Better Matlab notations

This commit is contained in:
2020-11-09 14:37:04 +01:00
parent 292ba73fb1
commit e97a3d58ab
25 changed files with 1786 additions and 1666 deletions

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.3 KiB

After

Width:  |  Height:  |  Size: 6.6 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.9 KiB

After

Width:  |  Height:  |  Size: 6.9 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

After

Width:  |  Height:  |  Size: 9.6 KiB

View File

@@ -1,7 +1,7 @@
%!PS-Adobe-3.0 EPSF-3.0 %!PS-Adobe-3.0 EPSF-3.0
%%Creator: (MATLAB, The Mathworks, Inc. Version 9.9.0.1467703 \(R2020b\). Operating System: Linux) %%Creator: (MATLAB, The Mathworks, Inc. Version 9.9.0.1467703 \(R2020b\). Operating System: Linux)
%%Title: figs/simscape_model_decoupled_plant_jacobian.eps %%Title: figs/simscape_model_decoupled_plant_jacobian.eps
%%CreationDate: 2020-11-09T10:54:36 %%CreationDate: 2020-11-09T14:22:09
%%Pages: (atend) %%Pages: (atend)
%%BoundingBox: 1 1 335 299 %%BoundingBox: 1 1 335 299
%%LanguageLevel: 3 %%LanguageLevel: 3

View File

@@ -3,7 +3,7 @@
1 0 obj 1 0 obj
<< <<
/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D) /Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D)
/CreationDate (D:20201109105436+01'00') /CreationDate (D:20201109142208+01'00')
>> >>
endobj endobj
2 0 obj 2 0 obj
@@ -2044,7 +2044,7 @@ trailer
stream stream
xœ•Y Tו¾÷ß´’ЈE -,BÈìÈ Ø`ŒYmÀ`À€ÁÆ6Æ[/±c'Ncwq6OêIÜÄuO:M—ñIj»iÒæ4 M“œtšæLÛÔ3é“™“&Ažûÿâ$í,:<½ûÞÿþ÷î»Ûw¯5׿%¯Õe˜³i¶}Ó®–ÖÜÕ§ˆþ)µ_mžž`´ÀKÔÞŸÝ|ôUïN<> õþõ»?n¥÷÷ÑúšHØ(øhü4<C3BC>³G&vì>^¢¼Eã7h|||rS?à)ZËÒpÏDÿî)L€ëé}4¶líŸzgU0—ƘG¦&§wÜ:z€,‹ø|jûÐÔŸÚOÐ8Dã@<><6E>uŦoÍÑÎÓìy~†¿€/Á;ð¼Q¸<08>Á8 gà^¸&` ŒÀh‡Vh†<10>Z¨„rBü<>VYLöGþ=þåÏó{ùV^νÍÉÙ{“Me>a>`þ<>y™`º“…7ñ9<Šwà<>tâÛtætêÏà\ƒçà*|ž<>§á xœ•Y Tו¾÷ß´’ЈE -,BÈìÈ Ø`ŒYmÀ`À€ÁÆ6Æ[/±c'Ncwq6OêIÜÄuO:M—ñIj»iÒæ4 M“œtšæLÛÔ3é“™“&Ažûÿâ$í,:<½ûÞÿþ÷î»Ûw¯5׿%¯Õe˜³i¶}Ó®–ÖÜÕ§ˆþ)µ_mžž`´ÀKÔÞŸÝ|ôUïN<> õþõ»?n¥÷÷ÑúšHØ(øhü4<C3BC>³G&vì>^¢¼Eã7h|||rS?à)ZËÒpÏDÿî)L€ëé}4¶líŸzgU0—ƘG¦&§wÜ:z€,‹ø|jûÐÔŸÚOÐ8Dã@<><6E>uŦoÍÑÎÓìy~†¿€/Á;ð¼Q¸<08>Á8 gà^¸&` ŒÀh‡Vh†<10>Z¨„rBü<>VYLöGþ=þåÏó{ùV^νÍÉÙ{“Me>a>`þ<>y™`º“…7ñ9<Šwà<>tâÛtætêÏà\ƒçà*|ž<>§á
\¸xÎÃWá~¸NÂ1âf?ÌÂ4LOÄ<>ÈK9ña…0¯ \¸xÎÃWá~¸NÂ1âf?ÌÂ4LOÄ<>ÈK9ña…0¯
úd<EFBFBD>V“”˜ V)r™Às,ƒà¹Bú«³œ8a¯ÝÜîõ\ɨkÛw‡©´Sê*¤.ªÌëŒb<C592>æsS^<5E>þ¢Lž×ÿÂ<C3BF>(ØkŸBÖQki°ŒôFYõ–(Wgï· > úd<EFBFBD>V“”˜ V)r™Às,ƒà¹Bú«³œ8a¯ÝÜîõ\ɨkÛw‡©´Sê*¤.ªÌëŒb<C592>æsS^<5E>þ¢Lž×ÿÂ<C3BF>(ØkŸBÖQki°ŒôFYõ–(Wgï· >
<EFBFBD>hë°Òç)°¦w®é Îai‰ÊõýQhé°š£|ݲNsÿ`çÚ{¾ý¯æ|ûM:Ûý÷wïü»+yGmõÍ/¼\ýWiJ«3•z=ÏѵI <EFBFBD>hë°Òç)°¦w®é Îai‰ÊõýQhé°š£|ݲNsÿ`çÚ{¾ý¯æ|ûM:Ûý÷wïü»+yGmõÍ/¼\ýWiJ«3•z=ÏѵI
"“'ê£l]ÿh_¸¯Öë©·DY{ídøº]uöºvzåìµ)Q•xWÚ-¥~4ê·H|GkÌDd´Á<1C>tvFy{-m<>öÚÑ(c¯<63>ªóR¼KýHØëùh<>¿õl-1qE˃Ø[,O1ì‰Z{ûkH`¡¶Žh¨¯S<Ïë¡GuÚ:b·¼Ÿ×sÃ멎êó¼ÿtP{†ü*B¶žNí<YïYò-²m¾@ <1F>åP» §±üç "“'ê£l]ÿh_¸¯Öë©·DY{ídøº]uöºvzåìµ)Q•xWÚ-¥~4ê·H|GkÌDd´Á<1C>tvFy{-m<>öÚÑ(c¯<63>ªóR¼KýHØëùh<>¿õl-1qE˃Ø[,O1ì‰Z{ûkH`¡¶Žh¨¯S<Ïë¡GuÚ:b·¼Ÿ×sÃ멎êó¼ÿtP{†ü*B¶žNí<YïYò-²m¾@ <1F>åP» §±üç
Z£\C<>hÕ*jä;ê_$PK$ŸJJ¡ö2€†|L»Œõ:šÓE©}<00>LïéÉ· Z£\C<>hÕ*jä;ê_$PK$ŸJJ¡ö2€†|L»Œõ:šÓE©}<00>LïéÉ·

View File

@@ -1,7 +1,7 @@
%!PS-Adobe-3.0 EPSF-3.0 %!PS-Adobe-3.0 EPSF-3.0
%%Creator: (MATLAB, The Mathworks, Inc. Version 9.9.0.1467703 \(R2020b\). Operating System: Linux) %%Creator: (MATLAB, The Mathworks, Inc. Version 9.9.0.1467703 \(R2020b\). Operating System: Linux)
%%Title: figs/simscape_model_decoupled_plant_svd.eps %%Title: figs/simscape_model_decoupled_plant_svd.eps
%%CreationDate: 2020-11-09T10:54:33 %%CreationDate: 2020-11-09T14:22:01
%%Pages: (atend) %%Pages: (atend)
%%BoundingBox: 2 1 335 294 %%BoundingBox: 2 1 335 294
%%LanguageLevel: 3 %%LanguageLevel: 3

View File

@@ -1,7 +1,7 @@
%!PS-Adobe-3.0 EPSF-3.0 %!PS-Adobe-3.0 EPSF-3.0
%%Creator: (MATLAB, The Mathworks, Inc. Version 9.9.0.1467703 \(R2020b\). Operating System: Linux) %%Creator: (MATLAB, The Mathworks, Inc. Version 9.9.0.1467703 \(R2020b\). Operating System: Linux)
%%Title: figs/simscape_model_gershgorin_radii.eps %%Title: figs/simscape_model_gershgorin_radii.eps
%%CreationDate: 2020-11-09T10:54:30 %%CreationDate: 2020-11-09T14:21:55
%%Pages: (atend) %%Pages: (atend)
%%BoundingBox: 5 1 311 174 %%BoundingBox: 5 1 311 174
%%LanguageLevel: 3 %%LanguageLevel: 3

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 138 KiB

After

Width:  |  Height:  |  Size: 139 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.6 KiB

After

Width:  |  Height:  |  Size: 3.8 KiB

View File

@@ -1,7 +1,7 @@
%!PS-Adobe-3.0 EPSF-3.0 %!PS-Adobe-3.0 EPSF-3.0
%%Creator: (MATLAB, The Mathworks, Inc. Version 9.9.0.1467703 \(R2020b\). Operating System: Linux) %%Creator: (MATLAB, The Mathworks, Inc. Version 9.9.0.1467703 \(R2020b\). Operating System: Linux)
%%Title: figs/stewart_platform_simscape_cl_transmissibility.eps %%Title: figs/stewart_platform_simscape_cl_transmissibility.eps
%%CreationDate: 2020-11-09T10:52:45 %%CreationDate: 2020-11-09T14:25:02
%%Pages: (atend) %%Pages: (atend)
%%BoundingBox: 1 1 335 299 %%BoundingBox: 1 1 335 299
%%LanguageLevel: 3 %%LanguageLevel: 3

