Compare commits
	
		
			3 Commits
		
	
	
		
			96d036d936
			...
			c27d165390
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| c27d165390 | |||
| 2e7aacd9ed | |||
| 0b38138891 | 
							
								
								
									
										38
									
								
								index.org
									
									
									
									
									
								
							
							
						
						
									
										38
									
								
								index.org
									
									
									
									
									
								
							@@ -757,6 +757,10 @@ Definition of spring parameters
 | 
				
			|||||||
  cz = 0.025;
 | 
					  cz = 0.025;
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#+begin_src matlab
 | 
				
			||||||
 | 
					  g = 0;
 | 
				
			||||||
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
We load the Jacobian.
 | 
					We load the Jacobian.
 | 
				
			||||||
#+begin_src matlab
 | 
					#+begin_src matlab
 | 
				
			||||||
  load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
 | 
					  load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
 | 
				
			||||||
@@ -800,8 +804,8 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
 | 
				
			|||||||
  Gx.InputName  = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
 | 
					  Gx.InputName  = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
 | 
				
			||||||
                   'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
 | 
					                   'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Gl = J*G;
 | 
					  % Gl = J*G;
 | 
				
			||||||
  Gl.OutputName  = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};
 | 
					  % Gl.OutputName  = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};
 | 
				
			||||||
#+end_src
 | 
					#+end_src
 | 
				
			||||||
 | 
					
 | 
				
			||||||
** Obtained Dynamics
 | 
					** Obtained Dynamics
 | 
				
			||||||
@@ -930,13 +934,13 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  ax1 = subplot(2, 1, 1);
 | 
					  ax1 = subplot(2, 1, 1);
 | 
				
			||||||
  hold on;
 | 
					  hold on;
 | 
				
			||||||
  % plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_x/D_{w,x}$');
 | 
					  plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_x/D_{w,x}$');
 | 
				
			||||||
  % plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_y/D_{w,y}$');
 | 
					  plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_y/D_{w,y}$');
 | 
				
			||||||
  % plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Dwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_z/D_{w,z}$');
 | 
					  plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Dwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_z/D_{w,z}$');
 | 
				
			||||||
  set(gca,'ColorOrderIndex',1)
 | 
					  % set(gca,'ColorOrderIndex',1)
 | 
				
			||||||
  plot(freqs, abs(squeeze(freqresp(TR(1,1), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
					  % plot(freqs, abs(squeeze(freqresp(TR(1,1), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
				
			||||||
  plot(freqs, abs(squeeze(freqresp(TR(2,2), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
					  % plot(freqs, abs(squeeze(freqresp(TR(2,2), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
				
			||||||
  plot(freqs, abs(squeeze(freqresp(TR(3,3), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
					  % plot(freqs, abs(squeeze(freqresp(TR(3,3), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
				
			||||||
  hold off;
 | 
					  hold off;
 | 
				
			||||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
					  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
  ylabel('Transmissibility - Translations');  xlabel('Frequency [Hz]');
 | 
					  ylabel('Transmissibility - Translations');  xlabel('Frequency [Hz]');
 | 
				
			||||||
@@ -944,13 +948,13 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
  ax2 = subplot(2, 1, 2);
 | 
					  ax2 = subplot(2, 1, 2);
 | 
				
			||||||
  hold on;
 | 
					  hold on;
 | 
				
			||||||
  % plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Rwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_x/R_{w,x}$');
 | 
					  plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Rwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_x/R_{w,x}$');
 | 
				
			||||||
  % plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'Rwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_y/R_{w,y}$');
 | 
					  plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'Rwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_y/R_{w,y}$');
 | 
				
			||||||
  % plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Rwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_z/R_{w,z}$');
 | 
					  plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Rwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_z/R_{w,z}$');
 | 
				
			||||||
  set(gca,'ColorOrderIndex',1)
 | 
					  % set(gca,'ColorOrderIndex',1)
 | 
				
			||||||
  plot(freqs, abs(squeeze(freqresp(TR(4,4), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
					  % plot(freqs, abs(squeeze(freqresp(TR(4,4), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
				
			||||||
  plot(freqs, abs(squeeze(freqresp(TR(5,5), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
					  % plot(freqs, abs(squeeze(freqresp(TR(5,5), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
				
			||||||
  plot(freqs, abs(squeeze(freqresp(TR(6,6), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
					  % plot(freqs, abs(squeeze(freqresp(TR(6,6), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
				
			||||||
  hold off;
 | 
					  hold off;
 | 
				
			||||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
					  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
  ylabel('Transmissibility - Rotations');  xlabel('Frequency [Hz]');
 | 
					  ylabel('Transmissibility - Rotations');  xlabel('Frequency [Hz]');
 | 
				
			||||||
@@ -971,7 +975,7 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
 | 
				
			|||||||
** Real Approximation of $G$ at the decoupling frequency
 | 
					** Real Approximation of $G$ at the decoupling frequency
 | 
				
			||||||
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
 | 
					Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
 | 
				
