7e-7 7e-7 1e-6 2e-6 1e-5 3e-5];

      n_ground_x = interp1(Fr_ground_x,n_ground_x1,Fr,'linear');
      n_ground_v = interp1(Fr_ground_v,n_ground_v1,Fr,'linear');
      % figure
      % loglog(Fr,abs(n_ground_v),Fr_ground_v,n_ground_v1,'*');
      % xlabel('Frequency [Hz]');ylabel('ASD [m/s^2 /rtHz]');
      % return

      %converting into PSD
      n_ground_x = (n_ground_x).^2;
      n_ground_v = (n_ground_v).^2;

      %Injecting ground motion in the system and getting the outputs
      system_dec_f = (freqresp(system_dec,abs(w)));
      PHI = zeros(size(Fr,2),12,12);
      for p = 1:size(Fr,2)
          Sw=zeros(6,6);
          Iact = zeros(3,3);
          Sw(4,4) = n_ground_x(p);
          Sw(5,5) = n_ground_v(p);
          Sw(6,6) = n_ground_v(p);
          Sw(1:3,1:3) = Iact;
          PHI(p,:,:) = (system_dec_f(:,:,p))*Sw(:,:)*(system_dec_f(:,:,p))';
      end
      x1 = PHI(:,1,1);
      z1 = PHI(:,2,2);
      x2 = PHI(:,3,3);
      z2 = PHI(:,4,4);
      wx = PHI(:,5,5);
      wz = PHI(:,6,6);
      x12 = PHI(:,1,3);
      z12 = PHI(:,2,4);
      PHIwx = PHI(:,1,5);
      PHIwz = PHI(:,2,6);
      xsum = PHI(:,7,7);
      zsum = PHI(:,8,8);
      xdelta = PHI(:,9,9);
      zdelta = PHI(:,10,10);
      rot = PHI(:,11,11);