View File

@@ -3,7 +3,7 @@
1 0 obj 1 0 obj
<< <<
/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D) /Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D)
/CreationDate (D:20201109105244+01'00') /CreationDate (D:20201109142501+01'00')
>> >>
endobj endobj
2 0 obj 2 0 obj
@@ -2111,27 +2111,32 @@ U
Ó:ÄÄ Ó:ÄÄ
ûáš(Å…˜uœî­QK<ÁFËx© ¤ñ<C2A4>î}ScéÏJ@üc\º8,‰£€iÓzï"54ă)Ñ+Kް0<C2B0>;;@:3½XâõÁ; 5 rŒÞUëãœjÅzû‡Øé ,ù9Â@x‡˧¬†VÝ®W`Åâ!Šª‡U©Y«šV[éT#r™<} ûáš(Å…˜uœî­QK<ÁFËx© ¤ñ<C2A4>î}ScéÏJ@üc\º8,‰£€iÓzï"54ă)Ñ+Kް0<C2B0>;;@:3½XâõÁ; 5 rŒÞUëãœjÅzû‡Øé ,ù9Â@x‡˧¬†VÝ®W`Åâ!Šª‡U©Y«šV[éT#r™<}
çÃm©1A0Tm_¥<C2A5>Ã`Ot3CÞ7“”Oýp¸™Ùþˆ¶ÃÍÛâõ7c‰§žÛ?áfc/âõ7ã᎜‡¶ÀÍ2_þfÊÊ6Ë:6ж³Í2óyÿÌ6Ëôòlƒ‰¶²Íø²ú"l3„ÝU×¶Yjb$cÒÊ6Sc.ý±<C3BD>m6ê^l3%vhád¥«,ôd±*TÓ“m8ž«sàÁ6KzŠ_´<5F>mÆÅ­>ÙftföúmEÕéd!K°)âdq¡Ý\Òë€Ôñû@<E280BA>kyFáO)ªŸç†6ãâ¹€h3Ÿˆñm†+Iæû ÍÀiç:Ðf\Ñèvq;Úl˜å½N´Y`®-/íA6£f-C[ÉfØIL1m%qñjÅz<C385>Íp#{PSâƒlFŸ<46>jW°“ͺHuöë<C3B6>lÆ=`ô¦<C3B4>læy¾[ûäA6ãé<C3A3>¬<EFBFBD>î ›Ñ¸%©wèA6ãªê y€Í4]÷¦­`3Ö•™7ü6s˜°Ôíáþ5³ÑÝÁf|¾ÙÏm`3DJxžÁf“%Ë6C‡DÌ¥.´;ØŒKòÁÆœl¦g Õ«tѳu <0C>;Øì2´<C2B4>`³$Ö÷nh ØŒ£#LÑ6°§z]<5D>8¸f‰GK?¶pÍÊk­áëäšÕ2È ;Ù,1Z²®·³Í¨¹â©l¡iÁ¹ºwï|3ÄYGâpÔÜúqFŠUÔÂërF˦<>&-<2D>3Ì$]×8Æ+nm“ngœñá4C/ìŒ3bU}t<>Œ3õDQ÷Ý<C3B7>qÆsÂvÊ÷`œ!Rj£+ìŒ3Ú1—<31> Ú)eüØ8K<¥ªv<C2AA>;âŒCÙá$]­ çÃm©1A0Tm_¥<C2A5>Ã`Ot3CÞ7“”Oýp¸™Ùþˆ¶ÃÍÛâõ7c‰§žÛ?áfc/âõ7ã᎜‡¶ÀÍ2_þfÊÊ6Ë:6ж³Í2óyÿÌ6Ëôòlƒ‰¶²Íø²ú"l3„ÝU×¶Yjb$cÒÊ6Sc.ý±<C3BD>m6ê^l3%vhád¥«,ôd±*TÓ“m8ž«sàÁ6KzŠ_´<5F>mÆÅ­>ÙftföúmEÕéd!K°)âdq¡Ý\Òë€Ôñû@<E280BA>kyFáO)ªŸç†6ãâ¹€h3Ÿˆñm†+Iæû ÍÀiç:Ðf\Ñèvq;Úl˜å½N´Y`®-/íA6£f-C[ÉfØIL1m%qñjÅz<C385>Íp#{PSâƒlFŸ<46>jW°“ͺHuöë<C3B6>lÆ=`ô¦<C3B4>læy¾[ûäA6ãé<C3A3>¬<EFBFBD>î ›Ñ¸%©wèA6ãªê y€Í4]÷¦­`3Ö•™7ü6s˜°Ôíáþ5³ÑÝÁf|¾ÙÏm`3DJxžÁf“%Ë6C‡DÌ¥.´;ØŒKòÁÆœl¦g Õ«tѳu <0C>;Øì2´<C2B4>`³$Ö÷nh ØŒ£#LÑ6°§z]<5D>8¸f‰GK?¶pÍÊk­áëäšÕ2È ;Ù,1Z²®·³Í¨¹â©l¡iÁ¹ºwï|3ÄYGâpÔÜúqFŠUÔÂërF˦<>&-<2D>3Ì$]×8Æ+nm“ngœñá4C/ìŒ3bU}t<>Œ3õDQ÷Ý<C3B7>qÆsÂvÊ÷`œ!Rj£+ìŒ3Ú1—<31> Ú)eüØ8K<¥ªv<C2AA>;âŒCÙá$]­
mAœ¡ûàÞåAM[g´g‰ä-k:g<ÅVÌ$xgœáY mAœ¡ûàÞåAM[g´g‰ä-k:g<ÅVÌ$xgœáY
£Ïr¸y¬ÅzåŒF.­‡ñS æ,…`qÓŽ9£ß£ùƒ˜³8ò¸×‰9ãÑ“¢¥»æLÎÚŒ+ß0gég1e<31>œÑB(¯r hRµriÀ¨gfÈYä±Àn0¶
r<16>œfÚ <39>ŽdÒ¨ö,¯¡ZÔ±CÎètc{䌫…-ë·CÎ" ƒ»Ú9c”$n¯rYkÔE|ƒœÑ?®ë²Â9Ã+ª r<16>œfÚ <39>ŽdÒ¨ö,¯¡ZÔ±CÎètc{䌫…-ë·CÎ" ƒ»Ú9c”$n¯rYkÔE|ƒœÑ?®ë²Â9Ã+ª
¯rÆÝ ¾ð¢m<C2A2>3†¤)mƒœÅÛ=à€œÑ`¹iÑê9 ô<>Ý!gËÀ9l”³À ¯rÆÝ ¾ð¢m<C2A2>3†¤)mƒœÅÛ=à€œÑ`¹iÑê9 ô<>Ý!gËÀ9l”³À
w#&í˜3|®Hƒrèà§Õ䌅öÁ¸G;äŒE{.Ú#ß gá:&u0ÎXLæÇmÞgô ¡¨h+ãLp/iaœ-Wl¦-Œ3ÚŽ jÁÎ8£Ý1¯i ã ?Æ:XoÚÂ8 R¹¥ýggœy¶RcŸƒqÆ.o B㌼Ûù:gžV ú¢ìˆ3.n$­.9gÜQtZ<74>y Î<­¤ w#&í˜3|®Hƒrèà§Õ䌅öÁ¸G;äŒE{.Ú#ß gá:&u0ÎXLæÇmÞgô ¡¨h+ãLp/iaœ-Wl¦-Œ3ÚŽ jÁÎ8£Ý1¯i ã ?Æ:XoÚÂ8 R¹¥ýggœy¶RcŸƒqÆ.o B㌼Ûù:gžV ú¢ìˆ3.n$­.9gÜQtZ<74>y Î<­¤
̲#Îøöv{ ̲#Îøöv{
;âŒ%Í9ê­ÞgžËý<03>¶!Î<Å4¤…pFëù nÒz±áŒ>8Ùøºy#œ¹Î0ëòx­¢¼6™cbVtºØ gt°qF/Ú gJ¥ÒÅl!œ9$MMÁÂç-—¬™áŒ.Ÿí)l„3©Ÿ´Ôp#œ¡…zæ÷uÎt%ÂØuáŒÝ5*âbœñ<C593>VâNÊø± p&K4ÍvO6Àm3x_ó„pF#šÌ8'™6ι^tÕ»9ÎhR“éb:(fáŒ[áZzbÚD8cõ1S2ÿ@8c®qG$+á,ȹ‚^ óµÎh`ƒˆº\Ô´‰pFdRZܹÎh`ƒ~gȧ•p& ;âŒ%Í9ê­ÞgžËý<03>¶!Î<Å4¤…pFëù nÒz±áŒ>8Ùøºy#œ¹Î0ëòx­¢¼6™cbVtºØ gt°qF/Ú gJ¥ÒÅl!œ9$MMÁÂç-—¬™áŒ.Ÿí)l„3©Ÿ´Ôp#œ¡…zæ÷uÎt%ÂØuáŒÝ5*âbœñ<C593>VâNÊø± p&K4ÍvO6Àm3x_ó„pF#šÌ8'™6ι^tÕ»9ÎhR“éb:(fáŒ[áZzbÚD8cõ1S2ÿ@8c®qG$+á,ȹ‚^ óµÎh`ƒˆº\Ô´‰pFdRZܹÎh`ƒ~gȧ•p&
V<11>ŸgA V<11>ŸgA
V<11>ŸgA ‰Yæ#ÚB8 Ÿº·aß·ÎxBœžë}üÜD8wj¼Ù•pFsã´¼vÂ<19>m¤|í„3îøH-Íá,|ꂱ<06>+áŒG™Jðî‰p>ï1nåÑUÂg+AÝøfRöIüÔßLœÔ“êäµò͸#³weáaÆ Wì¦M|3¸<C2AC>î<EFBFBD>oF{yÝ£iߌyhAqýÜÄ7 b!3<02>™oÆ]úĪ÷bÊÄ7 ²
‰Yæ#ÚB8 Ÿº·aß·ÎxBœžë}üÜD8wj¼Ù•pFsã´¼vÂ<19>m¤|í„3îøH-Íá,|ꂱ<06>+áŒG™Jðî‰p>ï1nåÑUÂg+AÝøfRöIüÔßLœÔ“êäµò͸#³weáaÆ Wì¦M|3¸<C2AC>î<EFBFBD>oF{yÝ£iߌyhAqýÜÄ7 b!3<02>™oÆ]úĪ÷bÊÄ7 ² k&
k& ßLÎ{Ñ‚çä›±²“pFg߯…¤nÚEª\Ȧ¶ÎÈ[qi0OVÀÏâ”áâ²ÎÂìѺÎh5WY¬3àgàŒö<<3C>ÓÐø¹pÆ}J.èzá
ßLÎ{Ñ‚çä›±²“pFg߯…¤nÚEª\Ȧ¶ÎÈ[qi0OVÀÏâ”áâ²ÎÂìѺÎh5WY¬3àgàŒö<<3C>ÓÐø¹pÆ}J.èzá 8c…h(ÙßpÆ"¥Z¸.cÚ8 ² ,5º¯pd ?D…M®€3ºü_¥¾àL¾\½8^;àL2>
8c…h(ÙßpÆ"¥Z¸.cÚ8 ² ,5º¯pd ?D…M®€3ºü_¥¾àL¾\½8^;àL2> zº—å³T”™4ÑÍè)k<59>nxvÿêå+Ý,|êÁz7ÈgÝ,ÜÀŽ×Ž7»ÏÙ¿vº+†d'!™6ÑÍè”.BåJ7 â•Ñu£wÃ1ÎðÌÐMšèfAÎWŒé•nF/C¾Ev—'ºÍ…¸|¡ÉùJ7#¸]Nuvq Þ,Èïf0ùoFËRެe`Ñ&¼M‰:mà¦lÂñ¶yµÑ͸h<C2B8>‡_ÉJ7“z׿´¬n£
zº—å³T”™4ÑÍè)k<59>nxvÿêå+Ý,|êÁz7ÈgÝ,ÜÀŽ×Ž7»ÏÙ¿vº+†d'!™6ÑÍè”.BåJ7 â•Ñu£wÃ1ÎðÌÐMšèfAÎWŒé•nF/C¾Ev—'ºÍ…¸|¡ÉùJ7#¸]Nuvq Þ,Èïf0ùoFËRެe`Ñ&¼M‰:mà¦lÂñ¶yµÑ͸h<C2B8>‡_ÉJ7“z׿´¬n£ <EFBFBD>î~Ì&º™—Ù<ëÅ<>nÆyŠGtqyÐj¯_;ÝŒ'"Ù'/*ÚD7ó³ÄF7Ó­Ôl)ËB7cDÊÂÜ Š6Ñ͸ <>5s¡ñ ü<>ðYéfžç‰uJ¦Mt3/Ö–#8ZéfR¬nµ8ÜŒ%<1iAáÆ6óâÄÝÕÄn…Ñ÷ }ŸW¸K£âE]áf\_BwíÚ%W¸ùgŠLàfôYKR7cK3'ö<>nF²Æ<>Þèf<uVœ¡fW¸™Ñ0=ž½ÁͼÅä«_;ÜŒ>,èïp3nÈ. ˜4Á͘×\Ǻ7¸÷¼Tؘ6ÁͼØ<gõÇÜàf^Ø:Ñö÷V¸™—9?ªú7ó²¶:6_V¸Ï”s3ÚØf^ÈÞ–&W¶϶Qv»±Í<<3C>*<2A>
<EFBFBD>î~Ì&º™—Ù<ëÅ<>nÆyŠGtqyÐj¯_;ÝŒ'"Ù'/*ÚD7ó³ÄF7Ó­Ôl)ËB7cDÊÂÜ Š6Ñ͸ <>5s¡ñ ü<>ðYéfžç‰uJ¦Mt3/Ö–#8ZéfR¬nµ8ÜŒ%<1iAáÆ6óâÄÝÕÄn…Ñ÷ }ŸW¸K£âE]áf\_BwíÚ%W¸ùgŠLàfôYKR7cK3'ö<>nF²Æ<>Þèf<uVœ¡fW¸™Ñ0=ž½ÁͼÅä«_;ÜŒ>,èïp3nÈ. ˜4Á͘×\Ǻ7¸÷¼Tؘ6ÁͼØ<gõÇÜàf^Ø:Ñö÷V¸™—9?ªú7ó²¶:6_V¸Ï”s3ÚØf^ÈÞ–&W¶϶Qv»±Í<<3C>*<2A> Ú×-l3Φ¸C`Å™mæ?• LšÐf\Ý š}½v´<19>üúpnÝÐfôÑ"Ëe ÚÌ‹•/MßD[Ðf¶ò/6¡ÍmKýìÀžMh³û<äk#ÉYÚk<C39A>q%yV&9½ôÚÉftôêr¬ùµƒÍ¼œsb6ã«<C3A3>»¥L™lÆ\œõ±šã¬`3ž”¾œÌ6°™Ø‡±<)˜6<CB9C>ÍhX…g¬• ØŒµÛÌ^µk­`3Ï}u7|í`3(r»Z©R ØLÜÊXüâMÈfÔ˜y©]ÙJ6ã™ ñh~ ÉòŸí†n`3:24ݼ~í`3jž!ôø¹ lFã´$†à¢-`3Oa.omQ ÉVà6° ÿ'ÒÂ5£„A¥þ*Î\3¯¾v®5Ö{è<>-X3«ñ𾺠­X3j¤ä¡MX3/•'½QkÁš1ÔÆS6"ÁŠ5óò2v£Ä-T3‰ÐC4Ç•jFͺõk§šQc] Z@®T3Ñ.˜ÎJ5
Ú×-l3Φ¸C`Å™mæ?• LšÐf\Ý š}½v´<19>üúpnÝÐfôÑ"Ëe ÚÌ‹•/MßD[Ðf¶ò/6¡ÍmKýìÀžMh³û<äk#ÉYÚk<C39A>q%yV&9½ôÚÉftôêr¬ùµƒÍ¼œsb6ã«<C3A3>»¥L™lÆ\œõ±šã¬`3ž”¾œÌ6°™Ø‡±<)˜6<CB9C>ÍhX…g¬• ØŒµÛÌ^µk­`3Ï}u7|í`3(r»Z©R ØLÜÊXüâMÈfÔ˜y©]ÙJ6ã™ ñh~ ÉòŸí†n`3:24ݼ~í`3jž!ôø¹ lFã´$†à¢-`3Oa.omQ ÉVà6° ÿ'ÒÂ5£„A¥þ*Î\3¯¾v®5Ö{è<>-X3«ñ𾺠­X3j¤ä¡MX3/•'½QkÁš1ÔÆS6"ÁŠ5óò2v£Ä-T3‰ÐC4Ç•jFͺõk§šQc] Z@®T3Ñ.˜ÎJ5 ·ÅúB5<13>/§7í¢šIK´FýµcÍÄ-S€}Û5£v<C2A3>íØ°fþ†î¼v¬o4¦2ã“­X³í-X3qUàú<C3A0>¢œ®ßÊiæšQ⾟šV¯\3¾~²¢=Øe׌ZÏE "+ÖŒ/;RÀiÖŒ(^ŠkÆŽ'¶ŽC°fÒaõ(ïkÇš±Ÿ«—¬h ÖŒãCÁ“T_þkÆq¥¨?èkÇšq¨*´Óß¹`ÍdˆëÃò~ÅšqhdÒòlšq¸å©_µC]±f^<16>»Æ[ÖŒÃ;W¥ŠIÕŒó½Pµ+¬T3N3WT¸aÍ8=ñ|Jȳ kæÅ„£å><3E>g7ÖŒó¤¿vª‡W.ÝÖª§åÞݬ-T3Nõ-ëú•jÆiÕÌ*­À<C2AD>Ÿ¨fþFa½vªML/dÄ5ãŽ+«íž,P3FbbS8ÀeÔÌKÝo…iÔŒQ!rÄb@­jæ…šE$®h ÔŒ¦<E28093>e…Þ´ jF3;TWÖjÆ¥Aº<41>_x²jFsULáæMºRÍÑë6§iÕŒYS.5_©f^r%çŒç¶`ͼTo²k&mÆ`a ®´ªùÁyZ±fŒrÅcüÜ<C3BC>5“t‰õ <20>6a͈Öá¹ kæŒ5cJÌ8Ôk Ö,°ÄˆõC°fÌÜ<C38C>¼õÚ±f¬ŠG&êž°f\{ ŸŽ9+ÖŒKÜ@žMX3ÌpyØ(w ÖLVkšù^mX3ÖŸ3iP‡ØkÆ…(:)wnášqS<5õë®×Ù,}yí\3æ¡\—°pÍ<C38D>0SU?õ•kFspÜ¥¦#ÄÊ5“ÅU=ùøÚ¹f²ÐKú߀—Ý\³pW¸½v®™xútŸÜÐ&®™¸æ_“<5F>k&1#ÇÁ.[¸JZôqpÍÒfø¼sÍ<Ï.—Á.[°f<È0p ׌u;V8ypÍX=_ã¥-\³H·>#Ðn\3®¹j-Ù¸f,)Z1qrÍX_¯Ÿ[ÀfÜëkšÈ`3ÜysL[ÀfÈ\¨v£7°‹•«¡}v°RÌ4ÑŽxÊxß×,qÉ·Øñ®<C3B1>k˜ ¶n@ºkFÞYŠ
·ÅúB5<13>/§7í¢šIK´FýµcÍÄ-S€}Û5£v<C2A3>íØ°fþ†î¼v¬o4¦2ã“­X³í-X3qUàú<C3A0>¢œ®ßÊiæšQ⾟šV¯\3¾~²¢=Øe׌ZÏE "+ÖŒ/;RÀiÖŒ(^ŠkÆŽ'¶ŽC°fÒaõ(ïkÇš±Ÿ«—¬h ÖŒãCÁ“T_þkÆq¥¨?èkÇšq¨*´Óß¹`ÍdˆëÃò~ÅšqhdÒòlšq¸å©_µC]±f^<16>»Æ[ÖŒÃ;W¥ŠIÕŒó½Pµ+¬T3N3WT¸aÍ8=ñ|Jȳ kæÅ„£å><3E>g7ÖŒó¤¿vª‡W.ÝÖª§åÞݬ-T3Nõ-ëú•jÆiÕÌ*­À<C2AD>Ÿ¨fþFa½vªML/dÄ5ãŽ+«íž,P3FbbS8ÀeÔÌKÝo…iÔŒQ!rÄb@­jæ…šE$®h ÔŒ¦<E28093>e…Þ´ jF3;TWÖjÆ¥Aº<41>_x²jFsULáæMºRÍÑë6§iÕŒYS.5_©f^r%çŒç¶`ͼTo²k&mÆ`a ®´ªùÁyZ±fŒrÅcüÜ<C3BC>5“t‰õ <20>6a͈Öá¹ kæŒ5cJÌ8Ôk Ö,°ÄˆõC°fÌÜ<C38C>¼õÚ±f¬ŠG&êž°f\{ ŸŽ9+ÖŒKÜ@žMX3ÌpyØ(w ÖLVkšù^mX3ÖŸ3iP‡ØkÆ…(:)wnášqS<5õë®×Ù,}yí\3æ¡\—°pÍ<C38D>0SU?õ•kFspÜ¥¦#ÄÊ5“ÅU=ùøÚ¹f²ÐKú߀—Ý\³pW¸½v®™xútŸÜÐ&®™¸æ_“<5F>k&1#ÇÁ.[¸JZôqpÍÒfø¼sÍ<Ï.—Á.[°f<È0p ׌u;V8ypÍX=_ã¥-\³H·>#Ðn\3®¹j-Ù¸f,)Z1qrÍX_¯Ÿ[ÀfÜëkšÈ`3ÜysL[ÀfÈ\¨v£7°‹•«¡}v°RÌ4ÑŽxÊxß×,qÉ·Øñ®<C3B1>k˜ ¶n@ºkFÞYŠ ]±f<£<>§ñˆ5#É´÷C°f<§ŸÔMÿµcÍä9â«Ãà“ÝX³$,_óKÙ°f<ZÎuµÇ^±fIöÍïeÚ%nb¨ËkÇšÑUžóÃ…<°fY¨vÿÎ kFK_>p%U-T3úrÞèk3Ö, ÿ'˜÷Š5ËRД)¿a͘þûËyzÅšeNëÞÛkÇšåO-îUÂÁŠ5£¹p+ÖLÜÕÃnX3Y
]±f<£<>§ñˆ5#É´÷C°f<§ŸÔMÿµcÍä9â«Ãà“ÝX³$,_óKÙ°f<ZÎuµÇ^±fIöÍïeÚ%nb¨ËkÇšÑUžóÃ…<°fY¨vÿÎ kFK_>p%U-T3úrÞèk3Ö, ÿ'˜÷Š5ËRД)¿a͘þûËyzÅšeNëÞÛkÇšåO-îUÂÁŠ5£¹p+ÖLÜÕÃnX3Y /³yíX3<58>tZWÖà5#«·+Ù3_°fôƒìb<C3AC> 0íÆšq<>7ˆ
/³yíX3<58>tZWÖà5#«·+Ù3_°fôƒìb<C3AC> 0íÆšq<>7ˆ kVxV<EFBFBD>GN´ ÖŒ&¶ÈüÚ±fìŸ<Ì fð+ÖŒö“É™aÒ†5ã#yÒV­X3öóžèd¿bÍXA¯4|ÁšÉáju<6A>~íX3´ ÅW4´‰kÆ`6ñ|²‰kF«fn&
kVxV<EFBFBD>GN´ ÖŒ&¶ÈüÚ±fìŸ<Ì fð+ÖŒö“É™aÒ†5ã#yÒV­X3öóžèd¿bÍXA¯4|ÁšÉáju<6A>~íX3´ ÅW4´‰kÆ`6ñ|²‰kF«fn& äÙ„5cÉRÅ6<C385>gÖ¬ÎfÐÖŒ‡<nðn^°f4ÑäÙ6´kƹ}FOËmX³öi¢X3¡Zq³²™6aÍäX¾+æ´ž¬q,æjC¸f ô˜ÊkÇšÑʉ·ZÀ•kÖùê7[<Z¹f<ŠR¬hÚ‰GM—
äÙ„5cÉRÅ6<C385>gÖ¬ÎfÐÖŒ‡<nðn^°f4ÑäÙ6´kƹ}FOËmX³öi¢X3¡Zq³²™6aÍäX¾+æ´ž¬q,æjC¸f ô˜ÊkÇšÑʉ·ZÀ•kÖùê7[<Z¹f<ŠR¬hÚ‰GM— ׎5£C5­ذfòŒyhÐ6a͸îÄÓÈ´k&ÖQú(E±fÄrÑ8hª³`ÍX'À*s¬Y¬Á±äD´ÆwZ%³r͈óãäkåš±¼@J Ý€—]\³"Yø°=^¹f…n¨…ãÇn®Yá«èõÄôkãšñþÅsõƒyvsÍŠ •kFz#wýºkF÷«Ì0í¯ Ö¬Èª6k<36>ƒiÖŒ'ši«î<C2AB>Ñ5cÍŠ,x³xth7Ö¬pQ#¡î<C2A1>¯X³"ÇæxREQU3Ö¬ÈCéÝš9cÍX ᜆ–¯
׎5£C5­ذfòŒyhÐ6a͸îÄÓÈ´k&ÖQú(E±fÄrÑ8hª³`ÍX'À*s¬Y¬Á±äD´ÆwZ%³r͈óãäkåš±¼@J Ý€—]\³"Yø°=^¹f…n¨…ãÇn®Yá«èõÄôkãšñþÅsõƒyvsÍŠ •kFz#wýºkF÷«Ì0í¯ Ö¬Èª6k<36>ƒiÖŒ'ši«î<C2AB>Ñ5cÍŠ,x³xth7Ö¬pQ#¡î<C2A1>¯X³"ÇæxREQU3Ö¬ÈCéÝš9cÍX ᜆ–¯ kV«WF¸`ÍŠóÐㄯkFŽžž,˽6¬YëJ\¬Æ Ö¬ÐµŠ“»i7ÖLj.BÓEî•jVäìpó_©f,ÇÀ»žB\ª‰øðT“n¬­½,QmÆš©„êÑVm¬YáªHˆÔkÚñ«Ûå¸bÍèV™._ȳk&%Ä»÷<C2BB><»±fEæ^;F¼RÍhfæ¦ÝT³ÂÚ*#Òe¥…jVd¡%ZßZ f, Ap„^¨<>n†šÑcŒöß¾ 톚±hDÔŸP3^*"ój°ÄjFÿ1vÊnÊ<6E><20>&!<21>H3ž™/ZñÚˆf¬4)bè}ÍŠœq²$üÚˆf<jÏ£G¶ºÍŠ«³/tÍxóp`gš±D¥Ø¾ÉkšñÆ¢W9ÃqÎ@3š<33>Uòu¢)7ÏŒÕ+²ä§ýá™ñK³ìæ™Ñ­k!½i7ÏŒ•-Žs¡Î# ÏŒDŽŽÆ¡Ý<3ñHãB¼±Õfž™ø\Å3 ÏŒî´ñbÝ<3ú§Ù×׆3£û'Z-Z[qfu]<5D>Ypf,aiA¹´gÆbþ=Ÿ³âÌø<C38C>C»8a ÎŒÎk‰×àwÎŒnE7ûDšqf•»•dY™rÃ̪øZKFlÚ
3c…M )½&9 ÌŒï<06>ØÄs<C384>™‰]9óú} Ì ×V2ôÚ`fUݸC¸ˆeÌŒ¶ Mºaf,Îárs6<73>Ö 8©íÐk£™ñ•b—Ú…¬43î°ìÒkÖ»ÐÌøº±0ÍVÔšm6ñp¬i7ÍŒ&p,±5<C2B1>gƪžìÕ°üµáÌø26/0¦Ý@³*\¨ª¦Ý@3©ø‰ã8Ã
Z;\Ú
ŠY%Ù;¶Íh:‘Ü(ê_<C3AA>fô®\ïT¸î4«²6ÐŒP³Íh-‡×Û,~V  ј^ûÐ4«R†§â¯
hÆwœÜñ<EFBFBD>´ìš±<C5A1>ˆîí!,<³*®øh•]úÌ3ãëO¿†¤[ ÏŒ¯?½´lÂXxf´¤£¿ŒÖµ®<3hÅÔåµñÌØ5H"
uvãÌèV7“׆3c±jì÷gÖ¤FÓÙ׆3£'k j“þÚpfMÊÌ Ù¸ÀÌXš4<—^ÌŒ¥IDÿ¨kË uvãÌèV7“׆3c±jì÷gÖ¤FÓÙ׆3£'k j“þÚpfMÊÌ Ù¸ÀÌXš4<—^ÌŒ¥IDÿ¨kË
3c‡ÊIÍg_ͬ )v˜¬4³& ìÑ|þWœY“%3_Ô¤rÅ™±³¡“äªYÉŒ3£ýËäš 7ÌŒMz~â„™±VgE+ËŒ<C38B>STuüØÍ2£1^«nÚÍ2k2qúÕß9³ÌZÛ5óë_YfMͺ²­ëÍ03Z—d|y4úÛL3£gž»LuVš+¡è_i ø ͬñð—qü@Ý4³F+e¼SÕø|3ÎLüô¬üµá̤JJ0 zé3ÏŒeRÜívÆÒ»yfìÕj«:~êæ™58všêµÍXA…éµzuÐ[ˆ bqíõc7ÐŒ=ž­â²¶àÌÔ•½ßX`3ÎŒ¥UUc/Ónœk«ÂUk¹àÌ8 Ctfò¼àÌ8ðô@¯'ÎŒþ|\«5¸Æ3cÙF—`þ άKµú‰¾6œÇ :#9õR[pf'h¨c ÎL¼û&:ÜŒ3“š¬Æí]½Ñ3ÎŒ£Æ+¯ÝWœ™Œ"xm³úý.83û5õ,mÆ™ÑØ<C391>ÛžÁîÙÌ3ër<C3AB>ÚeƒZ,<3Ž0ä ÜÌ3ã~h7ÏŒ¦œ «º;.<3šþÓ£Ë[+ϬÓz#B4ŒÝÌ3ã¸ÁçOžG ¾Ñj™¶ò̺˜lÊ,`ÚÍ3£%``¨®–} ÏŒ>ÂêpM»yf<1C>´™9ÎÊ3ãèDâIÓg»ðÌèX$u¬³gF¿@´¤¸YvóÌhÔÓÔ$дäiCoÚÍ3ãÐÅ3Tj…<ã̺¬µ:¡štãÌh%H3?ãU,83Zÿ4Öð¦gÆA- Ç)švó̺lÂsAw°Înžm¹ßkî• ÏŒ>ƒôÂ8¨e7ÐŒvB]Ïë6ˆf, ,¿òö€&¢5=µ«VÏ3ÑLl™IÊÐwzš±ÌÉ8˜eÏLj˸m¦Öˆ3ÎL¼œÂE7~ì™ 3c‡ÊIÍg_ͬ )v˜¬4³& ìÑ|þWœY“%3_Ô¤rÅ™±³¡“äªYÉŒ3£ýËäš 7ÌŒMz~â„™±VgE+ËŒ<C38B>STuüØÍ2£1^«nÚÍ2k2qúÕß9³ÌZÛ5óë_YfMͺ²­ëÍ03Z—d|y4úÛL3£gž»LuVš+¡è_i ø ͬñð—qü@Ý4³F+e¼SÕø|3ÎLüô¬üµá̤JJ0 zé3ÏŒeRÜívÆÒ»yfìÕj«:~êæ™58všêµÍXA…éµzuÐ[ˆ bqíõc7ÐŒ=ž­â²¶àÌÔ•½ßX`3ÎŒ¥UUc/Ónœk«ÂUk¹àÌ8 Ctfò¼àÌ8ðô@¯'ÎŒþ|\«5¸Æ3cÙF—`þ άKµú‰¾6œÇ :#9õR[pf'h¨c ÎL¼û&:ÜŒ3“š¬Æí]½Ñ3ÎŒ£Æ+¯ÝWœ™Œ"xm³úý.83û5õ,mÆ™ÑØ<C391>ÛžÁîÙÌ3ër<C3AB>ÚeƒZ,<3Ž0ä ÜÌ3ã~h7ÏŒ¦œ «º;.<3šþÓ£Ë[+ϬÓz#B4ŒÝÌ3ã¸ÁçOžG ¾Ñj™¶ò̺˜lÊ,`ÚÍ3£%``¨®–} ÏŒ>ÂêpM»yf<1C>´™9ÎÊ3ãèDâIÓg»ðÌèX$u¬³gF¿@´¤¸YvóÌhÔÓÔ$дäiCoÚÍ3ãÐÅ3Tj…<ã̺¬µ:¡štãÌh%H3?ãU,83Zÿ4Öð¦gÆA- Ç)švó̺lÂsAw°Înžm¹ßkî• ÏŒ>ƒôÂ8¨e7ÐŒvB]Ïë6ˆf, ,¿òö€&¢5=µ«VÏ3ÑLl™IÊÐwzš±ÌÉ8˜eÏLj˸m¦Öˆ3ÎL¼œÂE7~ì™
=×€ô~M83ˆ­kµßŒ3£Ä =×€ô~M83ˆ­kµßŒ3£Ä
@@ -2156,78 +2161,85 @@ v~
8«R±¥ÉÍ8ãLÍ”"õ¡Ý€3ÎÔÎ*½vÀgj|WTïß•pÆ¢°"eσ~vÎXøˆl§ë²ÙJ8£ƒ”"…æ5Î8{Ö.ù“p&³±”Ç<>qÖÄ:%òÖL8“âÆ+QX g,nÄØo<6F>+âLl¢XÅòÀ8kb„¨Ü;ãLÐÒô(Ò<>8kÂ^æƒ+âŒVP<Beh·™pÆYUSÇ“pÆY5]YÞŠ8“Ev £Ú͈3­€ÒÒú 8«R±¥ÉÍ8ãLÍ”"õ¡Ý€3ÎÔÎ*½vÀgj|WTïß•pÆ¢°"eσ~vÎXøˆl§ë²ÙJ8£ƒ”"…æ5Î8{Ö.ù“p&³±”Ç<>qÖÄ:%òÖL8“âÆ+QX g,nÄØo<6F>+âLl¢XÅòÀ8kb„¨Ü;ãLÐÒô(Ò<>8kÂ^æƒ+âŒVP<Beh·™pÆYUSÇ“pÆY5]YÞŠ8“Ev £Ú͈3­€ÒÒú
qF»§"ÆCécGœ ¼ JâcGœ± qF»§"ÆCécGœ ¼ JâcGœ±