			||||||
#+begin_src matlab
 | 
					#+begin_src matlab
 | 
				
			||||||
  wc = 2*pi*20; % Decoupling frequency [rad/s]
 | 
					  wc = 2*pi*30; % Decoupling frequency [rad/s]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ...
 | 
					  Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ...
 | 
				
			||||||
         {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
 | 
					         {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
 | 
				
			||||||
 
 | 
				
			|||||||
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							@@ -51,6 +51,8 @@ cx = 0.025; % [Nm/rad]
 | 
				
			|||||||
cy = 0.025;
 | 
					cy = 0.025;
 | 
				
			||||||
cz = 0.025;
 | 
					cz = 0.025;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					g = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
% We load the Jacobian.
 | 
					% We load the Jacobian.
 | 
				
			||||||
@@ -98,8 +100,8 @@ Gx = G*blkdiag(eye(6), inv(J'));
 | 
				
			|||||||
Gx.InputName  = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
 | 
					Gx.InputName  = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
 | 
				
			||||||
                 'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
 | 
					                 'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Gl = J*G;
 | 
					% Gl = J*G;
 | 
				
			||||||
Gl.OutputName  = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};
 | 
					% Gl.OutputName  = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
% Obtained Dynamics
 | 
					% Obtained Dynamics
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -218,13 +220,13 @@ figure;
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
ax1 = subplot(2, 1, 1);
 | 
					ax1 = subplot(2, 1, 1);
 | 
				
			||||||
hold on;
 | 
					hold on;
 | 
				
			||||||
% plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_x/D_{w,x}$');
 | 
					plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_x/D_{w,x}$');
 | 
				
			||||||
% plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_y/D_{w,y}$');
 | 
					plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_y/D_{w,y}$');
 | 
				
			||||||
% plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Dwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_z/D_{w,z}$');
 | 
					plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Dwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_z/D_{w,z}$');
 | 
				
			||||||
set(gca,'ColorOrderIndex',1)
 | 
					% set(gca,'ColorOrderIndex',1)
 | 
				
			||||||
plot(freqs, abs(squeeze(freqresp(TR(1,1), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
					% plot(freqs, abs(squeeze(freqresp(TR(1,1), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
				
			||||||
plot(freqs, abs(squeeze(freqresp(TR(2,2), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
					% plot(freqs, abs(squeeze(freqresp(TR(2,2), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
				
			||||||
plot(freqs, abs(squeeze(freqresp(TR(3,3), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
					% plot(freqs, abs(squeeze(freqresp(TR(3,3), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
				
			||||||
hold off;
 | 
					hold off;
 | 
				
			||||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
					set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
ylabel('Transmissibility - Translations');  xlabel('Frequency [Hz]');
 | 
					ylabel('Transmissibility - Translations');  xlabel('Frequency [Hz]');
 | 
				
			||||||
@@ -232,13 +234,13 @@ legend('location', 'northeast');
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
ax2 = subplot(2, 1, 2);
 | 
					ax2 = subplot(2, 1, 2);
 | 
				
			||||||
hold on;
 | 
					hold on;
 | 
				
			||||||
% plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Rwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_x/R_{w,x}$');
 | 
					plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Rwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_x/R_{w,x}$');
 | 
				
			||||||
% plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'Rwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_y/R_{w,y}$');
 | 
					plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'Rwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_y/R_{w,y}$');
 | 
				
			||||||
% plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Rwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_z/R_{w,z}$');
 | 
					plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Rwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_z/R_{w,z}$');
 | 
				
			||||||
set(gca,'ColorOrderIndex',1)
 | 
					% set(gca,'ColorOrderIndex',1)
 | 
				
			||||||
plot(freqs, abs(squeeze(freqresp(TR(4,4), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
					% plot(freqs, abs(squeeze(freqresp(TR(4,4), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
				
			||||||
plot(freqs, abs(squeeze(freqresp(TR(5,5), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
					% plot(freqs, abs(squeeze(freqresp(TR(5,5), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
				
			||||||
plot(freqs, abs(squeeze(freqresp(TR(6,6), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
					% plot(freqs, abs(squeeze(freqresp(TR(6,6), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
 | 
				
			||||||
hold off;
 | 
					hold off;
 | 
				
			||||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
					set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
				
			||||||
ylabel('Transmissibility - Rotations');  xlabel('Frequency [Hz]');
 | 
					ylabel('Transmissibility - Rotations');  xlabel('Frequency [Hz]');
 | 
				
			||||||
@@ -249,7 +251,7 @@ linkaxes([ax1,ax2],'x');
 | 
				
			|||||||
% Real Approximation of $G$ at the decoupling frequency
 | 
					% Real Approximation of $G$ at the decoupling frequency
 | 
				
			||||||
% Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
 | 
					% Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
wc = 2*pi*20; % Decoupling frequency [rad/s]
 | 
					wc = 2*pi*30; % Decoupling frequency [rad/s]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ...
 | 
					Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ...
 | 
				
			||||||
       {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
 | 
					       {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user