·ºl±"Κ¬é‹}ñÇŽ8ãì8VkxzCëVÄY“ãûÃbcEœ±î¨ÝÜ™q&ÕEˆä<CB86>à¶ ÎXMˆ>kŽï+âŒîL…öÎJñYgœåÆ<C3A5>¤qÆR ÷Ä<C3B7>p&þKxOœA¹fÀËiʪ§ÖWÀ zÐ'é‚ü±κ$öD9(@k&œ DÊKUþÇN8c]ÎÌ}0ƒ5cñ,ˆ3ø #KÇœq&nIÁÓ}EœqÚ±z<C2B1><7A>qÆ: Ì„¹~ìˆ3N-<4¬éqÆB½ŠÛ”»µ Î8{0SlÅìˆ3-iqÝÅ<C39D>gt7ªºËó±#Î:7]¹ìÊÇÎ8£ƒú.…<><E280A6>qƺ:w“gÆ™ÔÕéÝTmbœE|çTíËà‚Cú؈…Lê:°0ÎXëÆ¥«ªh­qF‰ÎM]­ÐÄËÙ1·?6Ä™”º©ùåÀŸ]ˆ³(eb7t Τœ-ºaí¾ ÎXøÄ6´ q¦%k­Ù<C2AD>µqÆÒ³ LIÕ&Ä™B²šóÙX^âŒåe4ÜeÝùdž8£Öhà ·ºl±"Κ¬é‹}ñÇŽ8ãì8VkxzCëVÄY“ãûÃbcEœ±î¨ÝÜ™q&ÕEˆä<CB86>à¶ ÎXMˆ>kŽï+âŒîL…öÎJñYgœåÆ<C3A5>¤qÆR ÷Ä<C3B7>p&þKxOœA¹fÀËiʪ§ÖWÀ zÐ'é‚ü±κ$öD9(@k&œ DÊKUþÇN8c]ÎÌ}0ƒ5cñ,ˆ3ø #KÇœq&nIÁÓ}EœqÚ±z<C2B1><7A>qÆ: Ì„¹~ìˆ3N-<4¬éqÆB½ŠÛ”»µ Î8{0SlÅìˆ3-iqÝÅ<C39D>gt7ªºËó±#Î:7]¹ìÊÇÎ8£ƒú.…<><E280A6>qƺ:w“gÆ™ÔÕéÝTmbœE|çTíËà‚Cú؈…Lê:°0ÎXëÆ¥«ªh­qF‰ÎM]­ÐÄËÙ1·?6Ä™”º©ùåÀŸ]ˆ³(eb7t Τœ-ºaí¾ ÎXøÄ6´ q¦%k­Ù<C2AD>µqÆÒ³ LIÕ&Ä™B²šóÙX^âŒåe4ÜeÝùdž8£Öhà
8ãį}MQ^àŒó~ç<1A>Îl àŒ•€jj`ÒÍ7+],ϬNk届Ôx»€o&E”v2àµáÍ*SÒëdúŠ7«O†<4F>°]ðf¬Ì³Ú¦]x3ÚQMÃû7«²Ã\CqC»ñf,±Ë7øráq~÷º "ÚÌ7“ù=‰‰i7àŒµržÞlyüÜ ©6!Τ¼Œy…5e"œ @K¶kÀ ÁX;ú 8“"±hEË+ÞŒž;õÚ2Xùf4Ö¡Fm'ߌŒ¢Ì§l ²™oæõˆÍZøfä<66>§$+;ߌ£L'ÊI'í…o&Ô­«¤jåy¡\<5C>l{å±öjÜó<C39C>o&` GkôÁE»ùft¬Á%äA¼ùfÜ'/v4ýXøf²Îu”0°h7ßL(>è”Îpj ßL Ûñ­yÒbʃoF&þM¡} ߌÕKx…Ú㮀3ë *iãçnÀ™l3¨Tä'
8ãü^yìLjc3àŒqñ:±ºÎ¤Xò².^g,zãÞeobvΪ¥+à¬Ê¹Ÿá ±Î8‰“¦å+àŒ“¸NS+ߌs¸lk¸pÆ"´Ä3ŠýXˆÔ[V>vÀ Ínºí ñJœ~8ãúì'¹DЙx<E284A2>Ä™÷»9gaãœm˜3¡9ý æ,Èè‰sæÍûÈ93LJGΙ¥Ù<C2A5>œ3§aß#çÌy9gʬøÿ-å¬éã#åÌ¢äGÊYNÆ®z œEs~¢œ
8«R±¥ÉÍ8ãLÍ”"õ¡Ý€3ÎÔÎ*½vÀgj|WTïß•pÆ¢°"eσ~vÎXøˆl§ë²ÙJ8£ƒ”"…æ5Î8{Ö.ù“p&³±”Ç<>qÖÄ:%òÖL8“âÆ+QX g,nÄØo<6F>+âLl¢XÅòÀ8kb„¨Ü;ãLÐÒô(Ò<>8kÂ^æƒ+âŒVP<Beh·™pÆYUSÇ“pÆY5]YÞŠ8“Ev £Ú͈3­€ÒÒú ³ÓÊ™TVvPÎäÌërÆýý<>'åÌʆ)g¶nôD9+ƒFô@9Äm§œÑ³.š¶SÎÈV×ßù€9£s†78©÷å<C3B7>9»ü@0g%èYš'Ì™nͽ1gÞxÒO˜3žÚsV\º´sf¦WOœ³^tZ}âœÑ/!¶sΤÔO´“sFjÅ`™íœ3RmŠi;çl?qÎðPÔˆ÷äœõhÜšÎYìºXóÄ9kjÃò„9£Ït4mçœe5bzœu:3vbÎçŸ0g9_ÒN9kn¾ž(gÓ4ÓvÊ™za¿)grLB´“r<52>r&gmLÛ)gâ
qF»§"ÆCécGœ ¼ JâcGœ± !ÚI9ÓcQ¯GÊY”3¾Æzí'åŒ6¹É´s&=Ý´sFÇå<C387>+Û0gÉÛ.ËæÌ <Ÿ(gb'öz„œÅ<C593> :!gH%kÚN93oìƒqÆí]§V¯'ãìrC?ÒÇó9cÅD5m<35>œ©f2i‡œe1 z=BÎ.oùrÌ,ô<>q†þïìëNÆY¢ i;ãŒö¼i;äŒ>¬ƒH¶AÎêðÍ~€œi÷z„œ•áè~BÎðþVô<1D>3zÕ?<3F>œqno9«ö:œŒ³ë„ÛÁ8“:˜²3Îr5”áÉ8Ë|”Ù´<C399>q¦ed¦íŒ3^Π•mŒ³ÄêAoÚÊ8#QD Å(g⪠ÚI9£Ia3m§œÙ1Ö'È™Ò$^<0F>³ÂuxSVÄYá\èMÚg<+æÆlCœ59<lÚ†8“ú<oÚ†8ãÁ^}×.@×NÄYäþõŸÎòð=9gL
·ºl±"Κ¬é‹}ñÇŽ8ãì8VkxzCëVÄY“ãûÃbcEœ±î¨ÝÜ™q&ÕEˆä<CB86>à¶ ÎXMˆ>kŽï+âŒîL…öÎJñYgœåÆ<C3A5>¤qÆR ÷Ä<C3B7>p&þKxOœA¹fÀËiʪ§ÖWÀ zÐ'é‚ü±κ$öD9(@k&œ DÊKUþÇN8c]ÎÌ}0ƒ5cñ,ˆ3ø #KÇœq&nIÁÓ}EœqÚ±z<C2B1><7A>qÆ: Ì„¹~ìˆ3N-<4¬éqÆB½ŠÛ”»µ Î8{0SlÅìˆ3-iqÝÅ<C39D>gt7ªºËó±#Î:7]¹ìÊÇÎ8£ƒú.…<><E280A6>qƺ:w“gÆ™ÔÕéÝTmbœE|çTíËà‚Cú؈…Lê:°0ÎXëÆ¥«ªh­qF‰ÎM]­ÐÄËÙ1·?6Ä™”º©ùåÀŸ]ˆ³(eb7t Τœ-ºaí¾ ÎXøÄ6´ q¦%k­Ù<C2AD>µqÆÒ³ LIÕ&Ä™B²šóÙX^âŒåe4ÜeÝùdž8£Öhà tü:g,JÒÆ7óZpúzâñX\ÚÆ7ãnh6iÃ!a5Úâ<C39A>7ãìÕãŸàͲÚ<C2B2>½N¼Wv 6tâÍ8i¹?!œÑØ4™´ÎŒqòzœ]Ÿ€³@¬Æ€Ÿm„3ÉåMZgÉlA_€³$´l“6ÀYܽoÔˆáõ„7#'Óý Þ¬ƒ¬¼íkóÀ”mx³ÛdüÄa”ö¢x³À-_¥`x3.Ž÷<C5BD>>ÛøfèüEƒë“oæ…à"ÚÁ7KWPž¾™”Ç .ÚÆ7C00¨[ߌÅzF;øf,ñÑñæœÑ¡Fƒù|ÎähÁ€˜-€3OSP]Þå_WÀY<C380>ÀY*†¥:ùft|©Â7£»Ž'ßL(zÓV¾™˜¶ñÍdïXµƒo<16>¬€¼øfÉu#*ž|³Ä§Â7£ÕžäÀY¡UB4mœæ÷z[À™”Ë ˆÙ8«£Ì÷pFCCÂí€31ƒ &m€3:cÆ?œ‰_á•m€³ÊêΡm€3Œë:øf<…P†¶ñÍXy¨”Ý“o²•ÿ<ðÍ<C3B0>ÛÂÃÁ7Ë—«þÉ7£ý“­ãœ|³Î3˜Í´<C38D>oÖR4^î 8»É-'à,{7nç8Ó¢SÑvÀYå<02>ÆM'à¬_±Ñ 8CÂÒŸ Îx?Û3â,葵×áŒÆ\šõž„3Û~=Îâ
©6!Τ¼Œy…5e"œ @K¶kÀ ÁX;ú 8“"±hEË+ÞŒž;õÚ2Xùf4Ö¡Fm'ߌŒ¢Ì§l ²™oæõˆÍZøfä<66>§$+;ߌ£L'ÊI'í…o&Ô­«¤jåy¡\<5C>l{å±öjÜó<C39C>o&` GkôÁE»ùft¬Á%äA¼ùfÜ'/v4ýXøf²Îu”0°h7ßL(>è”Îpj ßL Ûñ­yÒbʃoF&þM¡} ߌÕKx…Ú㮀3ë *iãçnÀ™l3¨Tä' úÚ g—ÄàŒ¨oÒÆ7»aºßÌ¢ Ñ6¾C<>q¾Õ^rðͺ“
ñJœ~8ãúì'¹DЙx<E284A2>Ä™÷»9gaãœm˜3¡9ý æ,Èè‰sæÍûÈ93LJGΙ¥Ù<C2A5>œ3§aß#çÌy9gʬøÿ-å¬éã#åÌ¢äGÊYNÆ®z œEs~¢œ )Ñv¾™1iå<E280BA>ýøºƒoÆÿÐMߌîž}0Ì6¾щa°Ï6¾™yÕ½øfxŸÍžî<C5BE>ov§µ;ߌ[ºíúÀ7£ÙÚÅ0[ùfÑ«<C391>Ýë‰oFÿ8f ßL¢y¯qÂÉ7e¹'Þ¬úÁÑ<éfÃdåà%@iÖtðÍè©à/mãµbèøoÖÇžÿÝÌ\ ^t3Úë[¾xâÍXÖ§“Ó‰7Ão×ó5'ÞŒ<C39E>ݬdó<ñfw<66>ó‰7ãŠa´fnx³š<ýÀÑn _P´oÆWÛý Ý )ˆ­t31-Ô±æ q»È¥?¡‰EÃ3ÞlâŸîx3Å)ãëÀ›±º^ûñ<C3BB>7cM“­¸x³ÂéG‡ÙoV£­-t3ž+ði<C3B0>ÏVº™xhDÒÍì9¾Nºž¸÷eüØJ7+Ä »?¡q­×€iÝì*>éfžXe Ì6º×ÿ o¦>ò¦­|3µ-Smç±t.ôÙÊ7£7™VŽœ|3dÿV?öÀ7«|½¨lå<C3A5>M×ߌ+ÈÍœ€³FÏoý<6F>;àŒæa@Ì6ÀÙµ­zÎ
³ÓÊ™TVvPÎäÌërÆýý<>'åÌʆ)g¶nôD9+ƒFô@9Äm§œÑ³.š¶SÎÈV×ßù€9£s†78©÷å<C3B7>9»ü@0g%èYš'Ì™nͽ1gÞxÒO˜3žÚsV\º´sf¦WOœ³^tZ}âœÑ/!¶sΤÔO´“sFjÅ`™íœ3RmŠi;çl?qÎðPÔˆ÷äœõhÜšÎYìºXóÄ9kjÃò„9£Ït4mçœe5bzœu:3vbÎçŸ0g9_ÒN9kn¾ž(gÓ4ÓvÊ™za¿)grLB´“r<52>r&gmLÛ)gâ }[Æ+½Κ9r¿žg¤Lj<4C>=gŒÃºÎ×'áLέ6ÓVÂmõ|Ñá WÞý •­„3ŽÎÈháÌ^«×ጌåB•mˆ³~a—ÄYdD¯÷ì@œÝÆåâŒ{"1ë{0Θû}F'äL >õ~î<>³1£¾ gYñC[!g\¾ëv
!ÚI9ÓcQ¯GÊY”3¾Æzí'åŒ6¹É´s&=Ý´sFÇå<C387>+Û0gÉÛ.ËæÌ <Ÿ(gb'öz„œÅ<C593> :!gH%kÚN93oìƒqÆí]§V¯'ãìrC?ÒÇó9cÅD5m<35>œ©f2i‡œe1 z=BÎ.oùrÌ,ô<>q†þïìëNÆY¢ i;ãŒö¼i;äŒ>¬ƒH¶AÎêðÍ~€œi÷z„œ•áè~BÎðþVô<1D>3zÕ?<3F>œqno9«ö:œŒ³ë„ÛÁ8“:˜²3Îr5”áÉ8Ë|”Ù´<C399>q¦ed¦íŒ3^Π•mŒ³ÄêAoÚÊ8#QD Å(g⪠ÚI9£Ia3m§œÙ1Ö'È™Ò$^<0F>³ÂuxSVÄYá\èMÚg<+æÆlCœ59<lÚ†8“ú<oÚ†8ãÁ^}×.@×NÄYäþõŸÎòð=9gL 䌮:e<1C>3ohÉø9cnÖ-ÎÙ)g]ýÁ_O<5F>3Þ#àÈúe¶…öƒrÆz[Ð<(gÌ;Þm¥œqFoö®ì”³@×<>4h+åŒGŒk´…rÆRFV@‰¶SÎ:ãŽ8Hf+åL
tü:g,JÒÆ7óZpúzâñX\ÚÆ7ãnh6iÃ!a5Úâ<C39A>7ãìÕãŸàͲÚ<C2B2>½N¼Wv 6tâÍ8i¹?!œÑØ4™´ÎŒqòzœ]Ÿ€³@¬Æ€Ÿm„3ÉåMZgÉlA_€³$´l“6ÀYܽoÔˆáõ„7#'Óý Þ¬ƒ¬¼íkóÀ”mx³ÛdüÄa”ö¢x³À-_¥`x3.Ž÷<C5BD>>ÛøfèüEƒë“oæ…à"ÚÁ7KWPž¾™”Ç .ÚÆ7C00¨[ߌÅzF;øf,ñÑñæœÑ¡Fƒù|ÎähÁ€˜-€3OSP]Þå_WÀY<C380>ÀY*†¥:ùft|©Â7£»Ž'ßL(zÓV¾™˜¶ñÍdïXµƒo<16>¬€¼øfÉu#*ž|³Ä§Â7£ÕžäÀY¡UB4mœæ÷z[À™”Ë ˆÙ8«£Ì÷pFCCÂí€31ƒ &m€3:cÆ?œ‰_á•m€³ÊêΡm€3Œë:øf<…P†¶ñÍXy¨”Ý“o²•ÿ<ðÍ<C3B0>ÛÂÃÁ7Ë—«þÉ7£ý“­ãœ|³Î3˜Í´<C38D>oÖR4^î 8»É-'à,{7nç8Ó¢SÑvÀYå<02>ÆM'à¬_±Ñ 8CÂÒŸ Îx?Û3â,葵×áŒÆ\šõž„3Û~=Îâ ³i+å ³šÓ<1D>³ÂÅ0´
úÚ g—ÄàŒ¨oÒÆ7»aºßÌ¢ Ñ6¾C<>q¾Õ^rðͺ“ rÖFŽpBÎXÔ>°i+âLÜ¡”#µ#Îð¾&†¶!ÎxŒ·mEœñ~…2Pe+âŒé²ysžˆ3æ#jô·#Îp“ø½¾žg´lˆƒc¶2κ¢¸R ĘÁ´rvG<0F>³¦SËërV³âÉ^<0F>3zkivqRÎêXB}€œaä5Ëìç+Ó6È™íæ½ž gUXÓ6Èúgé޶@ÎÁúB<1C>³žiNlÚ
)Ñv¾™1iå<E280BA>ýøºƒoÆÿÐMߌîž}0Ì6¾щa°Ï6¾™yÕ½øfxŸÍžî<C5BE>ov§µ;ߌ[ºíúÀ7£ÙÚÅ0[ùfÑ«<C391>Ýë‰oFÿ8f ßL¢y¯qÂÉ7e¹'Þ¬úÁÑ<éfÃdåà%@iÖtðÍè©à/mãµbèøoÖÇžÿÝÌ\ ^t3Úë[¾xâÍXÖ§“Ó‰7Ão×ó5'ÞŒ<C39E>ݬdó<ñfw<66>ó‰7ãŠa´fnx³š<ýÀÑn _P´oÆWÛý Ý )ˆ­t31-Ô±æ q»È¥?¡‰EÃ3ÞlâŸîx3Å)ãëÀ›±º^ûñ<C3BB>7cM“­¸x³ÂéG‡ÙoV£­-t3ž+ði<C3B0>ÏVº™xhDÒÍì9¾Nºž¸÷eüØJ7+Ä »?¡q­×€iÝì*>éfžXe Ì6º×ÿ o¦>ò¦­|3µ-Smç±t.ôÙÊ7£7™VŽœ|3dÿV?öÀ7«|½¨lå<C3A5>M×ߌ+ÈÍœ€³FÏoý<6F>;àŒæa@Ì6ÀÙµ­zÎ 9«²†õ 9cùà@ó<1D>3[hy=AÎÄÄaüÜ
}[Æ+½Κ9r¿žg¤Lj<4C>=gŒÃºÎ×'áLέ6ÓVÂmõ|Ñá WÞý •­„3ŽÎÈháÌ^«×ጌåB•mˆ³~a—ÄYdD¯÷ì@œÝÆåâŒ{"1ë{0Θû}F'äL >õ~î<>³1£¾ gYñC[!g\¾ëv ¸ë •m<EFBFBD>3…ð˜¶@κ¸?ý äŒË5F„Ú g²Ä¢À´<C380>r†èÜleOÊYÖ£þ¯'ÊY”íIÓVÊ™x¹«æI9ëc—û<E28094>rÆ%BµŽ=)gt Æv@ÎÚe€BκsºBÎXÙü™m<E284A2>3\Ÿ™(?@Κ1l!g^ÓÍÊ™º%š¶SÎ|5ü“ræƒ3xÆI9+¤ÚJ9Z¡ûzœ9))0mÜÉr^2mÜѺEGÀsƱDG²­<>æ £œNÌ™rÕL[8g´es—´tqèäœĤ/üÁ9ÃP2ìZOΙ—•ÑvÎ&âÐËÐ6ÎYàJà࣭œ³`©ÃëäœÑ7ñjçœi-h4måœyz
䌮:e<1C>3ohÉø9cnÖ-ÎÙ)g]ýÁ_O<5F>3Þ#àÈúe¶…öƒrÆz[Ð<(gÌ;Þm¥œqFoö®ì”³@×<>4h+åŒGŒk´…rÆRFV@‰¶SÎ:ãŽ8Hf+åL ”ÙŠ93«ÓVÌFàÔ3÷ÀœÑ©Ê¨Iæ,ê`iÚŠ9uÒ¯sænkÒsF «<¤•rV…<h å ]"gc¸í”³Äõ4´•rFÞT0ÙN9ãA2Ê™žª´•ræ¸ ˜MZ!gI‚š¶@Îh„Ó«1ÜvÈwÅÔæ€œô¤e…'äŒV ÝØh;äŒÇŒØz@Î<Ïò•¡­<C2A1>3A<33>è•<1F>3NCÙ(`;äŒ^ØÊ8g˜/hx#ÚÆ8#æ èÔ|0ÎpW“fª'ãl¢”Œ3ÚzpeœÉÖ·ç½i+ã -S
³i+å ³šÓ<1D>³ÂÅ0´ Ñ6Æ3ƒÔý3ä,±â@‡€r&¼píäÌŽq¶BÎ"Y¼†[!g´ds.
rÖFŽpBÎXÔ>°i+âLÜ¡”#µ#Îð¾&†¶!ÎxŒ·mEœñ~…2Pe+âŒé²ysžˆ3æ#jô·#Îp“ø½¾žg´lˆƒc¶2κ¢¸R ĘÁ´rvG<0F>³¦SËërV³âÉ^<0F>3zkivqRÎêXB}€œaä5Ëìç+Ó6È™íæ½ž gUXÓ6Èúgé޶@ÎÁúB<1C>³žiNlÚ <EFBFBD>Ù
9«²†õ 9cùà@ó<1D>3[hy=AÎÄÄaüÜ 9Ë·+ø9£[<5B>Í;䌾R݆Žr†Ò?lgœîi¦mcœaÔJƒßt0ΊÏ#l…œÅá<C385> ÎxöT׸Ä™£¹¶ñEƽÐÜ3â,¨u°h;⌶ԆÙÜgQ
¸ë •m<EFBFBD>3…ð˜¶@κ¸?ý äŒË5F„Ú g²Ä¢À´<C380>r†èÜleOÊYÖ£þ¯'ÊY”íIÓVÊ™x¹«æI9ëc—û<E28094>rÆ%BµŽ=)gt Æv@ÎÚe€BκsºBÎXÙü™m<E284A2>3\Ÿ™(?@Κ1l!g^ÓÍÊ™º%š¶SÎ|5ü“ræƒ3xÆI9+¤ÚJ9Z¡ûzœ9))0mÜÉr^2mÜѺEGÀsƱDG²­<>æ £œNÌ™rÕL[8g´es—´tqèäœĤ/üÁ9ÃP2ìZOΙ—•ÑvÎ&âÐËÐ6ÎYàJà࣭œ³`©ÃëäœÑ7ñjçœi-h4måœyz 7‡¶ ÎX¡àœ±¢6ÄYâauª>g$gDˆ3j­ò<C2AD>8ãÁ)ËÀÄY·´ÄYêŽSgØqF>…0ˆ3îÔYv±#ΘÓû<>;âÌóvˆmGœqyÈ.|'œÍ¸¸<C2B8>pvÚ<C39A>„3ô«ÄRlÓÂY¥û”å@;áŒn÷U«76™˜€³š.™6Îx·‡>LZg¾ßVè;á,мÒånÚB8cqVÒ°ö œ1.wö|vÂß!£³„3Útêø|΢Ú}ˆ¶Î
”ÙŠ93«ÓVÌFàÔ3÷ÀœÑ©Ê¨Iæ,ê`iÚŠ9uÒ¯sænkÒsF «<¤•rV…<h å ]"gc¸í”³Äõ4´•rFÞT0ÙN9ãA2Ê™žª´•ræ¸ ˜MZ!gI‚š¶@Îh„Ó«1ÜvÈwÅÔæ€œô¤e…'äŒV ÝØh;äŒÇŒØz@Î<Ïò•¡­<C2A1>3A<33>è•<1F>3NCÙ(`;äŒ^ØÊ8g˜/hx#ÚÆ8#æ èÔ|0ÎpW“fª'ãl¢”Œ3ÚzpeœÉÖ·ç½i+ã -S «$4Œx<C592>€34£©ð³p6GíàL­<4C>Ý€˜-€³¨f£É´pF÷s¯žó;àŒKTÞlàwÂK7½ž©:g„„ÒÑ]´…pÆÙ[ÝL[ gÃ_ûuÎèžá ´ÎhãcŰ'áLñÞ´…p¦'J/ŠÙB8«äÝéªÒA8£Ýº¬
Ñ6Æ3ƒÔý3ä,±â@‡€r&¼píäÌŽq¶BÎ"Y¼†[!g´ds. ¿NÄ™¢áqÆØ7µ d6#Î+Ô
<EFBFBD>Ù æ`œ±Œ±=#ÎÔZ阭ˆ33À3mAœÕê<C395>¼µ βx²Ñàv ÊĆª: ä;âŒÆÑ¬ 6mAœñ U°
9Ë·+ø9£[<5B>Í;䌾R݆Žr†Ò?lgœîi¦mcœaÔJƒßt0ΊÏ#l…œÅá<C385> ÎxöT׸Ä™£¹¶ñEƽÐÜ3â,¨u°h;⌶ԆÙÜgQ q¦Vöönˆ³ÊJ­°ÛgtÕ;ጕ°f˜{Î|Õí‘× 8ct@—hàŒGmO÷œMv0à ³H죕pÆr††‡ <E280A1>r'œÙ¦÷ÐfÂë<»E;áŒÎäÞx²;ᬸëàËA8£=…To€3±T¸ s;àŒ§sC°+Øg¤ŒÛŠàÎ7KV kÚÌ7c¡Ÿ¼l¯“oF¿ëE¹—N
7‡¶ ÎX¡àœ±¢6ÄYâauª>g$gDˆ3j­ò<C2AD>8ãÁ)ËÀÄY·´ÄYêŽSgØqF>…0ˆ3îÔYv±#ΘÓû<>;âÌóvˆmGœqyÈ.|'œÍ¸¸<C2B8>pvÚ<C39A>„3ô«ÄRlÓÂY¥û”å@;áŒn÷U«76™˜€³š.™6Îx·‡>LZg¾ßVè;á,мÒånÚB8cqVÒ°ö œ1.wö|vÂß!£³„3Útêø|΢Ú}ˆ¶Î ޾K#ìê8³£özuàŒî(½õA1[g…CGÕ<>p†©X¨²…pFžÞ.ŒÙB8 \²Íψ³x;Óˆ³Ìj!-ü:gÌöÇjáŠ8ËrDÁžùF8ãCà6¯i ጥŸÍr±<72>pFØ,P™¶ ÎÊ}ðð@œÑ,ë©òÁØtlßg<>µWÉp^âŒ{ƒIÝÈÙÕè× 9ÓÊÒ‘*µ†¯“rfë·C[(g\oLÝ(TåŒüYW|<7C>˜3oöMƒsæè3® æŒÅOÕè׿Œ@C î˜3*!\¸²sÆ¥§`ÑØŽ9ãþbÔ³“æŒë°ÙVÚvÌÙtòåÀœU݇¦M˜3I/ò†9C;xyѤsfPÏ`ÚÂ9Ë—ç<>ÄÌ`hæŒ^=Ö^'æ,LôÔsÆq$ØêŽ9+|›ö½
«$4Œx<C592>€34£©ð³p6GíàL­<4C>Ý€˜-€³¨f£É´pF÷s¯žó;àŒKTÞlàwÂK7½ž©:g„„ÒÑ]´…pÆÙ[ÝL[ gÃ_ûuÎèžá ´ÎhãcŰ'áLñÞ´…p¦'J/ŠÙB8«äÝéªÒA8£Ýº¬ -gÉÀŽ9s¤g¤:´tÆ“Ì7M[@g™«AIùu;èL†4×Ìl<02>ÑiyµÝtF@A·Iv<07>q†+ѨV+èŒ.¿ÙÐk<03>ÑÔ¢êÁøtÆá¨kÁì:c=Õi 3ô»fõ˜èL\¥‚ŽÅ+èLŽ-ó„΀™- 3!ƒÙµqÎxt·)¢åàœÑ_#håœÑ€±^ îÎ9ó\úÊÆ†Û8g4¤ÊÉš¹qÎhÎ ½sÎÚ8Ãü:9g¬ç‹ê;çŒN fÍupβœFÑ7w眩3R ´…sÆ,?ªKüÁ9 <»a«t猦êjˆu€Îj¹vƒÎhLWyÌl<01>ñ× Ô:ã(¢.sï 3t<33>¨g66몯 ÇbÙã:£ÿ,<2C>Èš¶Î¦ñc<07>!H<>¶•rpΜLIÁ´…sÆNR~r<>Îb7ÿÉ×I:ãZˆá(wÐ<19>,Mi'èì®;@gqJÐ]l \¸ƒÎXzm âÎ9£™„
¿NÄ™¢áqÆØ7µ d6#Î+Ô d;錭ÎÖÛÒ­Û»D<7F>q1ÞK¦­¨3„¦cyG<79>IEsIJ•tÆc”\í¤3ž·3ØéŒÓµbÙB:ã=î†5>Hg¬áWžá:cPŒ+y€Îõ[¥Ý:c:к=ºtÆ]e-Z>@gMíó³i3èŒæÎplèŒÈ©”
æ`œ±Œ±=#ÎÔZ阭ˆ33À3mAœÕê<C395>¼µ βx²Ñàv ÊĆª: ä;âŒÆÑ¬ 6mAœñ U° εƒÎèõ¦GÐ ©¹`eÚJ:jÏÿ:QgQ¿<™¶¢ÎRºŒž~´u†·É5Ãoí¨3OS¤2~lE<6C>ufmG<6D>óÚz= ÎL{=Õ}¢Îв\î¨3„T>©‰Ì‰:#CàÖVÔO“ªqˉ:+e¬ýŸ¨3åÕmC<6D>±,-ü êŒæÜj¦w¢Îœ7 ªÔ<19>¸âŸ ÎZµšÔ<19>©±ñ‰:GH}ËvÔ
q¦Vöönˆ³ÊJ­°ÛgtÕ;ጕ°f˜{Î|Õí‘× 8ct@—hàŒGmO÷œMv0à ³H죕pÆr††‡ <E280A1>r'œÙ¦÷ÐfÂë<»E;áŒÎäÞx²;ᬸëàËA8£=…To€3±T¸ s;àŒ§sC°+Øg¤ŒÛŠàÎ7KV kÚÌ7c¡Ÿ¼l¯“oF¿ëE¹—N Õbù <20>åQ|Îüííy€Îš»üøÐYò÷<C3B2>Þ@gÇl<=9g¸P-81gAŒ˜½i+æL|<7C>Ÿ[1géî
޾K#ìê8³£özuàŒî(½õA1[g…CGÕ<>p†©X¨²…pFžÞ.ŒÙB8 \²Íψ³x;Óˆ³Ìj!-ü:gÌöÇjáŠ8ËrDÁžùF8ãCà6¯i ጥŸÍr±<72>pFØ,P™¶ ÎÊ}ðð@œÑ,ë©òÁØtlßg<>µWÉp^âŒ{ƒIÝÈÙÕè× 9ÓÊÒ‘*µ†¯“rfë·C[(g\oLÝ(TåŒüYW|<7C>˜3oöMƒsæè3® æŒÅOÕè׿Œ@C î˜3*!\¸²sÆ¥§`ÑØŽ9ãþbÔ³“æŒë°ÙVÚvÌÙtòåÀœU݇¦M˜3I/ò†9C;xyѤsfPÏ`ÚÂ9Ë—ç<>ÄÌ`hæŒ^=Ö^'æ,LôÔsÆq$ØêŽ9+|›ö½ ;æŒà'y9^˜3å' <ÚŠ9ÜSªýÜÆ9ëݰå …m×”3Z.z3²=(g<6VÊ  ­”3®•š—úN9ËôN2@ÐA9kfþZ)gRB†ñ-EñF9ã™§bžÁå Ñ@2<>å<EFBFBD>rÖb¿€;æÌÏøº<C3B8>sÆWÛ¼¬wзqs4,Ù:ëÂWÕg¾ƒÎô7m<06>%<—ª«‰é S_ÔŃtÖ9í-øN:£¥EÍövÒYG³ºö»<C3B6>tV'fÅJ:ãú.‡}»Ó;éŒÃ¹y¤3~qרuÆžk5¥'êŒ÷Rù4;ê <0C>º%C¢É´¸ÅE¢m¨3:Œ•?A<>% £i ê¬:;©õ:QgôR·8í@<40>Ûlûƒꌇ"»á/wÔ÷Hé )Ú‚:#
-gÉÀŽ9s¤g¤:´tÆ“Ì7M[@g™«AIùu;èL†4×Ìl<02>ÑiyµÝtF@A·Iv<07>q†+ѨV+èŒ.¿ÙÐk<03>ÑÔ¢êÁøtÆá¨kÁì:c=Õi 3ô»fõ˜èL\¥‚ŽÅ+èLŽ-ó„΀™- 3!ƒÙµqÎxt·)¢åàœÑ_#håœÑ€±^ îÎ9ó\úÊÆ†Û8g4¤ÊÉš¹qÎhÎ ½sÎÚ8Ãü:9g¬ç‹ê;çŒN fÍupβœFÑ7w眩3R ´…sÆ,?ªKüÁ9 <»a«t猦êjˆu€Îj¹vƒÎhLWyÌl<01>ñ× Ô:ã(¢.sï 3t<33>¨g66몯 ÇbÙã:£ÿ,<2C>Èš¶Î¦ñc<07>!H<>¶•rpΜLIÁ´…sÆNR~r<>Îb7ÿÉ×I:ãZˆá(wÐ<19>,Mi'èì®;@gqJÐ]l \¸ƒÎXzm âÎ9£™„ å6ŠßQgx
d;錭ÎÖÛÒ­Û»D<7F>q1ÞK¦­¨3„¦cyG<79>IEsIJ•tÆc”\í¤3ž·3ØéŒÓµbÙB:ã=î†5>Hg¬áWžá:cPŒ+y€Îõ[¥Ý:c:к=ºtÆ]e-Z>@gMíó³i3èŒæÎplèŒÈ©” ”mö:Qg <0C>jÐ9vG<76>!<¡UÛÀ -¨3U¦W®i êÌìÔõ¾l¨³B¼I0ÌÛ†:ëñFî¨3\?}îôÚ7ÔÙU¯÷:Qg• E×qzE<7A>)€¹xqg<71>ñ`JÓ3½ë,ÓeIÞ¬3Q\¿sa<73>9Ð`ÃÎŽ:ã+,XÛQg¬pnê5·£ÎºY£4£ÎðµŠ!z<>¨3îÂ'=ì{ ÎEE­<45>ÚPgÜGçÎb´u»4Ã<34>m¨³LOo ª
εƒÎèõ¦GÐ ©¹`eÚJ:jÏÿ:QgQ¿<™¶¢ÎRºŒž~´u†·É5Ãoí¨3OS¤2~lE<6C>ufmG<6D>óÚz= ÎL{=Õ}¢Îв\î¨3„T>©‰Ì‰:#CàÖVÔO“ªqˉ:+e¬ýŸ¨3åÕmC<6D>±,-ü êŒæÜj¦w¢Îœ7 ªÔ<19>¸âŸ ÎZµšÔ<19>©±ñ‰:GH}ËvÔ †4´uÆa p—A”•toBûÁ:Ã#«ð¦-¬3®dñ(hëŒSKÖeȃu†<17>•gƒƒ¶°ÎT³öq@Ë&ÖY•#§È»±Î¸ä_ƒÑÇVÖMJ£z¬3Z1ãì­¬3®¾¶¡qÇ;#nÅëù™vV¸[ –-´3FÒU—òÚwé¹`ÚL;ãš$ggVÚÙÿÇÜýìÈëxÞ× Ô)ÓÐh`j¦ª<C2A6>^Îä®ÑÛêYØ]Íû£I™”òdyx¤Ït-úÞà<C39E>ã
Õbù <20>åQ|Îüííy€Îš»üøÐYò÷<C3B2>Þ@gÇl<=9g¸P-81gAŒ˜½i+æL|<7C>Ÿ[1géî ws™L"ù5,•¹!¨ÕÎ"å’Ÿ\0¾`g(¨8*s;CLlöHÌ`gBc‰)ì þl<C3BE>¸Xg‰šnÏÌXgœ÷ߦƒ¦­3lm̶·Î"ÒbE~ñÖÎùˆv¡Î¸ï©˜W†:C-ù<>x¸PgÈ“Ïr_öÔze%
;æŒà'y9^˜3å' <ÚŠ9ÜSªýÜÆ9ëݰå …m×”3Z.z3²=(g<6VÊ  ­”3®•š—úN9ËôN2@ÐA9kfþZ)gRB†ñ-EñF9ã™§bžÁå Ñ@2<>å<EFBFBD>rÖb¿€;æÌÏøº<C3B8>sÆWÛ¼¬wзqs4,Ù:ëÂWÕg¾ƒÎô7m<06>%<—ª«‰é S_ÔŃtÖ9í-øN:£¥EÍövÒYG³ºö»<C3B6>tV'fÅJ:ãú.‡}»Ó;éŒÃ¹y¤3~qרuÆžk5¥'êŒ÷Rù4;ê <0C>º%C¢É´¸ÅE¢m¨3:Œ•?A<>% £i ê¬:;©õ:QgôR·8í@<40>Ûlûƒꌇ"»á/wÔ÷Hé )Ú‚:# <u†-­&,ž¥Î<C2A5>3^<5E>æ.Ô ÷‡]¨³†táž¶ÔÙ‰ƒÄgÌXg‰'üÐå©3ôftÓ…:£…{³Äu†ŒŽç#~;u†Ä¯(W­§Î ¦G1O=uv&º]ð8u†n­¶Hg8èKB—zé¬á<C2AC>š9é ÿµÊeÆŒt<74>¬ÎÇ­tVeßbN:1Nþ²Ä”t†}´ka‰ÁKgy6¸Vé¬IwUÄŒt†¤»¹—ÎÔ»—ΰNO|Úï¥3t0•f'N:£ŒôØC-N:Ëãмš“Î<E2809C>]
å6ŠßQgx ê ¥‰(”˜¡ÎÐ>)H?øâ¬³ÂûÄ´uÖ¡q{k<>Q<1A>kµÎR»óIë¬Î¦Ð×j<C397>&1c<31>¡eÊb«9ë 7zÜø)¦­³BNÇYgãC¿1ËXgÈm=…}ðÖú{WÁ<57>½u6žÊN©&X¬3$:„Ê;6Þ:C™óY˜2±Ö%-e4i˜Âθ<C38E>ÚagWs 43ØnG]Ä/<2F><>U®¬^9ë,7Êã-3ØY«b\;ÃqjÈ\q³Xg)I—­E:«³³ÉµJg'ç'05夳À©RAbF:Ã*á3ÒYCB—69ê,PšA?…ú¶ùBzê G\ ¹Hg':lœy+<2B>!å…Òÿ®U:CÊU:å-sÒY;ï>.N:C»¤©³®á¥3ôâOUÞj'<27>Ḡðq÷"<22><>Y6âiMbF:Cvh<76>M/<2F>©F
”mö:Qg <0C>jÐ9vG<76>!<¡UÛÀ -¨3U¦W®i êÌìÔõ¾l¨³B¼I0ÌÛ†:ëñFî¨3\?}îôÚ7ÔÙU¯÷:Qg• E×qzE<7A>)€¹xqg<71>ñ`JÓ3½ë,ÓeIÞ¬3Q\¿sa<73>9Ð`ÃÎŽ:ã+,XÛQg¬pnê5·£ÎºY£4£ÎðµŠ!z<>¨3îÂ'=ì{ ÎEE­<45>ÚPgÜGçÎb´u»4Ã<34>m¨³LOo ª t†®Ásm©3܉éÄ6JÌPg¨Wš(µ§ÎÚ²Õ4c†:ÃÁî)7{K<>¡Þ~Ü«ø/pÔöq°Å 1c<31><63>¹ìÞ µÖR !䩳±:é<>»ê.ÔYSŽ¥ÎúS~­ÔYzxO<>!´r¯ g<>aEƒ³OŠ8ë å”ÐYgÒz=JÌXg¬uðÖXgHŠDÁ•xÂÞ:ËHj=Mo<4D>áÐDέu†SñŽåñ)!m<>¡d5òa÷b<C3B7><62>C¢ {ë ‰S™ òë,âé3{묠bB”#o<>ÝÛƒ—·Îpˆ‡Ž´u3í¨žÒÖYƒR›Î:#{G¼Ó33Ö’°Çò*KÌXgßk®…]¬3ôI—„ÌÅ:C÷åI†{ë é!‡ oŽ:7Ë£ Y3¡°1ê¥3ªäµÝKg}¬
†4´uÆa p—A”•toBûÁ:Ã#«ð¦-¬3®dñ(hëŒSKÖeȃu†<17>•gƒƒ¶°ÎT³öq@Ë&ÖY•#§È»±Î¸ä_ƒÑÇVÖMJ£z¬3Z1ãì­¬3®¾¶¡qÇ;#nÅëù™vV¸[ –-´3FÒU—òÚwé¹`ÚL;ãš$ggVÚÙÿÇÜýìÈëxÞ× Ô)ÓÐh`j¦ª<C2A6>^Îä®ÑÛêYØ]Íû£I™”òdyx¤Ït-úÞà<C39E>ã ™Ú­tÖ,æ¤3$¸â—{é [TMàO+<2B>ÑW2M4)G<><47>©`¼:ÿ}ž:«du÷wËQgé ~ZÓ33Ô²?)CîZ­´å¥·Î"Œ.°_¬³Lå<·Øò¨¡çµbgx«<C2AB>E1‡<31>ÔG»vÖŸŽ;Ã.÷¸r~ÿ<C3BF>Ñ£;  v†åÏ!ˆ<>±ÎðÕ«XêñŸà¬³<.Û3í±3ô~Ät%1…<31>ᔜ*W·ØÙ˜Ñ™bf;“fœì UÔ/?<>áê¤{êµbgcZ¾·‡ vFÝ´©0!<21><>abΧp`;kHÚ¡Xì¬Q£»¹Ïã±³lÑ2ƒ<32>ñÎ^Ÿ1…<31>aÏ)Þ–²Çΰð˜( ÃÎP~s[Z;Cwªñì,ذ×Îr¡sÊ­v6¾³4+IìáÎet<65>ECš¿g¸3.«GÌqg<71>È/±Éw†:‡#äI¡iî¬Pwp^Szî ¹=s ë¹³H*V<56>ÑÎв6Š0æ°3T¹Ézì,JR¡Ä vV¹¢€Ïag'Ò€Å<E282AC>tØ™t7‰Ný§¢h±3<C2B1>·§¯;ÃæQâ<Ý;—3ó׊<C397>…*äµjgÔóY`<‡<>!úÓä¬3l9N?\¬3Ô,¡YÍ×b<C397><62>¦ÿâ)’–³ÎÆ•376Z¬3ÎÚOëŒÒ4ÆË¦­u†-ȃûÚXg}6ÙXg8&hc<68>aGã<„õ2ÖNáP*˜ëׯ:ËhËÓ¿6ÔYG¯è³ðHu¿6ÔY™Ë¸:«qp<s†pP`_çlÜQBåÂÅ9ãj¶é•çŒê±Ëm ç
ws™L"ù5,•¹!¨ÕÎ"å’Ÿ\0¾`g(¨8*s;CLlöHÌ`gBc‰)ì þl<C3BE>¸Xg‰šnÏÌXgœ÷ߦƒ¦­3lm̶·Î"ÒbE~ñÖÎùˆv¡Î¸ï©˜W†:C-ù<>x¸PgÈ“Ïr_öÔze% ¢¸ïßœáàÕ?_æ¬á¦Uä/°Ì Ò[waÎ*fÅ”ù£1ÌŠ<>ã„Öæ =á$KuaÎPs¤Äÿ¦cÎ<63>>9ÝjaÎЉ«ò“šcÎðí Y®<§œ)€bQθõ1Cm^9cæ‰m¯œá'O,r6Þò~FQ¦œsV»´yÞ8g"\m<>3jÝ”ÚôÑç Û)žâ]9æLÐ-sÖ©„ð˜¿g˜³„ª¾R·ÌÅW]˜3ô]ˆÓŒsÌÌŸzÞ\™aÎP#ïœ<C382>§îÊì™3Ô.Pý
<u†-­&,ž¥Î<C2A5>3^<5E>æ.Ô ÷‡]¨³†táž¶ÔÙ‰ƒÄgÌXg‰'üÐå©3ôftÓ…:£…{³Äu†ŒŽç#~;u†Ä¯(W­§Î ¦G1O=uv&º]ð8u†n­¶Hg8èKB—zé¬á<C2AC>š9é ÿµÊeÆŒt<74>¬ÎÇ­tVeßbN:1Nþ²Ä”t†}´ka‰ÁKgy6¸Vé¬IwUÄŒt†¤»¹—ÎÔ»—ΰNO|Úï¥3t0•f'N:£ŒôØC-N:Ëãмš“Î<E2809C>] ÿ Ž9C<39>Úx¶Š1Æ…ÒŒæ ]¦cΰ¥¸~aÎ2êÒÎ4y4Üaï;s:ðœ1¶ø÷s6Þ°,”òœ<C382>ò¦Ç
ê ¥‰(”˜¡ÎÐ>)H?øâ¬³ÂûÄ´uÖ¡q{k<>Q<1A>kµÎR»óIë¬Î¦Ð×j<C397>&1c<31>¡eÊb«9ë 7zÜø)¦­³BNÇYgãC¿1ËXgÈm=…}ðÖú{WÁ<57>½u6žÊN©&X¬3$:„Ê;6Þ:C™óY˜2±Ö%-e4i˜Âθ<C38E>ÚagWs 43ØnG]Ä/<2F><>U®¬^9ë,7Êã-3ØY«b\;ÃqjÈ\q³Xg)I—­E:«³³ÉµJg'ç'05夳À©RAbF:Ã*á3ÒYCB—69ê,PšA?…ú¶ùBzê G\ ¹Hg':lœy+<2B>!å…Òÿ®U:CÊU:å-sÒY;ï>.N:C»¤©³®á¥3ôâOUÞj'<27>Ḡðq÷"<22><>Y6âiMbF:Cvh<76>M/<2F>©F sÖÑ0žOæl\+y*Þ9ë8„âCÝÅ9-ŠÖ¦efœ³1×f)y]œ3¬€ëc çŒ<C3A7>K»]Î9Cíl&.κžÒÚÆ9ã^UiZfÆ9Cÿƒñ><3E>_çì^roœ3”Êίƒwβܶ¿6ÐÙ‰S^Ñûé¬Gî#㥳€ÃÈL58êlL:\°°£Î:Ò…qsÔ™¬Vâ׆:CªÀD¶uÖf§î
t†®Ásm©3܉éÄ6JÌPg¨Wš(µ§ÎÚ²Õ4c†:ÃÁî)7{K<>¡Þ~Ü«ø/pÔöq°Å 1c<31><63>¹ìÞ µÖR !䩳±:é<>»ê.ÔYSŽ¥ÎúS~­ÔYzxO<>!´r¯ g<>aEƒ³OŠ8ë å”ÐYgÒz=JÌXg¬uðÖXgHŠDÁ•xÂÞ:ËHj=Mo<4D>áÐDέu†SñŽåñ)!m<>¡d5òa÷b<C3B7><62>C¢ {ë ‰S™ òë,âé3{묠bB”#o<>ÝÛƒ—·Îpˆ‡Ž´u3í¨žÒÖYƒR›Î:#{G¼Ó33Ö’°Çò*KÌXgßk®…]¬3ôI—„ÌÅ:C÷åI†{ë é!‡ oŽ:7Ë£ Y3¡°1ê¥3ªäµÝKg}¬ u†^›â^,ÔŽ<>¤ñÅJ<C385>¡;lùÎQg'öB\IŽ:<1B>÷c*¨ík¡ÎP&e=ê M<>7+<2B>E´[æ¬ÒU:ë”lÆ<C386>“ÎPÒ953#<23>©œóE:+ÊCõÒÖqÃ"<22>5<ÎþÐéì¬IR‰oéìD©eyO:ûB9rr†2•9{|³à|³CgãOΨUØg3vm€3³À™ŽyàÌÆ,pfc8Ó1œÙ˜!ÎlÈg:æ<>3³Æ™<C386>YãLÅã õÞ\?ºg6d<36>3óÆ™<C386>YãÌÆ¬q¦cÞ8³1kœÙ˜5ÎtÌg6d<36>3³Æ™ŽyãÌÆ¬qfcÖ8Ó1oœÙ˜5ÎFŒˆŽk1ÎtÄg6f<36>3³Æ™ŽyãÌÆ¬qfcÆ8Ó!oœÙ˜5ÎlÌg:æ<>3³ÆÙ¸<C399>ôÌ-wãÌÆ¬q¦bÞ8³!kœÙ˜5ÎtÌ#g6f3³Ê™ŽyåÌÆ¬r6bUšº{æÌÄsæb†9s1Ü™˜cÎ\Ì0g.f˜3b”p­Ì™æÌÄsæb†9s1Ü™˜cÎ\Ì0g.fœ3Äâ93ƒœ™ˆ!ÎTÄg&¢<>3"‡`Dž7s1͹<E280BA>áÍLÌñf.fx3 !;QÌùf.f|33¾™‰YßÌ…Œo†Xe2yñÍ\Ìøf&æ|33¾™ß 1ÞÝ\|3R¼™
™Ú­tÖ,æ¤3$¸â—{é [TMàO+<2B>ÑW2M4)G<><47>©`¼:ÿ}ž:«du÷wËQgé ~ZÓ33Ô²?)CîZ­´å¥·Î"Œ.°_¬³Lå<·Øò¨¡çµbgx«<C2AB>E1‡<31>ÔG»vÖŸŽ;Ã.÷¸r~ÿ<C3BF>Ñ£;  v†åÏ!ˆ<>±ÎðÕ«XêñŸà¬³<.Û3í±3ô~Ät%1…<31>ᔜ*W·ØÙ˜Ñ™bf;“fœì UÔ/?<>áê¤{êµbgcZ¾·‡ vFÝ´©0!<21><>abΧp`;kHÚ¡Xì¬Q£»¹Ïã±³lÑ2ƒ<32>ñÎ^Ÿ1…<31>aÏ)Þ–²Çΰð˜( ÃÎP~s[Z;Cwªñì,ذ×Îr¡sÊ­v6¾³4+IìáÎet<65>ECš¿g¸3.«GÌqg<71>È/±Éw†:‡#äI¡iî¬Pwp^Szî ¹=s ë¹³H*V<56>ÑÎв6Š0æ°3T¹Ézì,JR¡Ä vV¹¢€Ïag'Ò€Å<E282AC>tØ™t7‰Ný§¢h±3<C2B1>·§¯;ÃæQâ<Ý;—3ó׊<C397>…*äµjgÔóY`<‡<>!úÓä¬3l9N?\¬3Ô,¡YÍ×b<C397><62>¦ÿâ)’–³ÎÆ•376Z¬3ÎÚOëŒÒ4ÆË¦­u†-ȃûÚXg}6ÙXg8&hc<68>aGã<„õ2ÖNáP*˜ëׯ:ËhËÓ¿6ÔYG¯è³ðHu¿6ÔY™Ë¸:«qp<s†pP`_çlÜQBåÂÅ9ãj¶é•çŒê±Ëm ç ÝL‡nÆOðy¹˜ÁÍLÌáf.fp3©fN3¸™‰9ÜÌÅ næbF7Ããn—Fý^7s1í¹<E280BA>ñÍ£ÌÈkõÍ\Ìøf.f|3s¾YvGbÆ7s1œ™˜ÎŠÒZÞ g.fˆ3sÄÙݼïZ‰33ÆÙˆ•éüyãÌÅŒqæbÚ8CH\OœÙ<C593>ÎlÈgÉÖÅ"œ¹˜ÎC+‰áÌÅ q†Ø!“#Î\Ègù2ÜþtAÎLÌ!g.f<>3ÄJJÎ!g&æ<>3İ#1ƒœ¹˜£þ±×ŠœÜ©¸àrAÎ\Ì gˆI×[nº«<C2BA>3bàf%f<>3bÒH`AÎ\Ì gˆΆÄ5ÈYÁ±Fgߤ8äÌÅ4r†P>Ç#gˆIöØ¢œ¹˜‹œ[º(gˆÁ˜QÎ\Ì(g{»MH2§œ!†+‰iå !é’µ(g&æ”3ÄnöÎ(g;8ÙÓ)g;¤TÓ)gk%MM)gKL)goÚ gÍZäŒc<C592>; 1äy0)m3ŽÑÁÙå3ŽI±ˆSÎ86q«œqìhyjeJ9£ž Ä”rƱ*JUÎ8¹>×)g“d6§œqì»Æ*gkœ%æ<>3•Ü'd¦<64>3Ž¡ãšÄrÆ1j)syäŒbè2´AÎ8V¹+¦CÎ8&I9ãXM×"gN9£Öaü7åŒcÔSëòÊÇPV9£O—gÎ8϶qÎ8¸*Û9g)¦œ3Ž4néœ3ŽÅ&ÔœqÎ8&éÈÖ9£<39>Ô”:æŒC‰+¸sÆ1I%rÌÅ”W-sƱœÙ2ÌÅøyïòÌǤHÈ1g ®aÎ8tˆÛe”3„`®ä)™)åŒcÒ}Á)gë8×¥˜QÎ8Ä$²ÊÅõ§¿<sÆ1éäœ3Ž>¾²Ð…Ps 3Žå㜿¦ 3ŠÍ'<27>q 7,‰)êŒb™<62>1œtÆ!i[ì¤3Ž tyéŒbœKqyéŒcGÙHg¢‰)éŒbáäjL'<27>qŒò¾.+<2B>bÔJgr¢…Î8„ªWŠé 1þS3SÒŨUbJ:ãØ¸ª˜~2ÒÅÚ$­tF±zf¾ÍéŒC‰kœtF±Çû2ÒÇBà<42>ÜJgËåà)ÚJgK]xK<78>q,ò¢£Î(Sc7ÛRgâ¼Hì¡Î(ħt—§Î8F.O<>!FM—šÄuF±N©—§Î8vœ¼Ø´ÔÅÚ$?-uF±š9÷ÂQg+¬uXéŒ"³hÔIgC~X˜Î8C<>b™Î(§Çf 3
¢¸ïßœáàÕ?_æ¬á¦Uä/°Ì Ò[waÎ*fÅ”ù£1ÌŠ<>ã„Öæ =á$KuaÎPs¤Äÿ¦cÎ<63>>9ÝjaÎЉ«ò“šcÎðí Y®<§œ)€bQθõ1Cm^9cæ‰m¯œá'O,r6Þò~FQ¦œsV»´yÞ8g"\m<>3jÝ”ÚôÑç Û)žâ]9æLÐ-sÖ©„ð˜¿g˜³„ª¾R·ÌÅW]˜3ô]ˆÓŒsÌÌŸzÞ\™aÎP#ïœ<C382>§îÊì™3Ô.Pý )ftÐÅŽ¼aÎWžø¶6ì'<27>¦œ3е"Þ¶uÎ(V%;É9g+¸{HL9gËÜçœ3Š%A"œsF1éæî˜3
ÿ Ž9C<39>Úx¶Š1Æ…ÒŒæ ]¦cΰ¥¸~aÎ2êÒÎ4y4Üaï;s:ðœ1¶ø÷s6Þ°,”òœ<C382>ò¦Ç ¡D(IL1g;Ðc™b†9C,f-1ÅœQŒòj%¦˜3Š¡ñ¤ÌsF1~޼<sF1nü|yæŒbÓTrÌŰ%!¥œQ'FIbJ9CìNsuÊÅ8¡àòÊÅš<C385>À9£Pirœh3Šá `Bf
sÖÑ0žOæl\+y*Þ9ë8„âCÝÅ9-ŠÖ¦efœ³1×f)y]œ3¬€ëc çŒ<C3A7>K»]Î9Cíl&.κžÒÚÆ9ã^UiZfÆ9Cÿƒñ><3E>_çì^roœ3”Êίƒwβܶ¿6ÐÙ‰S^Ñûé¬Gî#㥳€ÃÈL58êlL:\°°£Î:Ò…qsÔ™¬Vâ׆:CªÀD¶uÖf§î 9£Xìl,8äŒbãçÕŠAÎBmuœ™RÎ(†üÀ 1¥œQŒ«R/¯œQ¬¤§€¦”3Š%©ü0ÊEP½HƒœQvAb
u†^›â^,ÔŽ<>¤ñÅJ<C385>¡;lùÎQg'öB\IŽ:<1B>÷c*¨ík¡ÎP&e=ê M<>7+<2B>E´[æ¬ÒU:ë”lÆ<C386>“ÎPÒ953#<23>©œóE:+ÊCõÒÖqÃ"<22>5<ÎþÐéì¬IR‰oéìD©eyO:ûB9rr†2•9{|³à|³CgãOΨUØg3vm€3³À™ŽyàÌÆ,pfc8Ó1œÙ˜!ÎlÈg:æ<>3³Æ™<C386>YãLÅã õÞ\?ºg6d<36>3óÆ™<C386>YãÌÆ¬q¦cÞ8³1kœÙ˜5ÎtÌg6d<36>3³Æ™ŽyãÌÆ¬qfcÖ8Ó1oœÙ˜5ÎFŒˆŽk1ÎtÄg6f<36>3³Æ™ŽyãÌÆ¬qfcÆ8Ó!oœÙ˜5ÎlÌg:æ<>3³ÆÙ¸<C399>ôÌ-wãÌÆ¬q¦bÞ8³!kœÙ˜5ÎtÌ#g6f3³Ê™ŽyåÌÆ¬r6bUšº{æÌÄsæb†9s1Ü™˜cÎ\Ì0g.f˜3b”p­Ì™æÌÄsæb†9s1Ü™˜cÎ\Ì0g.fœ3Äâ93ƒœ™ˆ!ÎTÄg&¢<>3"‡`Dž7s1͹<E280BA>áÍLÌñf.fx3 !;QÌùf.f|33¾™‰YßÌ…Œo†Xe2yñÍ\Ìøf&æ|33¾™ß 1ÞÝ\|3R¼™ 9C %?ZäŒb<C592>
ÝL‡nÆOðy¹˜ÁÍLÌáf.fp3©fN3¸™‰9ÜÌÅ næbF7Ããn—Fý^7s1í¹<E280BA>ñÍ£ÌÈkõÍ\Ìøf.f|3s¾YvGbÆ7s1œ™˜ÎŠÒZÞ g.fˆ3sÄÙݼïZ‰33ÆÙˆ•éüyãÌÅŒqæbÚ8CH\OœÙ<C593>ÎlÈgÉÖÅ"œ¹˜ÎC+‰áÌÅ q†Ø!“#Î\Ègù2ÜþtAÎLÌ!g.f<>3ÄJJÎ!g&æ<>3İ#1ƒœ¹˜£þ±×ŠœÜ©¸àrAÎ\Ì gˆI×[nº«<C2BA>3bàf%f<>3bÒH`AÎ\Ì gˆΆÄ5ÈYÁ±Fgߤ8äÌÅ4r†P>Ç#gˆIöØ¢œ¹˜‹œ[º(gˆÁ˜QÎ\Ì(g{»MH2§œ!†+‰iå !é’µ(g&æ”3ÄnöÎ(g;8ÙÓ)g;¤TÓ)gk%MM)gKL)goÚ gÍZäŒc<C592>; 1äy0)m3ŽÑÁÙå3ŽI±ˆSÎ86q«œqìhyjeJ9£ž Ä”rƱ*JUÎ8¹>×)g“d6§œqì»Æ*gkœ%æ<>3•Ü'd¦<64>3Ž¡ãšÄrÆ1j)syäŒbè2´AÎ8V¹+¦CÎ8&I9ãXM×"gN9£Öaü7åŒcÔSëòÊÇPV9£O—gÎ8϶qÎ8¸*Û9g)¦œ3Ž4néœ3ŽÅ&ÔœqÎ8&éÈÖ9£<39>Ô”:æŒC‰+¸sÆ1I%rÌÅ”W-sƱœÙ2ÌÅøyïòÌǤHÈ1g ®aÎ8tˆÛe”3„`®ä)™)åŒcÒ}Á)gë8×¥˜QÎ8Ä$²ÊÅõ§¿<sÆ1éäœ3Ž>¾²Ð…Ps 3Žå㜿¦ 3ŠÍ'<27>q 7,‰)êŒb™<62>1œtÆ!i[ì¤3Ž tyéŒbœKqyéŒcGÙHg¢‰)éŒbáäjL'<27>qŒò¾.+<2B>bÔJgr¢…Î8„ªWŠé 1þS3SÒŨUbJ:ãØ¸ª˜~2ÒÅÚ$­tF±zf¾ÍéŒC‰kœtF±Çû2ÒÇBà<42>ÜJgËåà)ÚJgK]xK<78>q,ò¢£Î(Sc7ÛRgâ¼Hì¡Î(ħt—§Î8F.O<>!FM—šÄuF±N©—§Î8vœ¼Ø´ÔÅÚ$?-uF±š9÷ÂQg+¬uXéŒ"³hÔIgC~X˜Î8C<>b™Î(§Çf 3 Ì/<2F>œQl\<5C>òÇäŒbã¿ôÅ&Bç˜3ŠMyÕ1gxœ8oÈ2g«³ÓŸ…Î(
)ftÐÅŽ¼aÎWžø¶6ì'<27>¦œ3е"Þ¶uÎ(V%;É9g+¸{HL9gËÜçœ3Š%A"œsF1éæî˜3 <EFBFBD>tF±˜¥½ž•Î(FÔ$¦¤3İ„;7ÒÅ(»^bJ:£XF
¡D(IL1g;Ðc™b†9C,f-1ÅœQŒòj%¦˜3Š¡ñ¤ÌsF1~޼<sF1nü|yæŒbÓTrÌŰ%!¥œQ'FIbJ9CìNsuÊÅ8¡àòÊÅš<C385>À9£Pirœh3Šá `Bf «Ä”tF±»i©•ÎkØ~ÎÅZí2N#<23>Q µe¬ éŒbI:ë8éŒb¼)yyé 1$ÓéŒbõ<62>v»V:£XY'<27>^ž:CL—.O<>¥§ ïòÔÅ¢do:êŒbGäN_Ž:C,<2C>7†»pjêŒ"ÜañòÔÅÆb¤MÎLQgˆ¡T™¿§¨³ôôT¸<uF1J“—˜¢Î·F<>uF1li"d¥3
9£Xìl,8äŒbãçÕŠAÎBmuœ™RÎ(†üÀ 1¥œQŒ«R/¯œQ¬¤§€¦”3Š%©ü0ÊEP½HƒœQvAb ͆V:C(œ"g;éŒb<C592>k¦X¦¤3Š¥<C5A0>ù³³ÒbÇìäã¤3ŠÕ ms­tF±ˆêd‰)é,¡)í£ILIg+AºZéŒbYµNŽ:£Ø„u†n€aC<61>Ql¦59êŒbÄILQg‰`+4n ˜¡Î(6¾ÃarfŠ:C ]ÌÏù{Š:£jùõ u¨ºg^ž:£õ„—ØC<C398>!„^ÇäÌuF1,Ø’Äu†R9Ûü=E<>Q,7v[u¨$«uF±Œf×bÝØ)f¨3Š%x¢{¨³„}ññuâ»”¥Î(Ë¤Ç u†X¯•³ÔÅf©£Îå,u†—€ILQg]:¯Zê 1:3œžÙC<C399>Qh V:C(ƒ\š1%<25>!6V•ÒôØRg;8õÛIgEjÃ$1%<25>!6}ÒÜ×JgˆaÝxLMIgCŸœ(±G:Kh*Cëw
9C %?ZäŒb<C592> é ±qk;x.¶ÔbìGJì¡Î(„](~S u†¤‰=f¨³D=Ž'Yd©3İ,i“3SÔbHQ<51>ÜPgˆá\Z><c<>Ql\¥÷¿©¬³¤Û 1¸Œ¼¸2ÖYÂM<M/ÏPga·ï&Ëuhä<>)ÕRg‰:‰MðÕRg‰<0E>Bå©ßRg‰ú°b 1¤ç“ASÖb1KÖ»µÎ¢sâ(!e<>!vÄÔî_SÖYByuœ¡˜±Î÷G™¬u†Ògyä­[ÖËYg%qr<71>ÄŒu†/¹OMSgãùâà†jt†ÎÁ¹
Ì/<2F>œQl\<5C>òÇäŒbã¿ôÅ&Bç˜3ŠMyÕ1gxœ8oÈ2g«³ÓŸ…Î( Yæ¤34¯2Q9é ]VЬI¼t6F4™äýZ¤³Å(^ 3j2Æ3´‡ÎJd<4A>@bF:C¹Â™óÒŒt¦Ó{é¬H³o‰)鬠S·SrÖbø?î“l­³DÝ*7µrÖbá¤Ó»Ëcgˆ7<>d±³„LŠŠžmbõ$IéòØY"EãHb~iì !j?”$¤°3ĶUN‰)ì ç¤ç
<EFBFBD>tF±˜¥½ž•Î(FÔ$¦¤3İ„;7ÒÅ(»^bJ:£XF $YìŒÎPÏ,Ž“ÅΨ+&žµ‚Äv†ÿ„°2Øb8âäÖjgˆôè}9ì ²Ø»ª3¤°³D}iª<ÏXì ±ÔÅß±ØB\|-1…<31>¥çê¾<v†˜T];C,Ïlg‡<67>Q·å¹¯î°3ÄîZ<>¡d<1B>¼V±Øb…S).<2E><>!»Í쌪ÀÑ"~i
«Ä”tF±»i©•ÎkØ~ÎÅZí2N#<23>Q µe¬ éŒbI:ë8éŒb¼)yyé 1$ÓéŒbõ<62>v»V:£XY'<27>^ž:CL—.O<>¥§ ïòÔÅ¢do:êŒbGäN_Ž:C,<2C>7†»pjêŒ"ÜañòÔÅÆb¤MÎLQgˆ¡T™¿§¨³ôôT¸<uF1J“—˜¢Î·F<>uF1li"d¥3 ;#q}5øbÜ(Yb
͆V:C(œ"g;éŒb<C592>k¦X¦¤3Š¥<C5A0>ù³³ÒbÇìäã¤3ŠÕ ms­tF±ˆêd‰)é,¡)í£ILIg+AºZéŒbYµNŽ:£Ø„u†n€aC<61>Ql¦59êŒbÄILQg‰`+4n ˜¡Î(6¾ÃarfŠ:C ]ÌÏù{Š:£jùõ u¨ºg^ž:£õ„—ØC<C398>!„^ÇäÌuF1,Ø’Äu†R9Ûü=E<>Q,7v[u¨$«uF±Œf×bÝØ)f¨3Š%x¢{¨³„}ññuâ»”¥Î(Ë¤Ç u†X¯•³ÔÅf©£Îå,u†—€ILQg]:¯Zê 1:3œžÙC<C399>Qh V:C(ƒ\š1%<25>!6V•ÒôØRg;8õÛIgEjÃ$1%<25>!6}ÒÜ×JgˆaÝxLMIgCŸœ(±G:Kh*Cëw ;Cìñ}­v†åÂÉ <>q™:5JLigˆ<67>IXÄV;£.ãá£MÒ,¨/zÆ -@’ÕÎË’è°3„hc¶š v†íäN(¨Äv†ØX#È¥i±3Äbš,‡ÅÎ<C385>ÿÓÏÆ§è;C¬HSk<>QÖP<C396><(g<>¡£#š*ðJÌZgˆ±t 1e<31>!ví8ë øek²ßQ uF.&•4JLQgˆ<67>AÜ+#<23>¡âÆbiié !Ê<™!%<25>á¥ûl¡ì¨3êåuNUÄRg ­N€ g‰)ê,QGÌÊUŽ:Cl¬µß u†XóôËQgýJ­tV¨4øÖ;<3B>tF±¹çi¡3„:±óâ[CgJô°N!%<25>¡YéŒbdkØC<C398>jºÛ(ùñrÔÅ"U_Iì¡Î;€Î²šk¨3ŠlÛ3⤩³<02>¦¢—N<E28094>ØC<C398>Q ½SãB<C3A3>!Ôå\ÿrÔC.M<>QìYsê ±ñ¤4¡c<>QL:G]Î:C¬ Órœ¿÷Xg…ºØåÈ©;£Ø<C2A3><C398>ž)šÝØBiŒê`IÁ`gˆÅçd°3Š!C˜¿x;Cl\²E&8ƒ<38>!v<<02>ÁÎ
é ±qk;x.¶ÔbìGJì¡Î(„](~S u†¤‰=f¨³D=Ž'Yd©3İ,i“3SÔbHQ<51>ÜPgˆá\Z><c<>Ql\¥÷¿©¬³¤Û 1¸Œ¼¸2ÖYÂM<M/ÏPga·ï&Ëuhä<>)ÕRg‰:‰MðÕRg‰<0E>Bå©ßRg‰ú°b 1¤ç“ASÖb1KÖ»µÎ¢sâ(!e<>!vÄÔî_SÖYByuœ¡˜±Î÷G™¬u†Ògyä­[ÖËYg%qr<71>ÄŒu†/¹OMSgãùâà†jt†ÎÁ¹ j{Áõ(±;£Ø
Yæ¤34¯2Q9é ]VЬI¼t6F4™äýZ¤³Å(^ 3j2Æ3´‡ÎJd<4A>@bF:C¹Â™óÒŒt¦Ó{é¬H³o‰)鬠S·SrÖbø?î“l­³DÝ*7µrÖbá¤Ó»Ëcgˆ7<>d±³„LŠŠžmbõ$IéòØY"EãHb~iì !j?”$¤°3ĶUN‰)ì ç¤ç …iê ‘ŽÚ
$YìŒÎPÏ,Ž“ÅΨ+&žµ‚Äv†ÿ„°2Øb8âäÖjgˆôè}9ì ²Ø»ª3¤°³D}iª<ÏXì ±ÔÅß±ØB\|-1…<31>¥çê¾<v†˜T];C,Ïlg‡<67>Q·å¹¯î°3ÄîZ<>¡d<1B>¼V±Øb…S).<2E><>!»Í쌪ÀÑ"~i žÞ u†æîûf©3ĤïÒå¤3„°AÁG¦V:£N"<22>© b8
;#q}5øbÜ(Yb
;Cìñ}­v†åÂÉ <>q™:5JLigˆ<67>IXÄV;£.ãá£MÒ,¨/zÆ -@’ÕÎË’è°3„hc¶š v†íäN(¨Äv†ØX#È¥i±3Äbš,‡ÅÎ<C385>ÿÓÏÆ§è;C¬HSk<>QÖP<C396><(g<>¡£#š*ðJÌZgˆ±t 1e<31>!ví8ë øek²ßQ uF.&•4JLQgˆ<67>AÜ+#<23>¡âÆbiié !Ê<™!%<25>á¥ûl¡ì¨3êåuNUÄRg ­N€ g‰)ê,QGÌÊUŽ:Cl¬µß u†XóôËQgýJ­tV¨4øÖ;<3B>tF±¹çi¡3„:±óâ[CgJô°N!%<25>¡YéŒbdkØC<C398>jºÛ(ùñrÔÅ"U_Iì¡Î;€Î²šk¨3ŠlÛ3⤩³<02>¦¢—N<E28094>ØC<C398>Q ½SãB<C3A3>!Ôå\ÿrÔC.M<>QìYsê ±ñ¤4¡c<>QL:G]Î:C¬ Órœ¿÷Xg…ºØåÈ©;£Ø<C2A3><C398>ž)šÝØBiŒê`IÁ`gˆÅçd°3Š!C˜¿x;Cl\²E&8ƒ<38>!v<<02>ÁÎ '#<23>!†ªÛ²±Î$«¦Î÷¾$·PC<50>*c7µ:ï¡Î0·ž˜âä]ÑÔbùÓ5u†š£¥H{¨3ÄÆW2Ä89³‡:CL=-êŒæùñ¥„ÅPgˆ<67>ë«”ºRgˆÅމ?Hì¡Î
j{Áõ(±;£Ø %<Ô"Ú«¡ÎÃfž<66>š†:C#H#§¼ž¦Î
…iê ‘ŽÚ Uü=욦ÎH—ŽU:'Zê 1¤³aÆnê ¡ŒîhE"uV¨sʘ-rÓÔµ«T¼˜¦ÎÃBV¸dC<64>!‡•ù²Ëm¨³BN8ÂÍ™=ÔbMŽ.G<>!†-σïAš:£”ÉtJý§¥Î ªøfb¨3â¿K<C2BF>æ|Ö:Cì@C¹È´u†Åú É2ÔXgÄ<67>#?Jä8m<38>!6><3E>·LÖ:C %ïù\¬3^»œQfc<>¥ ë ¸  áHì±ÎkcúÙXgä¬c-Àº±ÎSf<53>±Î
žÞ u†æîûf©3ĤïÒå¤3„°AÁG¦V:£N"<22>© b8 8ýôÌ댚¢Þ‰}Æ:C¨!Éð˜DÚc<C39A>?¾kœj­3Ä@Oó»b¨3ʯÅa±‡:Cl|°I¾é†:ƒh?ƒêüë4u†˜b5
uV(]¾ÈÝPg1RNŸ¹¡ÎhÁÎ%ò@gˆ ·„|¬:C ŠUá}^<03>!Afw<03>¡íÝÉé¼{ 3êg;o<>¿è:Cl<qõ$蚆ÎafÄX茠Ñ9„×½:+Ô OKAbtVxgý×%ö@gˆ!í±œ,{ 3<`GIB<03>!VðóC¸<43>Î
'#<23>!†ªÛ²±Î$«¦Î÷¾$·PC<50>*c7µ:ï¡Î0·ž˜âä]ÑÔbùÓ5u†š£¥H{¨3ÄÆW2Ä89³‡:CL=-êŒæùñ¥„ÅPgˆ<67>ë«”ºRgˆÅމ?Hì¡Î qªïå 3´ÄY('kYè¬Pk_*‘Ø<03>!†Š,ù¦é ±qUuæ5¬t†„òñÝÍñŽ=Òb‰YŠié 1<àBiiê OShhtn¥©3ÄP}Þù:3ÔÚ+¢×§Yê¬ÐîGäDk<44>Q[Æû$ÖPgÈ¥GéÉ[x†:£<û:å`#<23>!4þ2Á~¬t†ÇHo¢‡kꌞ0Ç<30>†»~Zê }%ÇB¥ÓÔb(õ?óŒ=Ôõ®Yö£ŒtV¨• n SO{¤3ÄnIM1M<31>¤Ÿ<C2A4>ý<EFBFBD><C3BD>\KgæoÝО¬Çÿ®Èðµs†P`çJb<4A>sF]²qŒÁß<03>!†û¹lôè Åø¼EcÓÎBcÒŠ].uíœao àMY™3ôò>ÁUܘÙdÎ
%<Ô"Ú«¡ÎÃfž<66>š†:C#H#§¼ž¦Î î¢ñÖü­‡9C<39>¬¤<C2AC>¥aÎC2º°cZ9ÃþEeÁKb<4B>r†2Á¤‡ºaÎÐŒ<a{áœÚÜj…žÓó÷æ¬<C3A6>CÂ}ÿ.Ëœa%£S1·Ð3ÌYAM&Xž0íaÎ
Uü=욦ÎH—ŽU:'Zê 1¤³aÆnê ¡ŒîhE"uV¨sʘ-rÓÔµ«T¼˜¦ÎÃBV¸dC<64>!‡•ù²Ëm¨³BN8ÂÍ™=ÔbMŽ.G<>!†-σïAš:£”ÉtJý§¥Î ªøfb¨3â¿K<C2BF>æ|Ö:Cì@C¹È´u†Åú É2ÔXgÄ<67>#?Jä8m<38>!6><3E>·LÖ:C %ïù\¬3^»œQfc<>¥ ë ¸  áHì±ÎkcúÙXgä¬c-Àº±ÎSf<53>±Î ·B§Õêå˜3”Ë`SQšpæ ­\ 7ØÃœa;¨#q†_æ,Ó6ì|Ò¶Ì<7A>Ÿ W©Äæ e=Š¥0ÌY&ïa¦àYæ ½äÇ·æ¶2gˆ\ÜG1Íœ¡ÄÇì å,SúÁ|LµÊÚÚ£yÉ™¦dö(gTÑT'$o•3ìÉQÒ*7†4ÊYF“6<i‰6§•3TPᤎ÷Ž,sÑŠk|y;µs†ýÁB…<휡]0-¤Ã4Ðç Õ\ã{.ÇxÖ9Ã~äÓ0ÎBghO Ü¢¥©™=ÒªÇð½æM[+<2B>¡å1ŠøyÍJg¨H£Ü­4ŲG:Þ*zëpþ<70>•ÎÐb9â¨æ˜
8ýôÌ댚¢Þ‰}Æ:C¨!Éð˜DÚc<C39A>?¾kœj­3Ä@Oó»b¨3ʯÅa±‡:Cl|°I¾é†:ƒh?ƒêüë4u†˜b5 Ú#<23>eÌxt¦Ã¯§¤3jÚŒN:ÜÆÛXg@PåvÜ@Úc<C39A>a[ø±| uÇaöf»u‰Ž$_Ebu­~Åà3ÔÊÇ8ÄôRÒB<>)œ*±)<29>ê=®°t,ÒbMoÂ15³[:£âETäKb-<2D>!Ñk¤È¿©¤3ª‡Œôh$vKgˆÉ³uØ-<2D>¡øòä.èü!(éŒ
uV(]¾ÈÝPg1RNŸ¹¡ÎhÁÎ%ò@gˆ ·„|¬:C ŠUá}^<03>!Afw<03>¡íÝÉé¼{ 3êg;o<>¿è:Cl<qõ$蚆ÎafÄX茠Ñ9„×½:+Ô OKAbtVxgý×%ö@gˆ!í±œ,{ 3<`GIB<03>!VðóC¸<43>Î 3aP‰0¡¤³@‡ 7ª«¥3.õäÓËBgás}!5t†ÊÒ1ß<31>i”íj茪NÑÛWæF
qªïå 3´ÄY('kYè¬Pk_*‘Ø<03>!†Š,ù¦é ±qUuæ5¬t†„òñÝÍñŽ=Òb‰YŠié 1<àBiiê OShhtn¥©3ÄP}Þù:3ÔÚ+¢×§Yê¬ÐîGäDk<44>Q[Æû$ÖPgÈ¥GéÉ[x†:£<û:å`#<23>!4þ2Á~¬t†ÇHo¢‡kꌞ0Ç<30>†»~Zê }%ÇB¥ÓÔb(õ?óŒ=Ôõ®Yö£ŒtV¨• n SO{¤3ÄnIM1M<31>¤Ÿ<C2A4>ý<EFBFBD><C3BD>\KgæoÝО¬Çÿ®Èðµs†P`çJb<4A>sF]²qŒÁß<03>!†û¹lôè Åø¼EcÓÎBcÒŠ].uíœao àMY™3ôò>ÁUܘÙdÎ <EFBFBD>!F¥Ü«Ç@gˆáÒÈ<C392>{[jèŒ*`±PŸ”ÙÍœ¡n­*ƒÌpŠ9C¨Jp ÝÌb -wxsÏ8gTÁl<E280B9>ÈvÎPùÛç)ûe<C3BB>3İA[-—uÎùwÌeh·sè°,rW³Ë:g¨^n<>׃1m<>3*•F ÜÚfìFÎPb=¿D»3ÄÐo¸Ë´¡3ªèFnƒØhÊ8 ¤€üoMg<>Î9ãM-iã 1t.=å{¬<>3¬£z¼Í3vgTŸ¹<C5B8>Å”q†âyÔQgƒËgˆe=9-ÆÕñã|BØmœ!†³lîafˆ3„°Z”?\gè3P°éå3PÀbØj+<2B>ïæ8Cσòœ^àŒ[,œQN¹ p†Ö ³R N ghѧRsYá 1@y½ŠôõgèJ<C3A8>jI™ÒÂz` '<1F>%t g<>R<ð`)LÎЈ£<’ºÎÐò£g<rð_§…3Ä<33>©\źÐÂÚ<>N»…3´;yžUÀ5^<5E>¼,mî•pF}^Æ«F1lµpF}e°á#œ¡W
&·Ì´ÎÐÛqt¬uYá,PwBÙ·¹¬pFí„
ÝŒøßTÂu6+gäkV gh£4¦“ñ/”‰ŸMáŒ:Aedò.£…34žº»ß\V8£¾Z³ Ñe…3j
†*s^}kàŒº¡¡óYg<01>|.›òÍR©#:ËËHß =ˆONM§ÈÃ!å>A©â…°ÖÍÐäz,|‘Î&¡[7#Çy|½ò1²7C/x`Ì¥M÷ìÎÃm<C383>JŠè$š6CßêÆk1„4mõMÛe¡¤e36PÕU&z6a3Ü\Ç'Ò8eƺf8ë©Hó^X3¬î6|ÄÚR¬Ö¢>(L¹ìVͰ‡<C2B0>½MY|hÔ Íýñ[iRh7iÖé$d\Ƽ¢Ô¢ˆ<>K&ȪQƒf¨Xˆèôq[g·g†O¼c<C2BC>%X¶RžYÀ³’‰ä‹«=3j_7n²°u%v{fÔà
•ÚÇ<EFBFBD>Ý :™LŸG‰Ý ¾eçhF<68>¹0êÄ«[
ša6À£cæd šÑ ƒXr5hFÝN;†)“Ý ¦ÁŇ84Z4£~Eã“;ÏsÍhÏÜÅ€S¢nØ& ²¸Ò¢{åãQ#šQ{±ñ”hFífðÃÛNF4ÃB"Q¼\èJ4£^-AþØËŠfX•¡eý
t)Ñ ËCT¡"³Tb·hFmIpäPîØÍèa§"2*ÑŒž® ð´0Õ²[4£§ÕSzZ]V4ã<34>ˆÀ¾ËŠf´†müÆëC-šñ–|ˆÇü­Û3Ãy
Ðy*Ê3C»ˆ~òÝú2œ:4 žô(Öœ-¬øùdÀpfh˜ñTr¶I<C2B6>ÝœµE˜5©—åÌЦ½asäY^sf<73>P j{½pfhXÏuÆnÎ õÿU Š=œÊøñØÕyÓVsf¨ÆÇ{PO^¨jÎ,ÐÐ9Aªã¦ÇtÇnÎ uî`2¨ÝÅe9³À²²ÕùCUœ*ϹȇWŽš3CyçóŒSb™¡¹üU¶ÕgFEÛH=…Xsf(•êpp<1D>áÌPòŒ>…;ÏŒjžèvuZg·g†2dì,Î{¾öÌPNŒµ ˜S Y ,¬2Ž…4C}/Šññ¯Jì&ÍPTÐ"&ÅɖݤŠcqNtˆ¦ I3”¤bE&ª†4£*Ñ1gæsªe·h†
Ë Ë
[Hž8µh†Ä ‡.§É–Ý¢Û<>Ev"%ö<>fhÎ<68>º ÌsŠ!ÍPAS+o«ÒŒ‘Á#ÉwY“fx[bâ¬?Š)ÒŒº~Ȧ⛹&ͨó 4ò1(ÒŒ:LŒAÒ)ÜeI3\<5C> [Hž8µh†Ä ‡.§É–Ý¢Û<>Ev"%ö<>fhÎ<68>º ÌsŠ!ÍPAS+o«ÒŒ‘Á#ÉwY“fx[bâ¬?Š)ÒŒº~Ȧ⛹&ͨó 4ò1(ÒŒ:LŒAÒ)ÜeI3\<5C>
Ú#<23>eÌxt¦Ã¯§¤3jÚŒN:ÜÆÛXg@PåvÜ@Úc<C39A>a[ø±| uÇaöf»u‰Ž$_Ebu­~Åà3ÔÊÇ8ÄôRÒB<>)œ*±)<29>ê=®°t,ÒbMoÂ15³[:£âETäKb-<2D>!Ñk¤È¿©¤3ª‡Œôh$vKgˆÉ³uØ-<2D>¡øòä.èü!(éŒ ß_!4i†K [«…Kó i†KÛc“
Ò¤•|ãp¡/¢ýyöYÙ¿Ô¢•DÚïãßS¢>udÁt±1µhFÕÆ”NgLø\0u*÷¦3¢UøFº=LµìÍèbA…¬Vµh˜ eH3*<2A>%cí!MšÑE†âÕ,r”"ÍŸ¹´¹å«I3žFêVËS¸"ÍP@ Ò¤•|ãp¡/¢ýyöYÙ¿Ô¢•DÚïãßS¢>udÁt±1µhFÕÆ”NgLø\0u*÷¦3¢UøFº=LµìÍèbA…¬Vµh˜ eH3*<2A>%cí!MšÑE†âÕ,r”"ÍŸ¹´¹å«I3žFêVËS¸"ÍP@
TçàEš! Wôx@8<38>7š4 „…`±ÒÒ,ÐáC!Hbš4£ªÍ€èMbi¾ƒëñWÒ çã] ÜÔËf(¢Ÿ±hÜZ4C™$=î¦U4Ãîüq×\[Ñ ;ðbrHìÍ* ÆIΔÐÑ ¥‰ù®ê·¢Êó}$lE3öçÑí¬KìÍЗwan¯gD3<_<>©}| ø·´hv<68>{5n%}ÆÑì &¯Až½ h†}æñýïò”n@³€ íŽMº,±4C TçàEš! Wôx@8<38>7š4 „…`±ÒÒ,ÐáC!Hbš4£ªÍ€èMbi¾ƒëñWÒ çã] ÜÔËf(¢Ÿ±hÜZ4C™$=î¦U4Ãîüq×\[Ñ ;ðbrHìÍ* ÆIΔÐÑ ¥‰ù®ê·¢Êó}$lE3öçÑí¬KìÍЗwan¯gD3<_<>©}| ø·´hv<68>{5n%}ÆÑì &¯Až½ h†}æñýïò”n@³€ íŽMº,±4C
KFIbh-UöœmaE3ÔÒeY_Ž4£z¹‡-3¤jâP,Ú…Ó¤žrŸÎú4Cm[ ³ù…%Ͱ¤<C2B0>w¢§%ÍÈ<1F>xé†4C!ŸŒu‰=¤‰·q9ÒŒ KFIbh-UöœmaE3ÔÒeY_Ž4£z¹‡-3¤jâP,Ú…Ó¤žrŸÎú4Cm[ ³ù…%Ͱ¤<C2B0>w¢§%ÍÈ<1F>xé†4C!ŸŒu‰=¤‰·q9ÒŒ
@@ -2237,169 +2249,214 @@ Q
'qÍPÕç„öˆÅ"uZg<5A>g†êœ1¿œœTo=³DݸÑp;Kìñ̰7”ïN“Ö3ÃP`sN˜ìöÌУiƒ\Uh=3êCŠjzÆY<C386>g†f£"PL{f´»ÇÃçm¶ëqÓ“o³ñÌȺ-cÆ•7Z{fôKg>Yb<59>gF§w²§ñÌ2Un 3ÿ Ú3ËÔh&PZÃå<³L‰Óö3žŠFP·:? 'qÍPÕç„öˆÅ"uZg<5A>g†êœ1¿œœTo=³DݸÑp;Kìñ̰7”ïN“Ö3ÃP`sN˜ìöÌУiƒ\Uh=3êCŠjzÆY<C386>g†f£"PL{f´»ÇÃçm¶ëqÓ“o³ñÌȺ-cÆ•7Z{fôKg>Yb<59>gF§w²§ñÌ2Un 3ÿ Ú3ËÔh&PZÃå<³L‰Óö3žŠFP·:?
šá( Íkê Š?p?İӞŽÇ{'â<>õ̰<15>ºbÙûÔžÙ¬¥RZÐå<3SÇiÞ\1žÎÃ<C38E>¯ŠöÌðÞ𤧃öxfH<66>Kõ±|^=3<ž<>;Ë‘îØã™Jk²çh<3ÊÏ @Ó'Zö€fœG šá( Íkê Š?p?İӞŽÇ{'â<>õ̰<15>ºbÙûÔžÙ¬¥RZÐå<3SÇiÞ\1žÎÃ<C38E>¯ŠöÌðÞ𤧃öxfH<66>Kõ±|^=3<ž<>;Ë‘îØã™Jk²çh<3ÊÏ @Ó'Zö€fœG
ŽwÆÐ <0C>äcvÓJüò ZD" ŽwÆÐ <0C>äcvÓJüò ZD"
Ë ¥ "¦A³#‡ññ¤sÆÐ e H4JLÆЬ ]?˜ ÉýÆg­g†at_9Î{<3<ìŽ<06>TyÏ ´Ó»ð]Ú3ÃN©S<C2A9>¿÷xfÄqž¸G¬¢²ú¹d<C2B9>Ý/-š!uõ¨wèÍðˆÙ¸—‚Í*å
[Hž8µh†Ä ‡.§É–Ý¢Û<>Ev"%ö<>fhÎ<68>º ÌsŠ!ÍPAS+o«ÒŒ‘Á#ÉwY“fx[bâ¬?Š)ÒŒº~Ȧ⛹&ͨó 4ò1(ÒŒ:LŒAÒ)ÜeI3\<5C> ŽQÉ_ M3zTDYk¨_Þ4Ãã`@[ÒcZh<5A>iF½ ©[5CÿAH\dQ3dÄK"GÍH¤¤n‡<L<>šUÔ Ÿá†ñjV©ŸmÅÞå—GÍ*V8Fï.{P3<IaQÀd¨EÍð¼„ÿW$[ÔŒÈ1;å6á²}È…dšÇ fèÂ7®ê{àQ³«ÈI«kTJ5Cê÷ø\#w»³ªY£<59>çCôp«š5ª3åZ¯š!Q;STüòªY£vîhæU3$\ÏΦ^5£‡ƒñŇWV5ÃÀ¸
ß_!4i†K [«…Kó i†KÛc“ >W5ª6f°ÖcuΨfXÉc1¥/¯šQW¹ÙÞ¢fèGYõB½iÔ¬q¢%}é=j†pcêM¼·¨ò‘~«3¨YG—D´ÌL£fÈ,Îè”ÓFͺy³¨%S—€ôåQ3dC½É7xö fÈõÅ^R­ {P3äóæ™žlM3¬;q˜Så£Ó¦Òr“¬<1F>iFô_«3‰È˜f”^;–è•›)Ó 1¤M¼¬2¦¥É†þxnÊ4CJ+V<>ù<EFBFBD>¯2Í(Ý•N¥<4E>öåL3¤­Ž©ùiFi«8gÌÎiÓ ±*o_Î4£üÓt§5Ó 14%‰ßOmšQ&)¶zN1¥”iFÙ¢Ô?†ß3mšQJ謷s¦å}2ÿ™¾œi†4MÒñ8Kטf”Â9ž×[‹Ó-»M3äbÖ$ûSÎ4CZåøB¡¿gÊ4#k>R°¨:Uå¹oM3jF5Ú…èÒ¦NIç)¿7Íz§F¨_Î4ÃÍ<18><>OÁ´iv
Ò¤•|ãp¡/¢ýyöYÙ¿Ô¢•DÚïãßS¢>udÁt±1µhFÕÆ”NgLø\0u*÷¦3¢UøFº=LµìÍèbA…¬Vµh˜ eH3*<2A>%cí!MšÑE†âÕ,r”"ÍŸ¹´¹å«I3žFêVËS¸"ÍP@ 8Wé^iM3¤$âø¢ÜÚcš!íðÀA{åajÓì ºç¤ú oš!
TçàEš! Wôx@8<38>7š4 „…`±ÒÒ,ÐáC!Hbš4£ªÍ€èMbi¾ƒëñWÒ çã] ÜÔËf(¢Ÿ±hÜZ4C™$=î¦U4Ãîüq×\[Ñ ;ðbrHìÍ* ÆIΔÐÑ ¥‰ù®ê·¢Êó}$lE3öçÑí¬KìÍЗwan¯gD3<_<>©}| ø·´hv<68>{5n%}ÆÑì &¯Až½ h†}æñýïò”n@³€ íŽMº,±4C Âí<EFBFBD>=¦Ù<C2A6>¦ˆ>ü iÓŒ;+UI'6¨îIc ´WëQ3Üwp´Ç…5ÃIíXìæ0á2…š¡¬IJàÔ þÄGÆ5C["Im÷¦uê3£Îšf˜¶)Õ*ߦIL
KFIbh-UöœmaE3ÔÒeY_Ž4£z¹‡-3¤jâP,Ú…Ó¤žrŸÎú4Cm[ ³ù…%Ͱ¤<C2B0>w¢§%ÍÈ<1F>xé†4C!ŸŒu‰=¤‰·q9ÒŒ
Ê<EFBFBD>šÈ§!ÍP56þ…ã¶L“fØ48±<38>Ç·JCš¡úk¼¡c†ˆ{H³ˆ­“@_"‰=¤ê¸~—(¦I3<49>ÖíÕä½Ö¤6Ñ\ô1-šEÜãêLy¶¢6qAb<41>h†'<27>1“`J<>Ø#š¡-vÙ9ŸÓŠfÔow8¦ÍÐS6£L“Ÿ iÆ=ñA)¦I3T3<54>w¹%ÍÐÝG¬+iFuIÈPäOHfä%K‡ÅˉfØsˆ­;<3B>{LµìÍhsK]<5D>Z4à ß3Ͱ¿ðuоþÖªýUÖŒîVc±»cͰ­Â<C2AD>èÊšaå»øÊšÕƒÚ`R̳fH¡âSì•5{ŠÒVÖ¬àTñà˜gÍÐÆ•mÈ…5+wõéÊšÉ\¸zNðÕÊšôÍáF¸ k†=k._Y3lêUvK<k†&|3[Y³ÎSÜrxaÍÐЇ;ƒ.ª<4A>°WÍ2v<32>þD5Ë´"!š<E280B9>y™³¨Yfb5Ce<43>À jÆ+<2B>=jF;ðÜérAÍÆ°Iê5üîß³¨zdçÀÃô¨Yj<59>v
׸®Z4£&« ¯
É:S{D3hà j†ciÜèP³Ä[ŠxÔ,¡ ¯|¬5cµtþžEÍ ÂĽi†TcùÞ-¦ט1Íp0^¹µîbšÅ:ËüWÓ ßÎì_M³H
'qÍPÕç„öˆÅ"uZg<5A>g†êœ1¿œœTo=³DݸÑp;Kìñ̰7”ïN“Ö3ÃP`sN˜ìöÌУiƒ\Uh=3êCŠjzÆY<C386>g†f£"PL{f´»ÇÃçm¶ëqÓ“o³ñÌȺ-cÆ•7Z{fôKg>Yb<59>gF§w²§ñÌ2Un 3ÿ Ú3ËÔh&PZÃå<³L‰Óö3žŠFP·:? þ ¼iöàë«i˜Å<CB9C>ŠÓ É@ü,¼šfxTHÜ“×f;§Œ5,¦YÈ<59>¬¢kcš¡Á§H/i†Z^~XM³
šá( Íkê Š?p?İӞŽÇ{'â<>õ̰<15>ºbÙûÔžÙ¬¥RZÐå<3SÇiÞ\1žÎÃ<C38E>¯ŠöÌðÞ𤧃öxfH<66>Kõ±|^=3<ž<>;Ë‘îØã™Jk²çh<3ÊÏ @Ó'Zö€fœG <EFBFBD>Å4;î3éÕ4ʵsÙÅ4;@S¤½i†ž9Òìè£Ñ%fH³Œå]çV¸ž4ºÚ"÷Šõ¤Þ3ZH3ôp9¸ý¾ÍƌÇ×*šaó÷lܺÚfhâÒ£|
ŽwÆÐ <0C>äcvÓJüò ZD" N4Ã`b¿wÍ2)ùkâA3àA;%. ÊÎyŃfw ÇkÍrãçL‰Ð,ÏY×Jše 5þ.xÔ ;Ô‘›ú,¬f<>VÝIR×B<42>?ǯ§„ n†yòä”7=%¦q3œwá$]B7ËØ~åÓÐ7ËüV'‰Ü ÙRRö¸àfw¹kÅÍÆ'Š]ƒÄ n†#NÎ/Yl³Œ<C2B3>i'ïl3ìÓcÿµÚfØj®Òx×Ûfhê*Ù?m†­Miv¶Øf8`à$é…6CBsçÒ…6Õ6­oed¦ñ¶¤ÃÍò<C38D>FNüEðºÙX<ŠSÌñfȾh§ØsŽ7»ûç]+oÈ3áFÌž7CzQ:åóq¼YBnÎÀXx³„þÝEÞLÇ%Tfî%íy³q{*= ˜X®SÌñfH0II>Ë›%tþî¼$ö¼6$IáÍà5'™‰=o†><>Þ õ|˜½èfØ(
¥ "¦A³#‡ññ¤sÆÐ e H4JLÆЬ ]?˜ ÉýÆg­g†at_9Î{<3<ìŽ<06>TyÏ ´Ó»ð]Ú3ÃN©S<C2A9>¿÷xfÄqž¸G¬¢²ú¹d<C2B9>Ý/-š!uõ¨wèÍðˆÙ¸—‚Í*å òj7KÜBv¢h<37>ÒøÀÉãf ý
ŽQÉ_ M3zTDYk¨_Þ4Ãã`@[ÒcZh<5A>iF½ ©[5CÿAH\dQ3dÄK"GÍH¤¤n‡<L<>šUÔ Ÿá†ñjV©ŸmÅÞå—GÍ*V8Fï.{P3<IaQÀd¨EÍð¼„ÿW$[ÔŒÈ1;å6á²}È…dšÇ fèÂ7®ê{àQ³«ÈI«kTJ5Cê÷ø\#w»³ªY£<59>çCôp«š5ª3åZ¯š!Q;STüòªY£vîhæU3$\ÏΦ^5£‡ƒñŇWV5ÃÀ¸ ¸vÁͰñ—Dãô¸^$Nµ_p³±
>W5ª6f°ÖcuΨfXÉc1¥/¯šQW¹ÙÞ¢fèGYõB½iÔ¬q¢%}é=j†pcêM¼·¨ò‘~«3¨YG—D´ÌL£fÈ,Îè”ÓFͺy³¨%S—€ôåQ3dC½É7xö fÈõÅ^R­ {P3äóæ™žlM3¬;q˜Så£Ó¦Òr“¬<1F>iFô_«3‰È˜f”^;–è•›)Ó 1¤M¼¬2¦¥É†þxnÊ4CJ+V<>ù<EFBFBD>¯2Í(Ý•N¥<4E>öåL3¤­Ž©ùiFi«8gÌÎiÓ ±*o_Î4£üÓt§5Ó 14%‰ßOmšQ&)¶zN1¥”iFÙ¢Ô?†ß3mšQJ謷s¦å}2ÿ™¾œi†4MÒñ8Kטf”Â9ž×[‹Ó-»M3äbÖ$ûSÎ4CZåøB¡¿gÊ4#k>R°¨:Uå¹oM3jF5Ú…èÒ¦NIç)¿7Íz§F¨_Î4ÃÍ<18><>OÁ´iv @§â3¸YB¦ O8Þ6è
8Wé^iM3¤$âø¢ÜÚcš!íðÀA{åajÓì ºç¤ú oš! Æ[þm†*†s+!åVX<>÷£IçzáQ¢Ç6cF6Ãsfæ® m$ý䤀…6O‰Ú í•Ä
Âí<EFBFBD>=¦Ù<C2A6>¦ˆ>ü iÓŒ;+UI'6¨îIc ´WëQ3Üwp´Ç…5ÃIíXìæ0á2…š¡¬IJàÔ þÄGÆ5C["Im÷¦uê3£Îšf˜¶)Õ*ߦIL _h³±2nò;Ø,΄Šk<C5A0>ÍbºAïš<C3AF>¸Ôäïv®º*LTÊ»f(<ßv™qÍÀ±Ç"<17>sÍÐÌGÚô.®Ó<3®ŽOù'k@\ÔºeÍRìNþÀ=kÚ½ñª*ßÀYRÌ©f(éÂ,/1£šá3ªY@Mºu2£ša¬só<73>E5ƒR/ÍUÕŒ;×ð¯9Ô,àüœk/e1÷ f8W?Dk*5;нWnu5Ãftå<74>Ñ5Ãó­äÕ.¨ü)ç\P3J{äR»5;ž®¥ jvd)TºVÔ ý OnøåQ3d¼Io»5C6Tˉ9Ô ké”ãP3ÔhÉ[{yÔ,R éWäP34Ì7‡X6¨:Ðtjï+1…šEä VipiU3êNƒSµSBJ5ÃAx/—YÔ ÉÇcq<63> ž2ZfLðL¡f8q¡nÏ<S¨:×Ô{b´¨u®9¥´CÍй¦Œ—²AͰ—ò—<c
5¿¸w5/j-j†ï î³qÆj†=Š»§¸CÍÐÖf¬ÞåQƪfhk#y—WÍÐy<MÇ>O©f8îI©ÈêÔªf0k0¬2å2¥š¡<C5A1>‰e‰)Õ,b—ËÔÉ”j†Žc…Qy[̪fÔ§Ï/ŠUÍÐË«ft"L]¤$¦T3$â¢É÷¹QͰÞN…—WÍÐZFRÙ/¯š¡”g¼\¸O©fè£sp<73>¶Ëªf8¥¯(6œr™RÍp Œñ6ùëŒjqF5ãÄÎ$°¨eÍ(<28>ÜùŽhY3PPÓüÉ“)Ö,RÞ#…ŠqpâÃ5ÃÆÛ˜ÓF5C<35>9̽wL©fèÌ3Öó•o5F5ÔÝ“û>8Õ Ù¡ã+'\¦P3,ùPEb
ß3Ͱ¿ðuоþÖªýUÖŒîVc±»cͰ­Â<C2AD>èÊšaå»øÊšÕƒÚ`R̳fH¡âSì•5{ŠÒVÖ¬àTñà˜gÍÐÆ•mÈ…5+wõéÊšpGÄ…5CÏ ~ ZY³¾9qþžeͰgÍá+k†M½Ên‰gÍÐdof+kVÐyŠ[úpgÐE5CÉüöªYÆÒŸ¨f™¶C$dQ³1ï"óOb CRÌ¡f¨ì˜`AÍx¥³GÍhž;].¨ÙX6é@½ f˜7Òý{5C<35>ìx˜5K­Ñ®áµAÍ(/˜[V:Ô,ñâ–"5KhÂ+«GÍX-<2D>¿gQ3ˆ0qoš!ÕX¾wiÆõ 5C«éW~yÔ çð؃ëÔ <0C>ýÇL|ÑZÔ /~Êô¾<j†g=x#lÃÔ,RžyéwH¡fÊ<E28098>[œÌ fÇ;Ø7dmË fhD9õEb
3fL3ŒWn­»˜f±Î2ÿÕ4÷…3ûWÓ,Òbƒßoš=øújšE$fq§âÅ4C2? ¯¦÷äõ¦YÀÎ)c 5ÃI5V<ßZÕ 9­T0¶QͨïæÎiF½¤³4Vs¤ÇŽÙÆ™fXhðéŸÄ”i†~h,½3ÍÐYh|­…5Ô¦ú
ir'«èÚ˜fhð)ÒËbš¡VÓ,€`C`1ÍŽûLz5ͰbíÜGv1ÍÐioš¡ €gŽ…4;úht‰Ò,cy×¹®'Í€®¶È½b=i†Žó<C5BD>÷ŒÒ =\n¿ïE³1ãðáǵŠfØü=·®ö¢š¸ô(Ÿ‚Íð˜Øï]D³ŒDJþšxÐ xPäN‰ h††²s^ñ ÙÝÂñZA³Üø9Sb4˳CÖµfGB<47>¿ uä¦> k†íƒÙ£ÕÃfwÔµÐfãÏÁñë)!ƒaž<9åfÁÍÆÝèD<C3A8>e‰iÜ ç]8I—<49>ÁÍ2®é΄ÇÍ2¿Õ3fp3dKIÙãÝ}ä®7Oœ(v Q2üÆ4×…š †Ä,jFO9p2žCÍ"Ö莛%¦P³øØZ—GÍ"¶>•¤\<®è v”AͰc0þQ1î j†"îã¾;YÔ §oè?´Õ‡#̘BÍ(±-Ïgšao7„.S¨j"e‡âò¨ÚÍv7Î4ÃA*ZŽÓ;{L3¬IëQäkgM3 ÓP(4cš¡
3¸Ž89¿d±Í2vz¤<7A>¼³Í°[N<>ý×ja«¹Jã]o¡©«dÿ,¶¶6¥ÙÙbá€<C3A1>“¤Ú Í<>KGÚl,VÛ´j¼m™ÆÛÁëfcyPð(N1Ç!û¢<C3BB>bÏ9ÞìîŸw­¼Y"Ï„1{Þ éEé”ÏÇñf mº9cáÍúwy3oPP™ùÆìy³q{*= ˜X®SÌñfH0II>Ë›%tþî¼$ö¼6$IáÍà5'™‰=o†><>Þ õ|˜½èfØ( žRt7¦Y@Å
òj7KÜBv¢h<37>ÒøÀÉãf ý ·G¿¼ižnN—7Í<37>©q%¦L3ªNUN'¬i¨eˆÂÀiÔ oc˜G/5CnõÝ<C3B5>v—Nî[yyÔ,P
¸vÁͰñ—Dãô¸^$Nµ_p³± ê‹%¦T34Y«|tuyÕŒz;Ó<´®L!ôÕçëš¡òŒ+ƒ.Ïša<C5A1>­nòL±fÁÊr†5C¿(ÒI²Äk†ù±B<C2B1>•ŒeÍðtÓ»ÐÁV5ÃYmùÒ´¬òù±ÏÅ—»eÍPTšî²fȽyË5Ãw-Ýü§eÍŸîiÚ<>;9Ö E§ãVŸÏIž)Ö,àÞ•¸Ç©f<C2A9>ÿ1ˆ4k†Â§Æÿåò¬¶7q¸Ä×´eÍP)ˆ^iÚ¡<C5A1>ÖÃRZ× ‰ûh}Ø6®ò¨ÿÅŒ)× <6E>x¶²®õæªÒCÖºf<C2BA>ºçŽ7¦KH¹f<C2B9>:äÊWȲfh90žGy¿ÌªfH«´ª.Ž>'w<>šá‰¤í¬j†jéöhnF5 ÏÎàåU³@ý¤i”SÍ<53>¼ÝÐÈô”˜ü$ƒ$‰)Õ )ŠØ1<17>ɨfˆè‰×$¦T3ÜtÆçÛòÏ”j†² T*ó÷”j†ý?®?¤˜%éϦ™V5 :AÉ©fè<66>†m_Ñ´Œj§š!v¯±<C2AF>j†~æ·ZëT3Äh™r™RÍ@Lµ»7½UÍÃ~÷±´ªUá£}û)1¥š!6°ÍßSªY ú<C2A0>.]i­jÆ)º©qËF«ša9þô¶ª-Õ;5¸¼jFÝè°ÒNbX Ï<>ŠL\5£X/Ò=Ò¢fôOÆåÏS¨
@§â3¸YB¦ O8Þ6è „ªš)bP3ú°>%¦P3úÃqmNðL¡fˆq7+ŠÔŒÞh4D<34>p™BÍè« núlQ3þ`¥<C2A5>SÍèè7©±ª&!¥šwÓ©fˆ<66>7Ó`U3\ïh¸W¦†¦T3|‡x‡<78>bF5Ãwo¼b3¦T3úÎ…md§šá»Žt5¾Þ­j†9ÛÐ"‰Õ sËXöœiŠgJ5 $,œÒâÒªfáqb.¯ša~_ݧ†¦T3̹ ÕSbJ5Ã\<5C>l­;Õ,<
Æ[þm†*†s+!åVX<>÷£IçzáQ¢Ç6cF6Ãsfæ® m$ý䤀…6O‰Ú í•Ä ä/¯š:à®I¸0£š¡}äàXÕŒnQ±²ØéT³ð«j†¥À4—WÍ0ÇFÞñu¦nÍãj©ÜŠÝšfèÛÛÑO<C391>cÆ4Ã2¡Q¦´Ä”iHU˜|¡5ÍÂ/™>ƒ1Íp0„îˆqRhÊ4ÃŒšN·L™fXÈ<58>ow
_h³±2nò;Ø,΄Šk<C5A0>ÍbºAïš<C3AF>¸Ôäïv®º*LTÊ»f(<ßv™qÍÀ±Ç"<17>sÍÐÌGÚô.®Ó<3®ŽOù'k@\ÔºeÍRìNþÀ=kÚ½ñª*ßÀYRÌ©f(éÂ,/1£šá3ªY@Mºu2£ša¬só<73>E5ƒR/ÍUÕŒ;×ð¯9Ô,àüœk/e1÷ f8W?Dk*5;нWnu5Ãftå<74>Ñ5Ãó­äÕ.¨ü)ç\P3J{äR»5;ž®¥ jvd)TºVÔ ý OnøåQ3d¼Io»5C6Tˉ9Ô ké”ãP3ÔhÉ[{yÔ,R éWäP34Ì7‡X6¨:Ðtjï+1…šEä VipiU3êNƒSµSBJ5ÃAx/—YÔ ÉÇcq<63> ž2ZfLðL¡f8q¡nÏ<S¨:×Ô{b´¨u®9¥´CÍй¦Œ—²AͰ—ò—<c Ó-S¦‡8ßNR¤Y°f!ͰLÅ<>i4jI3ìJ·ÒËfX„g4ü<34>Ú™2Íha? øœi†‡…±ø<C2B1>ÞõÖ4Ãó>þ8á2…šá(
5¿¸w5/j-j†ï î³qÆj†=Š»§¸CÍÐÖf¬ÞåQƪfhk#y—WÍÐy<MÇ>O©f8îI©ÈêÔªf0k0¬2å2¥š¡<C5A1>‰e‰)Õ,b—ËÔÉ”j†Žc…Qy[̪fÔ§Ï/ŠUÍÐË«ft"L]¤$¦T3$â¢É÷¹QͰÞN…—WÍÐZFRÙ/¯š¡”g¼\¸O©fè£sp<73>¶Ëªf8¥¯(6œr™RÍp Œñ6ùëŒjqF5ãÄÎ$°¨eÍ(<28>ÜùŽhY3PPÓüÉ“)Ö,RÞ#…ŠqpâÃ5ÃÆÛ˜ÓF5C<35>9̽wL©fèÌ3Öó•o5F5ÔÝ“û>8Õ Ù¡ã+'\¦P3,ùPEb [®ÜßÝ¢f4æ{â´¨ž¯°]Éj„EͰ֥ïs؃šQŸô¹áP3ì<33>­•0c
5éW~yÔ çð؃ëÔ <0C>ýÇL|ÑZÔ /~Êô¾<j†g=x#lÃÔ,RžyéwH¡fÊ<E28098>[œÌ fÇ;Ø7dmË fhD9õEb 5ƒ¬ƒ”OîzoP3<£O™xt5Ãã6 -n6jQ3<£æ6N M¡fHŽÇú™;Û[Ô ܳEb
I5V<ßZÕ 9­T0¶QͨïæÎiF½¤³4Vs¤ÇŽÙÆ™fXhðéŸÄ”i†~h,½3ÍÐYh|­…5Ô¦ú Jg\uƒš!oæ>ýp¨vmÆ#t•wÓ fÜ<E28098>Æe5ÞºB†ö¹:røú3ª6ܤîòª8b¥Ú©fØjDÏo¾[ZÕ k)*G+6Y­¸¼j†
Q2üÆ4×…š †Ä,jFO9p2žCÍ"Ö莛%¦P³øØZ—GÍ"¶>•¤\<®è v”AͰc0þQ1î j†"îã¾;YÔ §oè?´Õ‡#̘BÍ(±-Ïgšao7„.S¨j"e‡âò¨ÚÍv7Î4ÃA*ZŽÓ;{L3¬IëQäkgM3 ÓP(4cš¡ ß<EFBFBD>d£ßªf´÷\d<>dQ3jîS£è 5ÃV>žN¹™¼EͰª+]Ö+Þ4úFž+Ó 5 ošá«åúó¦:êWiùìP³ñ.gi~îQ3|ŠH<11>˜AÍR¹/hgš¡[Q—õ«7Í2´šffÓý{5Ã^ׇ.¦5œ¶3ÍAAüÕò¦Y§¼iÆþqœr™¢ŽÎqÛ¿<C39B>7cšeìü&îêH³lž,ið€ªà6¤ê4ZJbâXÒ Ž2ÆxÒ·¤jõïöŽ4£<34>±AÈ,MšeÂz¹»ZÒ Õåm~§„¦H3´žàKƒb†4Ëèô9Þeö,i†¶òl HLfhF4iÏ¿©H34õ½·li†Ž¤8Dâ®öÆ4CfÔdžM­i†ì„†žâ.S¦6pËü<C38B>
žRt7¦Y@Å <EFBFBD>Ï,Ð
·G¿¼ižnN—7Í<37>©q%¦L3ªNUN'¬i¨eˆÂÀiÔ oc˜G/5CnõÝ<C3B5>v—Nî[yyÔ,P Òºód„¬i†öÂ8³â™ÏšfÔ0<EFBFBD>n@í‡ÇÆÐŽ%ÍpÃÉx˜ÜÙCšÁª@Ö&_š4COÈ“u…Ë“fØLE<45>-i†ïu„ R¤YE­Šlý;Ñ ]°Ó›ÍðõLäKL‰fè@)çÍU¶&<1C>Í<>Ü/Ý7//š!…
ê‹%¦T34Y«|tuyÕŒz;Ó<´®L!ôÕçëš¡òŒ+ƒ.Ïša<C5A1>­nòL±fÁÊr†5C¿(ÒI²Äk†ù±B<C2B1>•ŒeÍðtÓ»ÐÁV5ÃYmùÒ´¬òù±ÏÅ—»eÍPTšî²fȽyË5Ãw-Ýü§eÍŸîiÚ<>;9Ö E§ãVŸÏIž)Ö,àÞ•¸Ç©f<C2A9>ÿ1ˆ4k†Â§Æÿåò¬¶7q¸Ä×´eÍP)ˆ^iÚ¡<C5A1>ÖÃRZ× ‰ûh}Ø6®ò¨ÿÅŒ)× <6E>x¶²®õæªÒCÖºf<C2BA>ºçŽ7¦KH¹f<C2B9>:äÊWȲfh90žGy¿ÌªfH«´ª.Ž>'w<>šá‰¤í¬j†jéöhnF5 ÏÎàåU³@ý¤i”SÍ<53>¼ÝÐÈô”˜ü$ƒ$‰)Õ )ŠØ1<17>ɨfˆè‰×$¦T3ÜtÆçÛòÏ”j†² T*ó÷”j†ý?®?¤˜%éϦ™V5 :AÉ©fè<66>†m_Ñ´Œj§š!v¯±<C2AF>j†~æ·ZëT3Äh™r™RÍ@Lµ»7½UÍÃ~÷±´ªUá£}û)1¥š!6°ÍßSªY ú<C2A0>.]i­jÆ)º©qËF«ša9þô¶ª-Õ;5¸¼jFÝè°ÒNbX Ï<>ŠL\5£X/Ò=Ò¢fôOÆåÏS¨ L+5F4ÃÍ´3UqyÑ ¥¸CÆ©<C386> ëXZ²±×dH3´jÆ1 ·>·¤ž Ø^!ƒ²}eH³NÏÒd \ž4CÍñpÖÎ{L3Ü×Ç£C;Ó Y”7Â.1ešQýxëßcšõçëò¦¸,¾Ï Çøž´ ž)Ô
„ªš)bP3ú°>%¦P3úÃqmNðL¡fˆq7+ŠÔŒÞh4D<34>p™BÍèšH×8ÕŒ.ˆ~p“«š!ÄyaRªY tnq7<71>j†Øy3 <EFBFBD>òì<EFBFBD>éT³×>Ö§]b<>j†r|ŸŽ)—)ՌՌ»Ñü5¥š<C2A5>”„x$ÑÐŒjF›”Ç#1¥ša뗦⩡=ª5<>jIZ´ ,W¤êQb<51>j†„<E280A0>zŸÂZÖ¬RÉ{UhX3$ Â?Þ±Ç5ç<15>]]§yv»fÈ3¨Üó™BÊ5«ü >f,¡Ç5«<35>/Iα®Y¥qvݶ®Y¥þ¿³Òºf•Häñ$‰=®ô0Ú¥åG<ãš¡
V5Ãõކ{ejhJ5Ãwˆwø(fT3|÷Æ+†0cJ5£ïìQØFvª¾ëHWãëݪf˜ OVÆ5«´³äB³f(k7 Y¹Õ¬Ò–÷!Ž˜6Í*öŽ(<28>`­iŒŒêø9͘f•ö²t²¦²$Ž<03>‰»ÄÓ¬©—znÓ-{L³JEL@\Ö4b†G/Aƒ<41>iVѾg(¤I³Šn¬¸OòÃ!Í(ï"<61>hV©¶ž¼»oE3¤d é<>3§¬h†ç(ÜïÊšfèí•J;m²‡4«”ñÇ4iV >Øcšáµ±VëjšUê:†S•"±Ç4£,ôzH³Jw^*Ö¤˜&ÍÐ-l<C´¦YE†Õ̤³¤Y¥ÆU.Gš!7äPº&ÍÐd íåEÁ6¤òFzæü×ËføSIzAÄ€fè?ÆF]bh†N€õγ° ªæñœâ^iÐ Ù&hý&[F4Ã;4“.š¡Ú¾"<22>[b4«ÔX=ðMÒpfxó*'·\N3C
-˜QÍ0·ŒeÏ™¦x¦T³@ÂÂ)-.­j'æòªæGðÕ}jhJ5ܰP=%¦T3ÌÕ¹ÉÖºSÍÂÓ@þòªY îš„ ÚG> ŠUÍè+<>N5 ¿¸GÚ±ªf¸Y Šä&À¥53¼¯•QW‰Ýšº<>á
LsyÕ slä_gšáÖ<®Ê­Ø­i†¾½ýÔ8fL3,eJKL™f<E284A2>T…ÉZÓ,ü9ƒÿcš¡éÃ1Ó CèŽ'…¦L3,ȨYátË”i†…Üøv×0Ý2ešaqˆóí$!EškfÒ ËT,YÃ)1Eš¡£Ýxð4Ã.¡t+½i†ExFÃß©<C39F>)ÓŒö³€Ï™fxXé]oM3<àã<C3A0>.S¨ŽÒ°åÊýÝ-jFc¾'Nšáù åYÏhfÈ_iöl43¼ã½´
Û•¬FXÔ k]ú>'‰=¨õIŸ[5ÃþèÑZ 3¦P3È:Hùä®÷5ã1ú”‰GgP3<nÚâf£5Ã#<jnãÄÐj†äx¬Ÿ¹³½EͰ Á=[$¦P3¬äqÆU7¨òfîÓ‡ša×f<BWy7 Íhfh„†v
jÉ ²+i4³FBö«¦Jöhfø<°ð McfÔ#m<Ï”>cfF}ðç™á“ʨX\LcfhŸVò­âÌ íj»Ypƒ™5Þ‰)9OèìÁÌ<C381>0CÉhlU̬ÑÊþìòrÚ2ÃGŒ#µÆ73c™¡ñZË-K[fèv€ü¢C.gm™5VÆ{â3Y£ÖÖ—„Ê i685ãDFK™áÚÈc`ÕPfÔ®
iœQfQ3ìI¡+d˜!¥šaŸ«#g‰¯?£šaÃMjá.¯šá<C5A1>#&Qª<51>j†­Fôü滥UͰ¢r´"1¥ša“UЊ˫fØð ua¥ÌF é¦d)3ºnÂí¹jÊ }è·<´‡2CzNÄËwC™µò¤©]Î2Ã55>ǹ6Rw<52>{ ÑÆ2Ãõ°ñØXfèóp¦Y<C2A6>c-34<33>3Ø!w3CfæÞ?0˜f±åÌ51è´”»gFY?wÛË™áBEšk¸cg† <>œMÎ ]'27Õ ˜æÌÐ{,G#g8YÎ¬ÑÆõ{ØÃ™¡·Ü¸¾¥§<C2A5>åÌ(_HÞÀËqf<71>ñÆý‡Ÿ g†K<£—DX93ä<12>p.
I6ú­jF{ÏEH5£æ>5Šž`Q3låãé”É[Ô «ºÒe½âM3¬kä¹r1ÍP3<50>¾ð¦¾jY®?oš¡£~•–Ï5ïræç5çˆÔ,•ûºuY¿zÓ,CÐå.@«i`6Ý¿gP3ìEp}èbšQÀùg;Ó¬Ä_-ošu*¸æÀÇ)—)êè·ýÛy3¦YÆÎoân¡Ž4ËæYÀf¨ gÖ¨/þ¸ŠåsМ®ÿ1“Ÿ}ÕÌpù<70>uÓÁ ‰V3CK:@£é˜±G3±†»ÏH3Ã7¥²ìÓXÌ Ýêp;•iƒ™!‰ÛЬ˜šq@êçËÌ =YyßhÅÌÐÉ.>WÁÌ<C381>žT©uu؃™!=)ù\)3|¡
nCš¡N£¥$&Ž%Íàø cŒ'}Kš¡VÿnŸáH3úë„ÌÒ¤Y&¬÷<C2AC>»«%ÍP]^ÑæwJhŠ4Cë ¾4(fH³ŒNŸã]f<>Àfh+Ï–€Äi†fDc™öüŠ4CSß{ËÆfèHŠC$îjoL3dö@MæÙÔšfÈNhè)>á2ešaG±ÌßYÔ¬ ÙøÌ½Ó¬ ­;OFÈšfh/Œ3+žù¬iF .$¾QË ™Kç]f-³N[ë •¨{0³NfÇÛÓ˜¾l€Šk[03´¿ÃÁo=W̬Óv“¤»XË _CÜñšÈ]Ú2Ã×pÜ¥¢œbÌ ­ñPnq¦{0³N3÷¹fÖ±érÆíâ¬fÖuÃ.£™¡y h¹Ö
è$1ešÑ~xl íXÒ 7œŒ‡<C592>É<EFBFBD>¬ g†¦yGA¿{83äBhñi2hgÖQ½•QñÆïŠæÌ:ú)çq•¿@{fÔP<C394>ä—i<E28094>åI¦‹.š!O긻®jÐ _ë§§<C2A7>Í:fœ“|•³ R¨p|Æ”²Í<>B…ßÄíõŒh†ï<•÷rk7#šqkÒäå4h†ìª†•
dmò¥iI3ô„<YW¸<i†mÀT$ØføžQGÈ !EšUÔªÈÖ¿ÍÐÅ{0<¹YÑ _ÏD¾±Ä”h†”rîpyѬQõakÂÑÑ ÉýÒ}óò¢R¨À$±RcD3ÜL;SÍPj<50>;dœÚ™"Í°Ž¥%{M†4C«f³pësKšá ò<C3B2>-i†é2(ÛW†4ëô,MÆÀåI3ôÑg휱Ç4Ã}}<šq1´<33>EÙq#ìÕ<>·.ðM1¦Yž±.oš<6F>;Àâûœ1…ša±pŒïIà™BÍÐÐ)ÏÞ™N5;qíc}Ú%ö¨f(GÁ÷é˜r™R͸¸Í_SªÙIIˆG ÷b4 ²«âÝSQ{f˜
ͨfT°Iy<¶~i*žÚ£šQ©¤EUÍÀrEj¡%ö¨fH¨÷)¬eÍ*õ—¼W…†5C2*üã{\3p^ÙÕušg·k†<ƒÊ=Ÿ)¤\³ÊÏàc&Éz\³ð’äëšUºg×mëšUêÿ;K!­kV‰„@OØãšA£]Z~Ä3®Z`lÙðde\³J;ÛA 4k†²æq•«QÍ*myâˆiÓ¬b?áˆÒ ÖšfÀÈÐA{Å[Ó¬Ò^CnQÖ4CÄq 3q—ØcšU"õRÏmºe<C2BA>iV©(ƒ ˆËšf@Ìðè%h°1Í*ÚWRâ …4iVÑ<56>÷I~x0¤å]Ä"L´Í*ÕÁÖ“w÷­h†” $ræ”Íð<C38D>à…û]YÓ ½½2Ri§Mö<4D>f•Ò¡Æ|#þ˜&Íj¡Ãgà2{L3¼62Öj]M³J]ÇpªR$ö˜f”å<E2809D>ÞÀABiVéÎKÅšÓ¤º…<C2BA>g¨Âé<C382>Ö4«È°š™t´Ã¸ÊåH3ä†êBפšŒ¡½¼(؆4CÞHÏœÿz9Ò *I/ˆÐ ýÇøÁ¨KìÍÐ °Þy4CÕ<>SÜ+ p¬-4ŠñÌ0Ðç¯=ž:ôaÈìEÎ yWyÍXÍ ó¥ªrK}£™ažÀÍIì £™až7WìJìÑ̨{- ªÄÍŒR²hÄ«f†9¤ÑJ-IìÑÌhÁ©ØF3;©¸é¢Ëifh퇹<E280A1>ÝOË™<C38B>T}$¦ÖÌ0Á ´tª7š&Ôëen!j43týC
š!Û­ßdËÈ€fx‡æaÒå@3TÛW¤qKLƒf•«¾IÎ o^åäËifHRAܸ´f†÷µR#ê*±[3C·3\¡<ëÍ ù+íÁž<C381>f†w¼—vD^¡Í <0C>ÐÐNAv%<25>fÖHÁ~ÕTÉÍ Ÿ¾¤iÌŒz¤<7A>ç™ÒgìĄ́<C38C>þï\03|R+ íÓJ¾U<ƒ™¡ý@m7 n0³Æ;1%ç <09>=˜f(<19>­Jƒ™5ZÙŸ]^N[føˆq¤Öøff,34^C+b¹eiË Ý<0E>_tÈå¬-³†ÃÊxO|Æ2kÔÚãÐC™!ͧfœÈh)3\¬ʌڵ¡ .¬”Ùˆ!ýCÒ”,eF×M¸=WM™¡ïBý§€öPfHÏ)€xùn`(³Vž4µËYf¸¦Æç8×ÂÆ2Cêrä!ÚXf¸Þ6Ë }Î4«s¬e†&pc;äáÎ`fÈìAÂÜÁû3ÃÅØÃL0¶œY£&<06>r—ãÌ(ëçnÛb93\¨Hs p<EFBFBD>Úƒ™¡é`ø~`1³<13>ÎSЉ-f†Ù{eA®0<C2AE>™aöAæÉ½$
wìáÌp¡â¯³ Ù¡ëDæ¦Óœúa<C3BA>åhä 'Ë™5Ú ~/{83ô×·ô²œå Éx9άQ"Þ¸ÿð3áÌp‰gô+g†\¢ñÎ%¡áÌõÅW±|š3Ãõ?fò³¯š.ÿ±n:8!ÑjfhIh43öhf#ÖpwâÉ`føf T}‹™¡[n§ò m03¤ qš3C3¨@ýœ`Ùƒ™¡'+ï­˜:ÙÅçj1˜Ò“*µ®N{03¤'…#Ÿ+e†/TÁ…Ä7Jc™!sé¼kÀ¬eÖik=¡UbfÖiÃ,àxb3× fvRÍ»¡¾ÁÌÐmOyÙa13tž |—ÃÌ03¡;påÖ<C3A5>3ÃÌtp‰=˜úbÏ-n03ô œe@—ÃÌЧWU”ÈC™<43>…ÂÕ2ì5VÀrIkÉ <0C>ÉûäΈF2C#A´?âT +™¡ïOGzå¹Rf˜ÏàóEþ| evÒÑûÝÔÜPfh2ø$à[Ê ]Ç]*ðqšµÌÐK€|»Ó–RÀâ|d4"\¯Ëh<C38B>̨!óx Í»%3$€hƒ(m—µdFIe<49>ŸQ$vKfÔȉ«\Fi$³Hó`H%§©•Ý’ÃPAÒRBÈ÷çÌU
Pqm f†öw8ø­çŠ™uÚntk™ákˆ;^¹K[føŽ»T”S,ƒ™¡5Ê-Î4cfÖiFâÞ"—ÃÌ:6]ÎÒ¸]œÕ̺nØe434/<01>"׺áÌÐ4ï(èà7cg†\¨->MíáÌ:ª·2*Þø]ÑœYG?å<î¢òhÏŒêü2­³Ç3£<©ÂtÑå@3äIw×U ™Q¶Ùx°Ùd†XWvÈ®$3d<33>!éRzÉjÈ ¡+Z5L<35>ì†Ì¨Íû¸Såe!3JDCÃonP` 3JDÌ@]V2£VÔ½ Kª!3Dp(<28>¥Ë¶†Ì"q(}ž!ÈŒ2ÔžüL™Q†Úll|YÈŒ2Ô·d¤˜Ì"õr¦q—…ÌÓ
šákýô´³ YÇŒs¯2b4C \5d†ú J«c™Qúf¥vd·eFék…[öKì¶ÌÃÁð!Œ£¶Ì«8p:USY”VA•7c
ŽÏ˜R¶¢R¨P฽žÍð<C38D>§ò^nífD3nÍRš¼œÍ<>]Õ°²á^Œ4CvU¼{*jÏ ³޵…F1žfúâüµÇ3C‡> ™½(Ù!ï*Ï¢«™až TUn©o43̸9‰d43ÌãæŠý@‰=šuï£D•Ø£™QJ<16>xÕÌ0‡4Z©%‰=šÍ"8Ûhf'W0]t9Í ­ý0·±ûi9³“ f†$µ11”ÖHìÆÌ(¹m|<7C>‰;¾Ì ±6Ëá/‹™!I
¢<EFBFBD>$ÃÔš&t€NõF3Ãz½Ì-D<>f†®¨®A{034ýC ß,fv¢óÀyJ1±ÅÌ0û`¯,Ȧ13Ì>ÈÒ<¹—¤ÁÌNj±y7Ô7˜Z¢í)/;,f†.Â3<C382>ïr˜f&t®ÜúÑ`f˜î¯"±3C¿@ì¹Å IÌ 1dþ‡Sb
f†~<7E>³ èr˜úôઊy(³“<C2B3> P¸ZÐRf˜µÆ 3C
X.i-™¡‘ yŸÜÑHfh$ˆöGœ*a%3ôýéH¯<WÊ ó|¾ÈŸ<C388>¡ÌN:z¿šÊ MŸ|K™¡Ëà¸K>N³z á<00>owÚ2C ¼<EFBFBD>‰.±3ClÌ"yÞ€4f† 6l)œÒÇYcfˆ<66>€6¦$vkfÔœOˆ²ÄnÏ 1”
<EFBFBD>ŒF2C„ëuíÑ’5dÏbc¡9c·d†°m¥í²–Ì(©,ð3ŠÄnÉŒ9#q•Ë(<28>di ©ä4µ²[2Cr*Hš@@J2Cùþœ¹ª!3Ê6ã!{‘ÌëàÊùÕd†¬1$]J/Y IƒMã™!»
™!”cE«† Ý<E28099>µy?wª¼,dF‰hhøÍ ŸWæ„Jã™QVN»„HÔžeÅÍnþ—õÌC|èiZg·gi6ú…kÏ ±e§å2ž<>7~¶ÚVžåË¡ŸçtÏŒòå',SLyf”/‡ííóœfÙí™!ÖŸoã™!ï-H[Š)Ï ±Œ•-oÏŒréÐAåä>Á
dF‰h¨ËJfÔŠº7aI5d†²tÙÖ<C399>Y$¥Ï3™Q†Ú“Ÿi 3ÊP<50><E280BA>/ ™Q†ZàŒS<>Y¤^NÒ4î²<C3AE><62>«†ÌC?Aiuc,3J_ìÔn“ì¶Ì(}­pË~‰Ý–b8>„qÔb jÊ2Ò*¨òf¬ÁÌ<C381>¤6&†‚҉ݘ<>2qÇ7ƒ™!Öf9üe13$©!‰Byƒ™!†ÌÿpJLafˆ¡<CB86>2Ñ%vcfˆ<66>Y$Ï<1B>ÆÌ<C386>Á†-…Sú8kÌ ±qÐÆ”ÄnÍŒzó QØí™!†²!i°i<3d·áóÊœPi<3ÊŠÃi—‰Ú3£¬¸ÙÍÿ²žbH<62>=MëìöÌ"ÍæO¿pí™!V¢ì´\Æ3£„¹ñÆÏVÛÊ3£|9ô“ãœ.ã™Q¾\â„eŠ)ÏŒòå°½}žÓ,»=3Äú“àm<3ä½iëA1å™!–±²å­ã™Q.:¨œÜ'X<>f”JWäÞqÐ qØýåÖÉš3tkN4g† 4£Tº"÷ŽË€fȈÃî/·NÖœY¤{ÀXsŠØ 93ÄPèÞûÍÝœòáp,K7¿Ërfˆ%5{hÎ ±B½ÜùÛ¬93Äð^IÒ†æÌ"Ý&]B“3C$AšskÎ ±ñÃ]Ê/Ë™QîЭ™Qþ<51>”LIìæÌCA6µf†Ð¸ÙqÓe93äÑaê9D—QœB¸€&û«<3JÌ_â8¯ešqf^™D<E284A2>òÌ(/O±4£ŽòÆ=µh†[¦uþÞMšEjƒ4ÛDÒ ¹wh”sðÁ¸ÓÈžBͨGýø¸OÎh²ªY¤:.ô<%v³fˆ%€7܉øfˆ<66>_CÇþ=!†'û…ÀR²åóAj,eþÞmQ>_䲸åó<C3A5>ŸwyÓºbx¶oùœ(ÚÍ›!g/¢iOâ{“æÍ"uOÂד¯0Í ™xºÔºåúá\P™Z7£\?”9pO£›!†çJjVxYÝ ±3V~๬n†„>Ô£›!†äÅóèn†Øx¦ºoõZ7£DÀD]ó²ÄnÝŒƒtK¿¬n†úb<C3BA>%¿<>J7C ë<>ùp¤u3dô¡iDæRB£!†Y÷<59>G ­!†³ýÄ¿<>nFYè/rä)ŸÝºe ¢–+Èç t3ÄÆ§×»,Õ´néþè™Eb·n†l¿0nhAtl¥!ÄBÃáu3„T1šÑÍ(+HQ%‹ÒÍ(p,Ý{NnFp]7C¨u”ð‡§y3dbcu"_J7C(e¾%6kÂBRåœ!ÊÛ!„-ë8CŠ7CŠ ºÒ”ù/*Þ ±<W<>—åÍÃ9 c¨y3d r“ë4c7o†5­AUóf”x(­å(öðf”xˆ2Rn¨y3J<¬´ò*ºy3J<ÌeæÍÞ 14­
Ý{¿Y²3C>ŽeéæwYÎ ±¤fÍ™!V¨—;5g†Þ+IÚМY¤ÛCÂÒ¤Khrf¡‚$HsnÍ™!6žb¸Kùe93JÀÃÃú53Ê¿“)‰Ýœbèƒ#ȦÖÌ7;Îcº,g†<:L=‡è2Š3CÐd•gF‰yãK絬@3ÎÌ+“¨Sžåå)¶@ƒfÔQ>À¸ço±Í´Îß»I³Hm<48>fHCš!÷<0E>r>bÙS¨õ¨÷ÉMV5TÇ…þ€§ÄnÖ ±ð†;q× ±ñkè¸Â¿§`3ÄðdŸ¢XJ6£|>H<>¥Ìß»m3ÊçKâƒ\7£|¾ñó.ObZ7C Ïö-ŸE»y3äìE4íI|oÒ¼Y¤îIøzò¦y³(}!O—Z7£\?œ Ê"Sëf”ë‡2î‰`t3Äð\IÍ Í›!ƒk€$¦æÍã|ƒ°ðfˆ<66>ÂâUb7o†XÔ­G7£”Ä|ç¬kÝŒ3 ›ÒÍ('qL²'it3JJ<°>*név:ž°ù+§q3v#Ðj4ÍØ<C38D>Ejþ„‰\Ô0…)1Ö>”ÇtYÜ ±ŒŽ—…1E<31>Q¾b@:ß—5nFùŠz' <09>¥p3Ä"_ >»q3Äf<C384>ªËâfuÔž
/«›!vÆÊ<—ÕÍ<C395>ЇZiÜbt3Ä<33>¼x}ÑÍÏT÷­^ëf”˜¨k^Ø­Q"`<60>né—ÕÍC_¬±¤ã·Séfˆa½3Ž´n†Œ>4<>È\Jht3Ä0ëòh¡u3Äp¶Ÿ¸ã·ÑÍ(KýEŽ<å³[7£,AÔrù”n†Øøôz—¥šÖÍ"Ýß=³HìÖÍ<C396>íÆ µ­q3äb¶ž3¦ÆÍS;-n©Œå¶"
-ˆŽ­t3„Xh8¼n†<6E>*F3ºåb)ªdQºåŽ¥{ÏiÑÍ(ƒP®ËâfµŽòþð4o†L@l¬NäKéf¥Ì ÄfM8BHªœ3Dyx3„°egHñfHDWš2ÿEÅ!–çêñ²¼bø"'a 5o†,Anr<6E>fìæÍ£¦µ"¨jÞŒ¥µÅÞŒQFÊM5oF‰‡•V^EB7oF‰‡¹Ì¼Û!†¦5sQ¡y3db nñ”xbŸ¸JìÁÍ<EFBFBD>ˈFÜ2ÀàfˆQ[nµfp3b10}Ë“´ÆÍ<C386>ˆŒÞC\-<2D>±™1žÜegUãfˆ<66>e8>¥7#Oc<ÅÈY¶ÁÍ“JØ7#kå=ò­Ôºe:ŽÉHÒÁ<C392>nF©Žhn•x§Cëf”êÈîfìÖÍ—&´÷©¢M …nұ˾¾ÑÍC÷O.?4¸BÈ!?…÷Ö¸bÀgC8&RvãfHg„ú²Lb7nFi<46>`Áåf¡q3Jƒ|£ÜŒÒ Ë݃Nãf”‰ÚÓ:I4±ÍÀ‰f9xÖ¶r$YWÁ³”méÞî EÛfˆ²jl3Ü»SCè)±Ç6CÏ©qYä<59>m†žSPQOaÔm†žS µþÇ‚›ÕÈír¸Õò _€Àg7Cvd¾)—ÃÍ<C383>™8MbnFí1Æ£~“wEãfÔ~%†I»ÜŒóÿï<1B>ÆÍ¸UYB<59># ݸ§ÈÇ“ËM-n†;¶ŒÎ[0{p3¤˜×ûÀÌêfH¯ÏíÂèf…Ž""%N]N7Cv'ârº2';6ëyb4ºYá·¯&¹Æ´n†fÜâbòÙ£!s2 ¹•ç}£QæäÝ<C3A4>ÐêfÈœä=².±G7+tô_"÷ᶺRyKâ<1C>Ëéf¸ïï´âf¸íÏ<C3AD>ÖËáf¥ë6®7CŠ,ê<>B_q3Üùã<C3B9>î¢,|iÜ ·þ1¹6žUŒmFw~$ ll3ÜùÇ>ËíÐØfH=$o¦¦Ípç'œ-¬¶Y%ì •Ó({l3Üù©ý¡|Ú6«Ti6…kU*·:$!ÏÚf•î”Q|¬m†;?‡Ê1ݳÇ6C«ª§··µÍ<C2B5>„‰¦ÒÌÚ w~ê wÿÚCáÎ<C3A1>¶¦§¼œ¶Í<C2B6>1Yð$ÈecQZdwù´m†;?r¼„%6¶îüÜn6Hì±ÍЩjÌÌçQ§‰vÛf¸ñ<1F>(„Œm†ÿÌ¥»œm†?ÜÊÀÚÆ6Ã<36>é[\•mu3Üø1ã‰Hjt3Üøñ}•uŽÑÍ<C391>:( ü”Ø£áÆÏß5v¼”n†ûþ‰=¾³Ý 9€ÜÎ@BnVOjyF÷ˆËáfÈŸ¤ä  ¡Ç6£ôI© ¸œmÖðL*<2A>&.g5z Œ¢¹XÛ YyX<79>ss[c¡•šÞ<C5A1>mÖèp¹Igk!»®<æ¥ÁÍp|B1<42>Ñý=S÷‰=ºòäZ³•ù{<7B>nÖ¨—3æp~=­!îéžjt3Ê“„gv®ºòÝÆÄÑÎ>³G7kTƒ3• ±G7CÏ)ô˜Òèf¸‰ƒ
<EFBFBD>DÀÔ¼bœoÞ 1pBX¼JìæÍë<>ºõèf”˜ïœu­qF"räoSºå$ŽIXö$<24>nFI‰ÖGeÑÍ"ÝNÇ6å4nÆnZ<>¦»q³HÍŸ0¦p32%ÆÚ‡ò˜.!Ññ²0¦¨q3ÊW HGâû²ÆÍ(_ñ@ï$!°n†XäaÂg7n†ØìQuYÜ ¡ŽÚS¡¶5n†¼CÌÖsÆÔ¸bªÙ·ÅÍ2•±ÜV¤ÁÍ2žW‰=¸rÑÁˆ[Ü 1jëÃ­Ö nF,¦oyÖ¸²‘Ñ{ˆ«¥q363Æ“»ì¬jÜ ±± ǧ´àfäiŒ§9Ë6¸bR »àfdm ¼G¾•Z7£LÇ1I:¸ÑÍ(ÕÍ­ïthÝŒR¹Ã݌ݺbãÒ„ö>U´‰¡ÐM:vÙ×bèþÉå‡7C9ä§ðÞ7C ølÇDÊnÜ éŒP?@IìÆÍ( ãüG«á&~ð èåp3ÜÃéTãXu3äŸeT{0ùat3$Cò[V¿¼n†<33>æù{<7B>nÖ(Yk%ZÝ wj<SäsÆÝ wêC¼¼n†;u¿;ÛYÞ ù`•ž'}öðfÈyD+@Þ7³¼úG1'Ä<>—æÍp7H[
,¸Ü,4nFi<46>Oc4ƒQd¹{ÐiÜŒ² Q{Z'‰&¶8Ñ,OÐÚ6C.ã<>$ë*x²Í"Ý»Ã}¡hÛ ± +oFwcJ&N_ž7ÃÝø®º´ºå5Þ
xSö@<40>m†{wjH=%öØfè95.¼³ÍÐs V7C^ã˜ûeÒòfÔ#
*ê)l˜²ÍÐs*¡ÖÿXp³¢¹]7£Zô øLãfÈŽLÒ7år¸Ò#§ IìÁͨ=ÆxÔoò®h܌گÄ0iWƒqþÿ}Ò¸·*Kèq$¡ùxr¹©ÅÍpcÇÑy fn†óz˜ ©âõ¹]ݬÐQD¤Ä©ËéfÈÁnâD\N7CædÇf=OŒF7+üöÕ$טÖÍ<C396>ÂŒ[\lS>{t3dN$·ò¼ot3Êœ¼û ™“¼GÖ%öèf…ŽþKä>ÜV7C*oIœ#p9Ý ÷}â<> ·ý¹Óz9ܬtÝÆÕâfHEýQè+n†;<Ð]”…/<2F>áÖ?&ׯ³Š±ÍèÎ<C3A8><EFBFBD><E2809E>m†;ÿXÂg¹Û ©§à<C2A7>äÍÔ´îü„³…Õ6«„=a£re<>m†;?µ?”AÛf•*ͦÐam³JåV‡$äYÛ¬Ò<C2AC>2J<4A>µÍpçGâP9¦{öØfhUõôö¶¶0ÑTšÙaCáÎO}áî_{h3ÜùÑÖô”—Ó¶2& žy±ll3J¬ãî!¶ÍpçGŽ—°ÄÆ6Ã<36>ŸÛ͉=¶:U<>™ù<ê4ÑnÛ 7þ£%<>±Íp㟹t—³Ípã‡[øAÛØf¸ñ#}«²­n†?f<I<>n†?¾¯²Î1ºR%<25>Ÿ{t3Üøù»ÆŽ—ÒÍpß?±GÃw6£!<07>ÛHèÁÍêI-Ïèq9Ü ù“”$ôØf”>)5—³ÍžI¥ÓÄål³F”Q4k!+ rnnkl34£RÓ»±Í.7él`m3dוǼ4¸îï<C3AE>Ï@(¦q3º¿gê>"±G7Cž\@k¶2ïÑÍõrÆί§u3$Ã=ÝS<C39D>nFyðÌÎU7C¾Û˜8ÚÙ§`öèf<C3A8>Šcp¦$öèfè9…3bBÝ 7q°aœÿhu3ÜÄ>½n†{8<>j«n†ü³Œj&?Œn†dH~Ëê—×Í<C397>cF·Ñ<ïÑÍ%kÍ¢D«áN<C3A1>gŠ|ÎØ£áN}H×Íp§îwg;Ë›!¬RÂó¤ÏÞ 9<>hÈûf7Cÿ(æ„òÒ¼îÆiKaåÍènLÉÄéËóf¸ßU—V7£¼ÆûAÁêfÈks¿ìBZÞŒzD!áŽOî½í}3°Ëý‰fèáÍ:ÑëÔ ù+ß wÜ|rïmï<C3AF>]ÎèO4CoÖ‰^§nÈ_ž7C#(œïë¦u3ÜUùÙqÕÍpWÍ÷cžåÍ(;1N‡ÛòfœúÄYõŽ7C«§J¬Wþò¼‰à':êrLófH@<Ñ‘ˆuÚÑ/´)çy3ÜçVçÍ<C3A7><C38D>µ¼Y§š}|ŸÂ—çÍ<C3A7>sFóf”T4Vò¢·Þ ‰„ã;Ûxaey34fªèìÌ<C38C>áÍp—…Hž7C2{Ò—ÇͨõÒ|äÒ¸òǰ¤Û¶ÅÍ<C385>˃vKUF¢p³“žì'—`u3¤B<C2A4>#m«!'Goš7Ã)¢ºˆÛ!³<>|,žs oFmâør1ex3Üv$]ãËófHá4¹{x3ÜZÐ<çhÞ )zÈTäö7ÃÝOŠœey3Îh9Î#MúìáÍÐרñ)Ï—çÍN¹ž¨1©_Þ7Cï"L9' KÆ7CFÝñ(€Ú7£Œ:~79¦|³Ä¶wAÊè—óÍ<C3B3>þ6žé¸}½óÍœ<>cñÍ<C3B1>䆽+®S1¼B÷™¥ãÍ<C3A3>É%óëËñf”åÆ-&}vóf‰²4¨ËÐÂQ&[";•á)Å›!#-âH}ÆnÞŒ³Õ:õjÿr¼ÒÎ"{0 ¹eñdýËñfˆu¤¿áÔoF¹ex®<78>¡(ÝŒð,:¬]p3d<33>!v~4nFb¼[ái3tÚi÷™<C3B7>µÍÐNÉÑ­¯¶OY<4F>2mª®À¾Gùr¶ òñ~´9maKHiRbm3·îŒ*k®çÓ¶µÍ<C2B5>z5ßso tŒ{oœ&Úc¡KÍøÊÔî´m¨Ôx6…2¶<19>„c%Ní±ÍHð_ÊC(5cQ¿ö±aVÕÚføÈ3çQ.¶z/á¿1Øgl3d/e'ðX nƦÎX•ôù{nF'ÆXT2÷ Ü ß†t?8½<38>aƒö ä, †|òfTé÷g8C6Rüâ P¶¼Vâl¦flˆ³û@{Gœ/1Oœq?kKœqkÆkGœ¡ÜùœŽ™#ÎÆlÌ<6C>B7ÄÙ\üìˆ3ØhFœá mþž#Î2z©ÿ q6¾A5í‰3lˉµgsfØg9S?óÄY YP«•8ã“ÀkKœ•&*×JœÝ½ 9[ˆ3¼™QBž8CÕR“˜'Î2õM¿¶ÄíWKÌgÀ§D#[„³ñMÌÜßzÎföÌ8w³;f<>³
ùËófh…ó}qÝ´n†»*?;®ºîªù~̳¼e'Æép[ÞŒSŸ8«ÞñfhõT‰õÊ_ž7#üDG]ŽiÞ ˆ':1ƒex³N;ú…6å<o†»ãÜJò¼²<C2B2>BÌõ¡7ëT³<54>ïSøò¼2ŽúcÎhÞŒŠÆJ^ô6Ã!p|g/¬,o†ÆL<15><>Yð1¼îr³ÉófÈBfOúò¸µ^Bš<42>€\7C>àtÛ¶¸ryÐn©ÊHnvÒ“ýä¬nF€Tr¤mu3äähóMóf¸#ET±Ãcx3dö<C3B6>ÅsŽáͨMR_.F¢ o†Ûޤk|yÞ I2œ&7co†[Ëú‚çÍ›!E™ŠÜÃòf¸{àI3£,oÆ-Çy¤IŸ=¼ú5>åùò¼Ù‰#×óŒÄúfè]„)çdaÉøfȨ;Pûf”QÇï&Ç”oØö.Hýr¾Ò߯3·¯w¾b€óq,¾ܰwÅu*†7Cè>³t¼2Ù¢d~}9ÞŒ²Ü¸¥Ã¤ÏnÞ,QuZx3ÊdKd§2<¥x3d¤E\©ÏØÍq¶Z§^í_Ž7CÚYdOcŠ7c zæ/Ç›!·,žl³ ±Žô÷ œšâÍ(· Ï2¥›žE‡µ n†,0$ÀÎï‚ÆÍ(CŒw+<m†N;í>3°¶Úé 9ºõÕ6OTð) R¦m³@ÕØ÷(_Î6ƒA>Þ<>6‡¢m3Ì2c )MJ¬mFâÖ<C3A2>Qem³@Àõ|Ú¶¶R¯æ{îm32<33>Žqï<71>ÓD{l3t©B™Ú<E284A2>¶ÍϦPÆ6£“pì£ÄI¢=¶ >ãKy¥fl3ê×> ̪ZÛ yæ<ÊÅ6Cï%ü7ûŒm†ì¥Œâ‹ÁÍØÔ«’>ïÁÍèÄJæ><3E>áÛ<C3A1>î§7p3lÐ~á&—<>œÔ<>OÞŒ*ýã,:ãÌgÈFŠBœaÊ×JœÍÔŒ l•"+p6._¾œWàl¼WYx°8öÿÚ
qvˆ3à%æ‰3îGpm‰3nÍxíˆ3”;ŸÓ1sÄÙ˜<C399>¹Sè†8Ÿqíψ3¤ÍßsÄYF/õ?!ÎÆ7¨¦=q†m9¡VâlÎ ;â,§cêgž8+! g|xm‰³ÒDåZ‰³»7â†8#!‡b q†73JÈg¨ZjóÄY¦¾é×8£ýj‰Yâ ø7Ä\…³ñMÌÜßzÎföÌ8w³;f<>³ œq÷“k œñ}áÚg=ˆκÜÌvÀYšÿ
l•"+p6._¾œWàl¼WYx°8öÿÚ p6V÷‰û5o€³1‰Ÿ9à,ÌÇÅp6Ï7ÀYGeƧà¬UñVଠj½IÌgµñ!þ8¯åw¾ó¾ÙÜ)Üøf<C3B8>z];ÞŒç
œq÷“k œñ}áÚg=ˆκÜÌvÀYšÿ ‰yÞlü+<¥l|3n,t­¾YA[‰*×âIƒÈkçÕ$4òÎ7ãÚÔk œÍ<C593>øp†Y3HÌg¥ñÎä8)Nà,*1'œ<>»n){á ‡¼ ¼ÎÆ"¥ÿ™p6žªfÈgIT”•7ÃuTÄ<o6¥â
p6V÷‰û5o€³1‰Ÿ9à,ÌÇÅp6Ï7ÀYGeƧà¬UñVଠj½IÌgµñ!þ8¯åw¾ó¾ÙÜ)Üøf<C3B8>z];ÞŒç o#÷Ot3®‡˜ÓÍÊüN®ºÙø4BøÝ ±°anvÊãõF7»<37>Ö<EFBFBD>nÖ«t½Ýàf]r×7¸YBŸÉ©”YÜ,Ô÷Lb7k·Æºêf0y”7 xLÉr¸¥“ϘÃ͈NJs¸•Ÿó{¹àfØÕç~¿ݬOeÕÍb™pÁª<C2AA>7£éu³rß,VÝ,b¥À¿µèf<C3A8><$æt³ñÅåö*Ý, 7…VÜŒ{5^;Ü Çm<>á©ü¸3‡U¼ŸMbãOl3ôŽ•we±ÍÆuÄ»ÔmVq&×&‰æl3dëòHVÛ,0‰síl³6û,nl³x®PÙàf¼÷"1§¡°¤OÍéf'Nùõ¼nF™øS0sºÙ é+HÌéf¼7K±E7CIÒ1cN7æUgÌñfwÖñ†7»³¶¶O Yà,¡­7Ë[p&{—×N8N/Ùg<>{k_;á,4ʘ»vÂ:²ñaÎ0ƒN=l1Î(-ejeÖ8CÿL"gã;©Øä¬P¯fŠ-Ȳ¬ùN¸"gZd˜CÎjšÍýWä (¼|Oä,â¬ÈY<C388>Y”Æ9;<3B>ÐOÉÌ!gÓ ®<>r†2~|-rÖn|¸ éu'ÛeQÎð•É<ÎE9£S sÊYãÆk£œQæ<51>ˆk s&KõkÇœ¡¦¼žgÎî^æLо®svb‡¥IÌ2gÜFaRfŽ9Ã)<29>À\ s¥ íF9Ã<1D>kAÎ*6Ý»Ä,r&rv?è¬ÆÙÉí®<>q†ÿ¦<>f<EFBFBD>s"ÖjœIû'‰YãŒR­âŒYã å7²½à<C2BD>³;!l%Îø 8KÌgØÃåã´Õ8Ø<E280B9>©Ó*sÆšÿd 9âìLõ°!ÎúýXµgxÀç e%Îp.zógŽ8CÚbÿâ,£ôºKÌg‰úâHÌgq̓ܘa%ÎÚƒ ɵg¿g•{B\;â Éx|Zˆ³¡zv‰Y⬠ëýfÌqÖªlƒ¬Â™”K]á ʳNÅÌ g¤ó%‰9á Ç<Œ†¬Â"œÕƒ—!×N8k\?w턳|/<2F>p9ÎÝgØÞšÏg¸¼ùƼøfciÁɰߌRƒ¦}f}3œ6VÑß Y^ü6/¾Ù˜’‘Ñ$1çõ‡FosÀÙ‰-³ù{8£<næ"œQëÀ.1Gœ=ÂèJœ<4A>÷Æž'Î2§fžsÄ™@-׆8k©ÍýJœaßPˆ0GœMçéÚgm,âj•˜%ÎÂch­Ä™Üø¯qvòdxmˆ3쟴ð'ÄÙ<C384>¹»*g «4cN9c+<2B>brvò£üµQÎ:ÒëÊŒ9åŒöÞ¦Wf”3åÓyå Ç©óÚ\”³ÚikôZ•³À‰¡3f•3É}»vÈ:J0Ùå<C399>³"}8¯<38>q†Ê3MÿÌguæC8ã Çûc”Ø.ÆY—¹üÚg”&ÎnÕbœ<62>”é'1kœ<6B>k³Ší»gØË9ÓŸ gg8äIÎ#gc­wŠ9æ<39>3Lcâ%­ÆÙÝ-w5Îð(+§Å8£.Uü¯ÆÙs̰g(ßlw1ÎjÁ³Ü„̬qÆE鲯Ê]S™¿f<C2BF>³€û÷m•9ãìœ<C3AC>{Wã¬#g¹MÍguX¯ÆžAÞoœQ<C593>c™<63>™CÎð…¬Ì!gㆳK¾<4B>ä Åi<Ý.Èúø´<q4œ¡èžÇ9£Æ×Syä ‡e"C.È®Ô&df³s¬<73>;{ r6Ö¹SÛ]<5D>³Êw²kcœ\§òrÞ8Ãfgh­ÆY”<µk‡œ‰árm<72>3n=š%f³qcæ¬Ã<C2AC>
‰yÞlü+<¥l|3n,t­¾YA[‰*×âIƒÈkçÕ$4òÎ7ãÚÔk œÍ<C593>øp†Y3HÌg¥ñÎä8)Nà,*1'œ<>»n){á ‡¼ ¼ÎÆ"¥ÿ™p6žªfÈgIT”•7ÃuTÄ<o6¥â ï<EFBFBD>³[1?ä-ÆÙx@
o#÷Ot3®‡˜ÓÍÊüN®ºÙø4BøÝ ±°anvÊãõF7»<37>Ö<EFBFBD>nÖ«t½Ýàf]r×7¸YBŸÉ©”YÜ,Ô÷Lb7k·Æºêf0y”7 xLÉr¸¥“ϘÃ͈NJs¸•Ÿó{¹àfØÕç~¿ݬOeÕÍb™pÁª<C2AA>7£éu³rß,VÝ,b¥À¿µèf<C3A8><$æt³ñÅåö*Ý, 7…VÜŒ{5^;Ü Çm<>á©ü¸3‡U¼ŸMbãOl3ôŽ•we±ÍÆuÄ»ÔmVq&×&‰æl3dëòHVÛ,0‰síl³6û,nl³x®PÙàf¼÷"1§¡°¤OÍéf'Nùõ¼nF™øS0sºÙ é+HÌéf¼7K±E7CIÒ1cN7æUgÌñfwÖñ†7»³¶¶O Yà,¡­7Ë[p&{—×N8N/Ùg<>{k_;á,4ʘ»vÂ:²ñaÎ0ƒN=l1Î(-ejeÖ8CÿL"gã;©Øä¬P¯fŠ-Ȳ¬ùN¸"gZd˜CÎjšÍýWä (¼|Oä,â¬ÈY<C388>Y”Æ9;<3B>ÐOÉÌ!gÓ ®<>r†2~|-rÖn|¸ éu'ÛeQÎð•É<ÎE9£S sÊYãÆk£œQæ<51>ˆk s&KõkÇœ¡¦¼žgÎî^æLо®svb‡¥IÌ2gÜFaRfŽ9Ã)<29>À\ s¥ íF9Ã<1D>kAÎ*6Ý»Ä,r&rv?è¬ÆÙÉí®<>q†ÿ¦<>f<EFBFBD>s"ÖjœIû'‰YãŒR­âŒYã å7²½à<C2BD>³;!l%Îø 8KÌgØÃåã´Õ8Ø<E280B9>©Ó*sÆšÿd 9âìLõ°!ÎúýXµgxÀç e%Îp.zógŽ8CÚbÿâ,£ôºKÌg‰úâHÌgq̓ܘa%ÎÚƒ ɵg¿g•{B\;â Éx|Zˆ³¡zv‰Y⬠ëýfÌqÖªlƒ¬Â™”K]á ʳNÅÌ g¤ó%‰9á Ç<Œ†¬Â"œÕƒ—!×N8k\?w턳|/<2F>p9ÎÝgØÞšÏg¸¼ùƼøfciÁɰߌRƒ¦}f}3œ6VÑß Y^ü6/¾Ù˜’‘Ñ$1çõ‡FosÀÙ‰-³ù{8£<næ"œQëÀ.1Gœ=ÂèJœ<4A>÷Æž'Î2§fžsÄ™@-׆8k©ÍýJœaßPˆ0GœMçéÚgm,âj•˜%ÎÂch­Ä™Üø¯qvòdxmˆ3쟴ð'ÄÙ<C384>¹»*g «4cN9c+<2B>brvò£üµQÎ:ÒëÊŒ9åŒöÞ¦Wf”3åÓyå Ç©óÚ\”³ÚikôZ•³À‰¡3f•3É}»vÈ:J0Ùå<C399>³"}8¯<38>q†Ê3MÿÌguæC8ã Çûc”Ø.ÆY—¹üÚg”&ÎnÕbœ<62>”é'1kœ<6B>k³Ší»gØË9ÓŸ gg8äIÎ#gc­wŠ9æ<39>3Lcâ%­ÆÙÝ-w5Îð(+§Å8£.Uü¯ÆÙs̰g(ßlw1ÎjÁ³Ü„̬qÆE鲯Ê]S™¿f<C2BF>³€û÷m•9ãìœ<C3AC>{Wã¬#g¹MÍguX¯ÆžAÞoœQ<C593>c™<63>™CÎð…¬Ì!gㆳK¾<4B>ä Åi<Ý.Èúø´<q4œ¡èžÇ9£Æ×Syä ‡e"C.È®Ô&df³s¬<73>;{ r6Ö¹SÛ]<5D>³Êw²kcœ\§òrÞ8Ãfgh­ÆY”<µk‡œ‰árm<72>3n=š%f³qcæ¬Ã<C2AC> <EFBFBD>%ò!Òbœ<62>—îbœqeû1!3cœ¡4Aάã¬ó÷ðÚgcµÔú„Ì,r†5BI@³ÈY¦,„ 1­œÍËæÚ(g¨Å=d$^9 œ!1£œáQGÀ¤U9ƒ¥ÄÄ«r6
ï<EFBFBD>³[1?ä-ÆÙx@ _å¬aÏ0ý‰rÖÆŸÎ
<EFBFBD>%ò!Òbœ<62>—îbœqeû1!3cœ¡4Aάã¬ó÷ðÚgcµÔú„Ì,r†5BI@³ÈY¦,„ 1­œÍËæÚ(g¨Å=d$^9 œ!1£œáQGÀ¤U9ƒ¥ÄÄ«r6 Wåìä¯k£œ!“…o^«r†Ýl~§Wå TñO<C3B1>3 Ô€yälLT…zm<7A>3C±A°gÔÈjkœa<13>8™kgœÝ Z«q†C£ø'ÄÙÉm`®
_å¬aÏ0ý‰rÖÆŸÎ q:
Wåìä¯k£œ!“…o^«r†Ýl~§Wå TñO<C3B1>3 Ô€yälLT…zm<7A>3C±A°gÔÈjkœa<13>8™kgœÝ Z«q†C£ø'ÄÙÉm`® G扳©¿ºÄq†vB¿-ÄY_5n¸gÜ£³HÌgãVÜX‰3ä\•ÉŸ9â ·e^<5E>³¦<>±gÔÀ,HÌgèïtLÿÌg<>½\ã À™öÆfIqí<qF úÁ¿¶gU:Wm„³iÈ3f…3€á<E282AC>Ûl®Â:yœ2ÀÙ‰ÞDÇ Ë‡¾Î<>=^8=kœ<>õˆôÚ]<5D>³q¯è|­Àr+e,8öH œ¡ÙÀT p†J¶sâg8ë“Xßg㢊ÜfsÎP(%Ë¡W]Œ“>s¼Y,´é}íx³1µò±õŽ7£†Ê·„Z[y³±vÚmáÍÖU“>s¼ŽåS÷¼™œÏ];ÞŒÿ>‰9àìÑ °+p†Ç¿8c8ãû÷µóÍ$'óÚùf¥K±áâ¡·NI“E³¾{²úféˆrwZ|3”Öœ÷ï9àìéí»g°¦N1Óà r p6>c)_€3”݈)´g<>•x‰YàìI\<5C>3lœü
q: Z€3Øc|i.¾ÙAMðø¯ó¾YjçDd߬¡Dø,硬CfïÅ7CŸÜëß ©7|õyÞ,H§ÛkÃeâÛ$du3$¿ežkÝ,f~ê¾6ºúÖwnI¿èfè<66>:ß/¯qf˜ÑÍ<C391>'-=KWÝ S´ô÷ºY£ÐEBV7‡œ4¬¸Y¥^9Ub7ózâBñÊù5+n†t!<21>[ܬ Kºìq3Üûd¦ò¸ËØ¢›ÍâfÊ'Yp3´ Rfp3êަ÷Qb7KòPz­¸˜ÛŒg·ùkÆ6;:eðSÈãfõä êkƒqóŒiÝl|UbæC¼U7Ckm<6B>ÝlÜ<6C>ªtC÷ºÙX¦¤8µ.ϛ͸š«I¯cÏ¡d•<64>ÇëfH±-eÆ´n†^=<3D>¿tn†úÑ#<o†uÐqŠÇçy³ñI¡$Ab7ý¦ŽÞŒúgÜ1Ã!â˜WãÍp<„Ló¼Ù“ºòf¨5 táÍPé$Kϵs&Œ.º@¬Â3ÅͰ<C38D>Ò)Üaªò}pÁÍÆr@ŽzÜ ïêÑfÈâfèÉÔó7Ó;$fq³ƒ¼Õù{F7ƒ&p¦ÓÍÐ ´ò~í¢›¡DcÅëfãñ
G扳©¿ºÄq†vB¿-ÄY_5n¸gÜ£³HÌgãVÜX‰3ä\•ÉŸ9â ·e^<5E>³¦<>±gÔÀ,HÌgèïtLÿÌg<>½\ã À™öÆfIqí<qF úÁ¿¶gU:Wm„³iÈ3f…3€á<E282AC>Ûl®Â:yœ2ÀÙ‰ÞDÇ Ë‡¾Î<>=^8=kœ<>õˆôÚ]<5D>³q¯è|­Àr+e,8öH œ¡ÙÀT p†J¶sâg8ë“Xßg㢊ÜfsÎP(%Ë¡W]Œ“>s¼Y,´é}íx³1µò±õŽ7£†Ê·„Z[y³±vÚmáÍÖU“>s¼ŽåS÷¼™œÏ];ÞŒÿ>‰9àìÑ °+p†Ç¿8c8ãû÷µóÍ$'óÚùf¥K±áâ¡·NI“E³¾{²úféˆrwZ|3”Öœ÷ï9àìéí»g°¦N1Óà r p6>c)_€3”݈)´g<>•x‰YàìI\<5C>3lœü žuÇáØŽ7;øÁ,IÈðfhJÒ«ÐgŽ7Å>JLófLЦùk7CN“hpž7 <><C383>…W“ý o)AHËU¤H ³w—˜áÍÆ€Ó´:<oPÈUÞ³¼YÄt&K&Ï›© ®•7<1B>ðI¼NÏU)j<>˜áÍ€}M“ÓófÀX¨„ñò¼îÞ½çC((Ï<C38F> ^8Übu³ˆ‰W6 ¼n6>ä¤NùÌêfGœ.´ÇÍ(ëAŠÃÍð@<40>Å£/7C<37>Uç³8Ü •þmK<r-ƒ§Í°GE3×Jeyö˜¡Íp°#Ä"!e@<40>f/Ým(.'A=;ïVál6®ô$Årl6Þn~½VÙ,£<>µ8™^6ÃkIO¸E6Sj^6ÃdšƒÀmV6;<3B><>š§yf`³À»oAb6Ã)pâD—6CA{æÖ÷ l†Oîä¨ l6¨b^ÊÀf<C380>6òC<C3B2>[Ø,„{kØËfØ…€
Z€3Øc|i.¾ÙAMðø¯ó¾YjçDd߬¡Dø,硬CfïÅ7CŸÜëß ©7|õyÞ,H§ÛkÃeâÛ$du3$¿ežkÝ,f~ê¾6ºúÖwnI¿èfè<66>:ß/¯qf˜ÑÍ<C391>'-=KWÝ S´ô÷ºY£ÐEBV7‡œ4¬¸Y¥^9Ub7ózâBñÊù5+n†t!<21>[ܬ Kºìq3Üûd¦ò¸ËØ¢›ÍâfÊ'Yp3´ Rfp3êަ÷Qb7KòPz­¸˜ÛŒg·ùkÆ6;:eðSÈãfõä êkƒqóŒiÝl|UbæC¼U7Ckm<6B>ÝlÜ<6C>ªtC÷ºÙX¦¤8µ.ϛ͸š«I¯cÏ¡d•<64>ÇëfH±-eÆ´n†^=<3D>¿tn†úÑ#<o†uÐqŠÇçy³ñI¡$Ab7ý¦ŽÞŒúgÜ1Ã!â˜WãÍp<„Ló¼Ù“ºòf¨5 táÍPé$Kϵs&Œ.º@¬Â3ÅͰ<C38D>Ò)Üaªò}pÁÍÆr@ŽzÜ ïêÑfÈâfèÉÔó7Ó;$fq³ƒ¼Õù{F7ƒ&p¦ÓÍÐ ´ò~í¢›¡DcÅëfãñ ž6ÃY26Þ%fp³zÌ2ÛÅ6Wï9á#kQO…#È¿èh³ñÑ'IO]h³H½LÖñ´YÎÔ£JLÓfc¢ÅsæTÏ m†iïPÕÚf‰ÞKà(3¶YÀ×"ó÷ n†,˜&H‡ÇÍ =t­¸Ù¸?£ýõ)1ƒuy<>o[^7;p•ÃŒÝ,¢!Q¸cF7CU*/(æt³FÀBzÝlÌX<C38C>I_ž7Ã5®wÞÛò¼Ù¸šá-¼j,&lë}³‚5‡¼oVAþÈç}3 Ðñfè<66>1­ÏAô™­ÎP¥"ÏÞ7«Oÿ<4F>Å7ë´qÂÓ¾÷Ílœ¤¾õÍ"NOÂÞ7Ëè1}ô­oV *\xEï…3ä‰A<>˜€L¹N¬Ìg±r߉iâl,ÑÁi†Œq†ö IÞ8C£Õ˜d˜Î8;ÆÕ<C386>Ä*sÄYDLÍËgåé
žuÇáØŽ7;øÁ,IÈðfhJÒ«ÐgŽ7Å>JLófLЦùk7CN“hpž7 <><C383>…W“ý o)AHËU¤H ³w—˜áÍÆ€Ó´:<oPÈUÞ³¼YÄt&K&Ï›© ®•7<1B>ðI¼NÏU)j<>˜áÍ€}M“ÓófÀX¨„ñò¼îÞ½çC((Ï<C38F> ^8Übu³ˆ‰W6 ¼n6>ä¤NùÌêfGœ.´ÇÍ(ëAŠÃÍð@<40>Å£/7C<37>Uç³8Ü •þmK<r-ƒ§Í°GE3×Jeyö˜¡Íp°#Ä"!e@<40>f/Ým(.'A=;ïVál6®ô$Årl6Þn~½VÙ,£<>µ8™^6ÃkIO¸E6Sj^6ÃdšƒÀmV6;<3B><>š§yf`³À»oAb6Ã)pâD—6CA{æÖ÷ l†Oîä¨ l6¨b^ÊÀf<C380>6òC<C3B2>[Ø,„{kØËfØ…€ µœq†'àÔK—Óg<>z[òªÐ¥ñØbœa«²õí<C3B5>3L@8˜eãÊRÌg[1M«Ìgc©s”Ž8×}œ“€#ÎP¦^¹EÎBœ<42>4 ™1Cœ<43>+ý¶y½q†ª æ<>³†.S²‡m<E280A1>34šOi¾)Þ8CQÉŸYŒ3<•d¹A9ã —iž8CžN)æˆ3lDU.:]ˆ3”HÈBœ<42>uj \š°gØÅK²ßg‰3ªZFËãɘâlÌÂÔó@b†8£ÂN®U[ˆ³Ú%µþòÄ:0Ž <0B>;¡.ÄYkº&K.Oœ¡!üd=q†Ì.^Ëxà ·¼('G8;¨ÏjØ6JÌg<05>}åœÄgHŠýœø™Î@àõ<C2A0>Ä pñ†E^f/ÀÙ¹Cëµg
ž6ÃY26Þ%fp³zÌ2ÛÅ6Wï9á#kQO…#È¿èh³ñÑ'IO]h³H½LÖñ´YÎÔ£JLÓfc¢ÅsæTÏ m†iïPÕÚf‰ÞKà(3¶YÀ×"ó÷ n†,˜&H‡ÇÍ =t­¸Ù¸?£ýõ)1ƒuy<>o[^7;p•ÃŒÝ,¢!Q¸cF7CU*/(æt³FÀBzÝlÌX<C38C>I_ž7Ã5®wÞÛò¼Ù¸šá-¼j,&lë}³‚5‡¼oVAþÈç}3 Ðñfè<66>1­ÏAô™­ÎP¥"ÏÞ7«Oÿ<4F>Å7ë´qÂÓ¾÷Ílœ¤¾õÍ"NOÂÞ7Ëè1}ô­oV *\xEï…3ä‰A<>˜€L¹N¬Ìg±r߉iâl,ÑÁi†Œq†ö IÞ8C£Õ˜d˜Î8;ÆÕ<C386>Ä*sÄYDLÍËgåé =še!j€3´¥CŠ·Hè^8á®ËZ„³Œ”ˆÀó˜Î*êkøC·ÂuNöºg(?iMì0/œÅ;¿sÎjEÎhÜ gOQÐ"œ%${á •“Ó¾öÂj*£êÞ8#<23>…Ó õåÜ_~1ÎÆ_WJÝgÈÏœÜgc%+l!ÎÆj[z÷-IJQ;G1oœQrѼœq†½ÈÀÝíVãl,*¥îy1Î"ÃôÆÙ1®êƒ¿Þ8똦ç8rv «6?¡{ä U%…«”Wäì@U¡òrƉ6abe9ú¿n<C2BF>³J&É(½qò
µœq†'àÔK—Óg<>z[òªÐ¥ñØbœa«²õí<C3B5>3L@8˜eãÊRÌg[1M«Ìgc©s”Ž8×}œ“€#ÎP¦^¹EÎBœ<42>4 ™1Cœ<43>+ý¶y½q†ª æ<>³†.S²‡m<E280A1>34šOi¾)Þ8CQÉŸYŒ3<•d¹A9ã —iž8CžN)æˆ3lDU.:]ˆ3”HÈBœ<42>uj \š°gØÅK²ßg‰3ªZFËãɘâlÌÂÔó@b†8£ÂN®U[ˆ³Ú%µþòÄ:0Ž <0B>;¡.ÄYkº&K.Oœ¡!üd=q†Ì.^Ëxà ·¼('G8;¨ÏjØ6JÌg<05>}åœÄgHŠýœø™Î@àõ<C2A0>Ä pñ†E^f/ÀÙ¹Cëµg ôzã -ÂË!/g<>³pΣ<4F>
=še!j€3´¥CŠ·Hè^8á®ËZ„³Œ”ˆÀó˜Î*êkøC·ÂuNöºg(?iMì0/œÅ;¿sÎjEÎhÜ gOQÐ"œ%${á •“Ó¾öÂj*£êÞ8#<23>…Ó õåÜ_~1ÎÆ_WJÝgÈÏœÜgc%+l!ÎÆj[z÷-IJQ;G1oœQrѼœq†½ÈÀÝíVãl,*¥îy1Î"ÃôÆÙ1®êƒ¿Þ8똦ç8rv «6?¡{ä U%…«”Wäì@U¡òrƉ6abe9ú¿n<C2BF>³J&É(½qò Y\.OœÅzûž8Cu•n® q6¾×9ˆ3´U³Æ­ Ä×hQ9{œ¹9C<39>i<>½ gOšæªœÉž½Ä,s†&áÒmaÎî½E9Øxº*gã¯îOÌ*gXóuUÎ*
ôzã -ÂË!/g<>³pΣ<4F> äd˜^9KËÊ5 å,Ϋv£œ…[ØY•3œ±rs»•9Ãy˜”™cÎz£ÛÕµcÎî^fç }v¸Ïíâœ!o4ËÇç<C387>3xÔ‡\IÞ9 HKÂ;gý¸Û_.Î]ó½vÎYÀþänzs†V³Â-,ÎY,t²"1ëœÑ½ò˜>šuÎÆ
Y\.OœÅzûž8Cu•n® q6¾×9ˆ3´U³Æ­ Ä×hQ9{œ¹9C<39>i<>½ gOšæªœÉž½Ä,s†&áÒmaÎî½E9Øxº*gã¯îOÌ*gXóuUÎ* ã”ëÌ;gÀŸZI{é ·î&”—Îp߉ò{Ž:ÃzíhYB:«”„Ô%f¨³q} 5ÿ“ž:O0-pGÔ…:K˜Èéö u6Ÿ§äš­Ô™4uF d86ŒÜ¦ÝQg }€¶X°3n'5c;Ê
äd˜^9KËÊ5 å,Ϋv£œ…[ØY•3œ±rs»•9Ãy˜”™cÎz£ÛÕµcÎî^fç }v¸Ïíâœ!o4ËÇç<C387>3xÔ‡\IÞ9 HKÂ;gý¸Û_.Î]ó½vÎYÀþänzs†V³Â-,ÎY,t²"1ëœÑ½ò˜>šuÎÆ £Ä v´`ç±3\àÒÑÚcg8É-©NÍbgçIÿ<49>b;C{ë o™ÅΰÈ+Ò—ÖkgHý:YOñÚÙÉ­×gÌhg€Pë!çÎøü†cŽ;»ÿ‡—çΰË+[w׆;ÜžøßôÞþ=œILƒgøögcäì¨Å;4².“ÄŒwV!ä½3¬¾ÐŒbÎ;CŸ±ü'ÞÙxkkäuñâ<C3B1><C3A2>[ú)i‰w†Žê³×ïl¬ Ž(÷Kï<4B>¡ã)÷Yï<59>áœ}4)f¼3ˆåŠðÞÙ¸ î&²Þ;Có»±á×sÞÙX£ðçµzgm¦rç¼3iªÎŸóΪ½w†SY v+°B”˜ñÎÚygD0ÏCŽÅ;CÑwVÐi‰ËÍï y<14>÷
ã”ëÌ;gÀŸZI{é ·î&”—Îp߉ò{Ž:ÃzíhYB:«”„Ô%f¨³q} 5ÿ“ž:O0-pGÔ…:K˜Èéö u6Ÿ§äš­Ô™4uF d86ŒÜ¦ÝQg }€¶X°3n'5c;Ê œw©š¡ÖcZhÆ;C·®c^/Î;CŠóüÛ<C3BC>wvJ‡t iï .R? Žâ%­bñΰEºóÎpž°6:%f¼³ˆ%LƒÌygäqñªœwÖŸ„3ë<33>a@Í!K\;CÿýÄ<C3BD>Ç x6nÓ´/1ž¡ånâtÀ<ý¥GçÁ³\ðý
£Ä v´`ç±3\àÒÑÚcg8É-©NÍbgçIÿ<49>b;C{ë o™ÅΰÈ+Ò—ÖkgHý:YOñÚÙÉ­×gÌhg€Pë!çÎøü†cŽ;»ÿ‡—çΰË+[w׆;ÜžøßôÞþ=œILƒgøögcäì¨Å;4².“ÄŒwV!ä½3¬¾ÐŒbÎ;CŸ±ü'ÞÙxkkäuñâ<C3B1><C3A2>[ú)i‰w†Žê³×ïl¬ Ž(÷Kï<4B>¡ã)÷Yï<59>áœ}4)f¼3ˆåŠðÞÙ¸ î&²Þ;Có»±á×sÞÙX£ðçµzgm¦rç¼3iªÎŸóΪ½w†SY v+°B”˜ñÎÚygD0ÏCŽÅ;CÑwVÐi‰ËÍï y<14>÷ C3àYC1v=¦\¦À³Fe§rÌîÁ3lü£øRB<C¯Rš_¯<CGæ(Øžϰ‡ÓdîMíÅ3°+G˜ÿ¤ÏjÆFQœr™Ï<>#»Åx†ƒzœ&HL˜lb†:ñ GÉ™û®Xñ,R&¹£/äYD®Ÿ^/äYyRŒòL|Ì 1EžáºŸ<C2BA>ò,Q^ÓÍšòl,ÀÑòhrhš<ÃǼi{ò,F²<46>»Ä yO<õ5 ñŒ»Ÿ
œw©š¡ÖcZhÆ;C·®c^/Î;CŠóüÛ<C3BC>wvJ‡t iï .R? Žâ%­bñΰEºóÎpž°6:%f¼³ˆ%LƒÌygäqñªœwÖŸ„3ë<33>a@Í!K\;CÿýÄ<C3BD>Ç x6nÓ´/1ž¡ånâtÀ<ý¥GçÁ³\ðý }eÄ3”ßu˜x†yiµˆçm×*žakK¶.œx†œ˜ñjÜ=nÏ<>çŸDnöâYú·§­xvâ41Ç3äYDò 3^<SMÔñ šr$¦Ä3è)ØÌâEÏhß©Ÿ3fij1á4:¸ uƒH»£˜ÏÆP°§¸Ïrçc|‰ñ¬UÞò£˜Ïð_<C3B0>=.ƒÏÍËÚÝgU¶¿)æÄ3$,œò<C593>µâÎõªŠN‰ñLšk'‰ñ¬I“UÄŒx†^Lǃ<xñ,â˜UÙœx†…º¤ <0C>LÃ)¯fÄ3JI<4A>MHÔâij| ‰OæßsâLp¬!1Cž¡0QÌ-äÙø^÷ má
C3àYC1v=¦\¦À³Fe§rÌîÁ3lü£øRB<C¯Rš_¯<CGæ(Øžϰ‡ÓdîMíÅ3°+G˜ÿ¤ÏjÆFQœr™Ï<>#»Åx†ƒzœ&HL˜lb†:ñ GÉ™û®Xñ,R&¹£/äYD®Ÿ^/äYyRŒòL|Ì 1EžáºŸ<C2BA>ò,Q^ÓÍšòl,ÀÑòhrhš<ÃǼi{ò,F²<46>»Ä yO<õ5 ñŒ»Ÿ 7î/ÓæyÞ.Ú<C"!qò¢Ãgcn罌k5Ï*·Rœ1cž!õ9·<í2cžaµ“[öæY<C3A6>v+?ožÁê¸?smž¢pªH<Î<KÈS“e¶7Ï*^Jôož¡ÍwâØgã± e -<>C(;gža_í,ò!óŒò²d<C2B2>:ôŒÛù§z†½ÜÂ„Í z†ûQùË£ga| —Œ/èYn”Ë[$fÔ³VÅ<¸¼z†SUÀî63èYÂô×$bȳ±)~Îß2äÙÉi
}eÄ3”ßu˜x†yiµˆçm×*žakK¶.œx†œ˜ñjÜ=nÏ<>çŸDnöâYú·§­xvâ41Ç3äYDò 3^<SMÔñ šr$¦Ä3è)ØÌâEÏhß©Ÿ3fij1á4:¸ uƒH»£˜ÏÆP°§¸Ïrçc|‰ñ¬UÞò£˜Ïð_<C3B0>=.ƒÏÍËÚÝgU¶¿)æÄ3$,œò<C593>µâÎõªŠN‰ñLšk'‰ñ¬I“UÄŒx†^Lǃ<xñ,â˜UÙœx†…º¤ <0C>LÃ)¯fÄ3JI<4A>MHÔâij| ‰OæßsâLp¬!1Cž¡0QÌ-äÙø^÷ má LN9ò <0C>
7î/ÓæyÞ.Ú<C"!qò¢Ãgcn罌k5Ï*·Rœ1cž!õ9·<í2cžaµ“[öæY<C3A6>v+?ožÁê¸?smž¢pªH<Î<KÈS“e¶7Ï*^Jôož¡ÍwâØgã± e -<>C(;gža_í,ò!óŒò²d<C2B2>:ôŒÛù§z†½ÜÂ„Í z†ûQùË£ga| —Œ/èYn”Ë[$fÔ³VÅ<¸¼z†SUÀî63èYÂô×$bȳ±)~Îß2äÙÉi Sç‡Oža)g± <79><17>å7æY lƒ~Š%æÌ34n™wXož¡ú]¦<4F>ãëÙϼ%Ï !5nZ²<5A>gãM 5c†<kl<6B>ð¿iÈ34œñÇs˜'ÏГ?UÁ½y6æÕ²çȳ“[+4‰ò Ù!AìfOžaVÊÜåa!ÏÐ=x.¤-y†{1<>ÜÎß3ä
LN9ò <0C> ¦Míɳ6D±¦3äÙ‰§éÀO<£rû(ˆš#ϸ.3žÞ<“Y<E2809C>¶üÎ<Cšá‰*"„<y6Ö'½sÞìBž5ÅâXò¬?…à×Jž¥‡iðä2Bkó <6B>ÅÆræž(=ýZÍ3iÁ%fÌ3(U€cž!1%Wâ
Sç‡Oža)g± <79><17>å7æY lƒ~Š%æÌ34n™wXož¡ú]¦<4F>ãëÙϼ%Ï !5nZ²<5A>gãM 5c†<kl<6B>ð¿iÈ34œñÇs˜'ÏГ?UÁ½y6æÕ²çȳ“[+4‰ò Ù!AìfOžaVÊÜåa!ÏÐ=x.¤-y†{1<>ÜÎß3ä {ól<Òy¨ÄŒy†£“C0cžát¼c<C2BC>|JHgX5Egè:q
¦Míɳ6D±¦3äÙ‰§éÀO<£rû(ˆš#ϸ.3žÞ<“Y<E2809C>¶üÎ<Cšá‰*"„<y6Ö'½sÞìBž5ÅâXò¬?…à×Jž¥‡iðä2Bkó <6B>ÅÆræž(=ýZÍ3iÁ%fÌ3(U€cž!1%Wâ çÈ3$ëa_Nb†<xüŽqRi†<+(šìÈ“g÷þàåÉ3œå5®„¾ò ]„ÐûDBš<C¾få|{GžAˆ³ÞÉšò ‰Øcy•%fȳZzV`!ÏÐ.]:=-äÙXÏÔé†{ò I"‡XoN<ë¨ :¶àYP&<Ã9×<šòàY óCfv ž5«…9ðlÌ`üLz­àv<>¥­žÏèŽ&¨”ÏÆL<C386>¥"|Ï*J <04>óâw”ˉg賃=Š9ñl|$…ò䮕<C•Öɉ yA-È¿'Ï
{ól<Òy¨ÄŒy†£“C0cžát¼c<C2BC>|JHgX5Egè:q LÁé½y†…ãñÐŒy†·ºr¯ØÅ<+(?Žx9óŒ²T¢ŒÓ˜gØæ7Q®»[Ì3øM,æ?‡Xv†<ÃW¯b©Çº#Ï8Wrož¡¤äø;ó ‡åá¶½y:ØŸÓ53æY£$À°1ϰQ•gãÀÅ<ÃÕ)eyÖž¶ÝÖ<£®Údˆ#äÍ3ÌËùÌ™gã-M†bÍ3¼ã±D6z¼y­]fÌ3ÞÙë3¦Ì3ì9ÅÛTöæÖÓJpnR˘gèP…<D¾"<zaj¥¶EÏ$½%JìQÏ%v<>5Cš¿gÔ3®ªNÌ©g<C2A9>ä/!Êœz6Ÿm®=ã~±¼¢ôèr|æÖ£gl¬"!cž<63>©ºù\+y†²ƒ*·XOžEÉ,”˜!ÏÈ¿›<ž#ÏNä>éÈ3iR%dÈ3ýOKÑg€7#ïN_+y¦7<C2A6><yÆ-y÷äÙ˜Rî…¡7ÏÆ“@Ù“gh ÕEkrâ¶œ
çÈ3$ëa_Nb†<xüŽqRi†<+(šìÈ“g÷þàåÉ3œå5®„¾ò ]„ÐûDBš<C¾få|{GžAˆ³ÞÉšò ‰Øcy•%fȳZzV`!ÏÐ.]:=-äÙXÏÔé†{ò I"‡XoN<ë¨ :¶àYP&<Ã9×<šòàY óCfv ž5«…9ðlÌ`üLz­àv<>¥­žÏèŽ&¨”ÏÆL<C386>¥"|Ï*J <04>óâw”ˉg賃=Š9ñl|$…ò䮕<C•Öɉ yA-È¿'Ï 7Ð\Ä3ä$ô.ê—Ï T÷´œx6.¨œ¹+ù"žqî~Úˆg”¬1^6mÅ3ôgÉQ<C389>.'žá¸§ŠæÀ³ñÙv¢<76>*‹é|xÏp‡j¾\¿6àYFõcÿÚxgãÚ8¨8qã<71><C3A3>5g“ÄÅ;+s·hg'ÚíM´ÌXg¨?¸<C3BA>5´=d³{Áΰ‰ËDË vVæýfƒ<66>Aã:D?ñØÎ
LÁé½y†…ãñÐŒy†·ºr¯ØÅ<+(?Žx9óŒ²T¢ŒÓ˜gØæ7Q®»[Ì3øM,æ?‡Xv†<ÃW¯b©Çº#Ï8Wrož¡¤äø;ó ‡åá¶½y:ØŸÓ53æY£$À°1ϰQ•gãÀÅ<ÃÕ)eyÖž¶ÝÖ<£®Údˆ#äÍ3ÌËùÌ™gã-M†bÍ3¼ã±D6z¼y­]fÌ3ÞÙë3¦Ì3ì9ÅÛTöæÖÓJpnR˘gèP…<D¾"<zaj¥¶EÏ$½%JìQÏ%v<>5Cš¿gÔ3®ªNÌ©g<C2A9>ä/!Êœz6Ÿm®=ã~±¼¢ôèr|æÖ£gl¬"!cž<63>©ºù\+y†²ƒ*·XOžEÉ,”˜!ÏÈ¿›<ž#ÏNä>éÈ3iR%dÈ3ýOKÑg€7#ïN_+y¦7<C2A6><yÆ-y÷äÙ˜Rî…¡7ÏÆ“@Ù“gh ÕEkrâ¶œ â!îšÃÎîYEþ<>a’ø;¾`gÜ3ógc°3ÔÇé­/Ø<7A>QÜ5‡<35><E280A1>?
7Ð\Ä3ä$ô.ê—Ï T÷´œx6.¨œ¹+ù"žqî~Úˆg”¬1^6mÅ3ôgÉQ<C389>.'žá¸§ŠæÀ³ñÙv¢<76>*‹é|xÏp‡j¾\¿6àYFõcÿÚxgãÚ8¨8qã<71><C3A3>5g“ÄÅ;+s·hg'ÚíM´ÌXg¨?¸<C3BA>5´=d³{Áΰ‰ËDË vVæýfƒ<66>Aã:D?ñØÎ Ÿ>ÿ›;C<>Ulç„Ð v†vj•·ev†oçxÆ9<18>²ÖٸьïÃIÞ:C3¿Æy¬uÆØ ;Þ:ë’¿ôµ±ÎÆ[ÞÑNîk£<6B>©|ÔE;çj«<6A>¡qÓ„Œv†MŠÙjÁÎxý”¶ØY§"ÂcþžÁÎêúJÝbgxHeuÁÎ<C381>¡§ç°3È?õ¼Ñ2ƒ<32>¡,FLÞ;C“ýsò\;Cý±ðŸà°34©<34><¯;ì õ(I3f°3ôis˜;ÃîbàÌ•;ËhÊÄ<C38A>àì [ß™ScìŒÉ%Æv6Þ°, ò<C3B2>ôn‡\,;ÿd 
â!îšÃÎîYEþ<>a’ø;¾`gÜ3ógc°3ÔÇé­/Ø<7A>QÜ5‡<35><E280A1>? v6®•<-A¯<41>!¯9ð™î¢<C3AE>¡ ¶sJà¢<C3A0>á”AÚÀõÐŒvƧ¥<C2A7>õ.§<>¥§ÿÕ¢<C395>õ1“ÓÚF;Kè4<><31>u4iŠçùµÑÎî÷F;CKïùuðÚYÛö׆;;qÈ+†ßâ<C39F>õ˜„l°ÞYÀad.ܶmÏJ¾»µ¯àYo³QøžÉj%~mÀ3¤
Ÿ>ÿ›;C<>Ulç„Ð v†vj•·ev†oçxÆ9<18>²ÖٸьïÃIÞ:C3¿Æy¬uÆØ ;Þ:ë’¿ôµ±ÎÆ[ÞÑNîk£<6B>©|ÔE;çj«<6A>¡qÓ„Œv†MŠÙjÁÎxý”¶ØY§"ÂcþžÁÎêúJÝbgxHeuÁÎ<C381>¡§ç°3È?õ¼Ñ2ƒ<32>¡,FLÞ;C“ýsò\;Cý±ðŸà°34©<34><¯;ì õ(I3f°3ôis˜;ÃîbàÌ•;ËhÊÄ<C38A>àì [ß™ScìŒÉ%Æv6Þ°, ò<C3B2>ôn‡\,;ÿd  LjË<EFBFBD>gmvêÞ€gè´‰ÌÖ¯
v6®•<-A¯<41>!¯9ð™î¢<C3AE>¡ ¶sJà¢<C3A0>á”AÚÀõÐŒvƧ¥<C2A7>õ.§<>¥§ÿÕ¢<C395>õ1“ÓÚF;Kè4<><31>u4iŠçùµÑÎî÷F;CKïùuðÚYÛö׆;;qÈ+†ßâ<C39F>õ˜„l°ÞYÀad.ܶmÏJ¾»µ¯àYo³QøžÉj%~mÀ3¤ x$8c<CØ.þ<>ÏÐm5sBÅž<>§ûP¸®ÏP &µ=ðl,œe3Á{gHŠ€$öµóÎzÈI\Mï<4D>¡ -ÞÙIûEr­8ï¬(Õ{gðn+Ÿº-ÞYÃÓ,§ ¯ÞÙYSä:­Û;¿Š4˯7¼³ðõ¿þéøúo8¹þBQ÷?è?I¿@œ Üÿ‰K¾ÿïú<7F>ñRÿòïØýÂõ<¾IüÇxmiþú¾FF½Ý˜zrvŸ:Æð¯ŒaàþÿuÕÃÓËÿøúÿÂÙýúŸ_ü÷ú·?è<>ü¡¢Ä5J;Y^°þ-/˜è„<1C>A—lË f¢ß°‰½¼`ÿ[^%ËØ\_ïü[^Û"è§³yÁÿíoyA”w¡¬dóþëßò讉¾¶ýS/p·ÆÞjû˯ÅwpÅ/t?hpQë{»Š©©xÀTÄI87²‰´<E280B0>ž‹ÖÝÿ oc-S:pÖ±9'¾ðÆtTMb"•ÿÄ´ô¿ûøÍë y—º!ýä$ñ×CR")?9Güæõ<C3A6>Ì„<C38C>çÍ7èÿø;^°Éxàl¿ïßþ×<43>Å“ËëýûßñzT\Îu~Çßòrxn¢]<5D>åõÂßñz88@~í:…øw¼¶DOPÃúúÿJ'×Ëß—ÞŸmqpô|d,±Ù¿5ážq™gé)ïåéõD×—Ø"<0E>þz~
LjË<EFBFBD>gmvêÞ€gè´‰ÌÖ¯ ùÛoøï^(P*oß|ÂáûëÌß½ Ò¿P.±Î@án¨ojÅúƒNÔ=KNü'nbïèÊ_ËxŒa!¯†Îfæ(<28>ÿP<C3BF> ÏcÉ|TÁÃÈÛÏ=x*Ïçã¥@Ïà?]ôŸ¨`†úÕû©ç[/ô/ÿíÿÿëÿõÿüíÆù÷<C3B9>—²ŸŒ~ Æ;P¸(šŽñxxú'4¦oÿéQy}Dج\Ï;‡¤ôþ˜êËcªØ»§j­,CÒ?yDíõJÌJØ<4A>©Ÿ¼?¢þ<C2A2><11>¿¸<C2BF>A~†¤~ôþ˜Î×Ç„ú!ô m$“þÑÛc:<3A><õ@öàÒó“÷G^Q"´:ÆzÏQæGï<47>)~cL8lºGCÿåýq¤×ÇAI¢z~Ô?yD¯ÏØ _ÁÌ<C381>æGï<47>éõ9»"I¦šùQýäý}cÆF9x6ó£úÉû#z}ÆnµéùÑüèý1½>g7œ 3?š½?¦×çìFêz~Ô?y{Dáx}Ên8zìf4?ú<>A½>k7t˜5+7ý“Òë“v+”t¢§&ó£Ôë3x£Œ0=7éŸüÀ<C3BC>^ŸÂQuzrÒ?ù<>!½>ƒ·‡×³“þÑ êõI¼¡ƒ<C2A1>]¾™ýÀ ¾1<C2BE>·2ë7ý“Ò7¦ñ¹
x$8c<CØ.þ<>ÏÐm5sBÅž<>§ûP¸®ÏP &µ=ðl,œe3Á{gHŠ€$öµóÎzÈI\Mï<4D>¡ -ÞÙIûEr­8ï¬(Õ{gðn+Ÿº-ÞYÃÓ,§ ¯ÞÙYSä:­Û;¿Š4˯7¼³ðõ¿þéøúo8¹þBQ÷?è?I¿@œ Üÿ‰K¾ÿïú<7F>ñRÿòïØýÂõ<¾IüÇxmiþú¾FF½Ý˜zrvŸ:Æð¯ŒaàþÿuÕÃÓËÿøúÿÂÙýúŸ_ü÷ú·?è<>ü¡¢Ä5J;Y^°þ-/˜è„<1C>A—lË f¢ß°‰½¼`ÿ[^%ËØ\_ïü[^Û"è§³yÁÿíoyA”w¡¬dóþëßò讉¾¶ýS/p·ÆÞjû˯ÅwpÅ/t?hpQë{»Š©©xÀTÄI87²‰´<E280B0>ž‹ÖÝÿ oc-S:pÖ±9'¾ðÆtTMb"•ÿÄ´ô¿ûøÍë y—º!ýä$ñ×CR")?9Güæõ<C3A6>Ì„<C38C>çÍ7èÿø;^°Éxàl¿ïßþ×<43>Å“ËëýûßñzT\Îu~Çßòrxn¢]<5D>åõÂßñz88@~í:…øw¼¶DOPÃúúÿJ'×Ëß—ÞŸmqpô|d,±Ù¿5ážq™gé)ïåéõD×—Ø"<0E>þz~ v~Ò?ú<>A}cG¦Z¹‡Cÿåý<C3A5>ש‡š(õO~`H¯ÏÝà½]ÙýÀ ^Ÿ½;ê7Ì"Nÿä†ôúÜ݃oVqú'?0¤×çîŽ>»vg~ôƒz}öîÈP¶ë8ó£Ôë³woðÏõD©òCz}îî<C3AE>¯ë‰Òüè5gï|®[<5B>ùì –ŸÀùâ£{Uÿüþ âñâ æžè?ž=Ñ÷ð<>ÂüHÞÃ7¦`Œ-! ,£ FÿèÝQ}cƨ"Ü:êÐæ¨ô<C2A8>ÞÕ7&bŒ
ùÛoøï^(P*oß|ÂáûëÌß½ Ò¿P.±Î@án¨ojÅúƒNÔ=KNü'nbïèÊ_ËxŒa!¯†Îfæ(<28>ÿP<C3BF> ÏcÉ|TÁÃÈÛÏ=x*Ïçã¥@Ïà?]ôŸ¨`†úÕû©ç[/ô/ÿíÿÿëÿõÿüíÆù÷<C3B9>—²ŸŒ~ Æ;P¸(šŽñxxú'4¦oÿéQy}Dج\Ï;‡¤ôþ˜êËcªØ»§j­,CÒ?yDíõJÌJØ<4A>©Ÿ¼?¢þ<C2A2><11>¿¸<C2BF>A~†¤~ôþ˜Î×Ç„ú!ô m$“þÑÛc:<3A><õ@öàÒó“÷G^Q"´:ÆzÏQæGï<47>)~cL8lºGCÿåýq¤×ÇAI¢z~Ô?yD¯ÏØ _ÁÌ<C381>æGï<47>éõ9»"I¦šùQýäý}cÆF9x6ó£úÉû#z}ÆnµéùÑüèý1½>g7œ 3?š½?¦×çìFêz~Ô?y{Dáx}Ên8zìf4?ú<>A½>k7t˜5+7ý“Òë“v+”t¢§&ó£Ôë3x£Œ0=7éŸüÀ<C3BC>^ŸÂQuzrÒ?ù<>!½>ƒ·‡×³“þÑ êõI¼¡ƒ<C2A1>]¾™ýÀ ¾1<C2BE>·2ë7ý“Ò7¦ñ¹ ×ëÌÙ”Qé½;ªoÌÄ4ª@µÄh`v<>JýèÝQ}c*ƨЪråž JýäÝ1}c.¦1´fŠT­3¥~ôî¨^_JcTÈöEÝâ<C39D>U<14>ÊüèÝQ½¾æQC<>®á•úÑ£JßXXcT\TŒÒò9[™½;ªïÍãƒj¼eTúGïŽê{3;Y.˜šò=³›½;ªïÍì(¹˜šÊ}Y©Ÿ¼;¦ïÍëÔj3Ú¶È ô<C2A0>ÞÕ÷æuê]ºqd8ÌQ©½;ªïÍëèNsŒ©)K”Qé½;ªïÍìÜרsø•úÑ»£úæÌŽžˆ'˜óÔó“wÇôÍyí81]¢$V¥ôæ¨ò÷æu4Có7•:Ïgý£wGõ½y<C2BD>z±£?êƒæ¨Ô<C2A8>ÞÕ÷æu°‰ÊëŽ9[™½;ªïÍë„T4Ìl÷Ãåó“wÇô½yäN,¼©|JýèÝQ}o^'«6Fèç¨Ô<C2A8>ÞÕ÷æuòêò<C3AA>&ÅT˜úÑ»£úÞ¼P]€GQ4s½;ªïÍë5-XÜ¡UF¥ô7³*…ÚžïÙJÿèÍQ•oÎìǸ
v~Ò?ú<>A}cG¦Z¹‡Cÿåý<C3A5>ש‡š(õO~`H¯ÏÝà½]ÙýÀ ^Ÿ½;ê7Ì"Nÿä†ôúÜ݃oVqú'?0¤×çîŽ>»vg~ôƒz}öîÈP¶ë8ó£Ôë³woðÏõD©òCz}îî<C3AE>¯ë‰Òüè5gï|®[<5B>ùì –ŸÀùâ£{Uÿüþ âñâ æžè?ž=Ñ÷ð<>ÂüHÞÃ7¦`Œ-! ,£ FÿèÝQ}cƨ"Ü:êÐæ¨ô<C2A8>ÞÕ7&bŒ cjB™­ŒJÿèÝQ}sfGñ:wùÞ_0?zwTßÙOô Ï¢G˜o•þÉ»cúÞ¼Žöÿ•¶]î1©Ÿ¼;¦ïÍë$EDˆð˜ôOÞÓ÷fõŽÊbTÊå{Lê'ïŽé{szEé3Ìã{Q¬ò7£³8Ž^ts¡§ò7ŸS÷8©ómR?xwDßË!½bgyî??ysLõ{39<71>pªç6ãó“wÇôÍ<C3B4>´—ÅüØï‡õ“wÇôÍ}4»Çüx>O}ÏOÞÓ7WçЀÑV¸Í1韼;¦9¿rüB<C3BC>&¼ÄgQýèÝ1•oŒ‰dvLÙ¨kŸk`õ£wÇT¿3¦ûyø­ÙÑU(Ä¿<>ñšôW¾÷ò_Iÿ güøŒ[ùÄ‹¯ €=üüð‹ß¶ÌA™ØõöÖ}ö¥7ž^\þãG_þþ2Ë|üÁ—ö×{‡}ž½½õ¨úŸ}ñß–ü|z0Qíóááü¾ÐçÓƒùm<C3B9>ÏÇóûòžOç/*{>>œßõ|z0QÏóñᬥ<ŸÂo«x>=˜¿(àùôp~[»óéÁü¶lçÃù«Š<C2AB><C5A0>ç÷Å:ŸÎoët>>˜ßWè||8ë#ÅgðÛâ Oæ/Ê‚>=œß}z0¿-úô`þ¢èãÃù}ùϧ‡óÛŸ<C382>æ÷%?ÎZìóá!ü¾ÌçÓƒù‹ŸOç·¥=ŸÌoz>=˜¿(çùøp~_Èóéáü¶„çãƒù}ñΧ‡ãvm?»mfvmá-RãOöLúÏlòô>;×Èw
×ëÌÙ”Qé½;ªoÌÄ4ª@µÄh`v<>JýèÝQ}c*ƨЪråž JýäÝ1}c.¦1´fŠT­3¥~ôî¨^_JcTÈöEÝâ<C39D>U<14>ÊüèÝQ½¾æQC<>®á•úÑ£JßXXcT\TŒÒò9[™½;ªïÍãƒj¼eTúGïŽê{3;Y.˜šò=³›½;ªïÍì(¹˜šÊ}Y©Ÿ¼;¦ïÍëÔj3Ú¶È ô<C2A0>ÞÕ÷æuê]ºqd8ÌQ©½;ªïÍëèNsŒ©)K”Qé½;ªïÍìÜרsø•úÑ»£úæÌŽžˆ'˜óÔó“wÇôÍyí81]¢$V¥ôæ¨ò÷æu4Có7•:Ïgý£wGõ½y<C2BD>z±£?êƒæ¨Ô<C2A8>ÞÕ÷æu°‰ÊëŽ9[™½;ªïÍë„T4Ìl÷Ãåó“wÇô½yäN,¼©|JýèÝQ}o^'«6Fèç¨Ô<C2A8>ÞÕ÷æuòêò<C3AA>&ÅT˜úÑ»£úÞ¼P]€GQ4s½;ªïÍë5-XÜ¡UF¥ô7³*…ÚžïÙJÿèÍQ•oÎìǸ úè`\G ×"è³C±­€\o ŶòM<C3B2>>;×ûÇwúð`L××è³CqÝ~|ÿŸf6ûyÿ|v¶Á<C2B6>ëøóÙ¡¸Æ>¾ÕÏgc[ú¸Šíåãšû|t(¾‡<C2BE>ïêóáÁØæ=¾<>ÏgcÛö¸>>ŠíÖãû÷|x0þØû³/o»¹¶AŸŠkäÛ}v0¶+<2B>kôÙ¡Øn@®=Ðg‡âšù¶@L3Í|; ÏÆvýqm€><ÛìÇ·ÿùð`f«Ÿ§íÏGàºû¸v?ŸŠkêãÛü|v0¶<C2B6>kïóÙ¡Ø.>®­Ïg‡âš÷øv>ŒmÚãÛø|v0¶[<5B>kßóá¡Ø&=¾mÏg?»áõƒÍ¾µÍù±là%"êøï¤LÿPZú+{­>]
cjB™­ŒJÿèÝQ}sfGñ:wùÞ_0?zwTßÙOô Ï¢G˜o•þÉ»cúÞ¼Žöÿ•¶]î1©Ÿ¼;¦ïÍë$EDˆð˜ôOÞÓ÷fõŽÊbTÊå{Lê'ïŽé{szEé3Ìã{Q¬ò7£³8Ž^ts¡§ò7ŸS÷8©ómR?xwDßË!½bgyî??ysLõ{39<71>pªç6ãó“wÇôÍ<C3B4>´—ÅüØï‡õ“wÇôÍ}4»Çüx>O}ÏOÞÓ7WçЀÑV¸Í1韼;¦9¿rüB<C3BC>&¼ÄgQýèÝ1•oŒ‰dvLÙ¨kŸk`õ£wÇT¿3¦ûyø­ÙÑU(Ä¿<>ñšôW¾÷ò_Iÿ güøŒ[ùÄ‹¯ €=üüð‹ß¶ÌA™ØõöÖ}ö¥7ž^\þãG_þþ2Ë|üÁ—ö×{‡}ž½½õ¨úŸ}ñß–ü|z0Qíóááü¾ÐçÓƒùm<C3B9>ÏÇóûòžOç/*{>>œßõ|z0QÏóñᬥ<ŸÂo«x>=˜¿(àùôp~[»óéÁü¶lçÃù«Š<C2AB><C5A0>ç÷Å:ŸÎoët>>˜ßWè||8ë#ÅgðÛâ Oæ/Ê‚>=œß}z0¿-úô`þ¢èãÃù}ùϧ‡óÛŸ<C382>æ÷%?ÎZìóá!ü¾ÌçÓƒù‹ŸOç·¥=ŸÌoz>=˜¿(çùøp~_Èóéáü¶„çãƒù}ñΧ‡ãvm?»mfvmá-RãOöLúÏlòô>;×Èw ç§2Ò_ßúÕƒøÔµà>|ïlå0
úè`\G ×"è³C±­€\o ŶòM<C3B2>>;×ûÇwúð`L××è³CqÝ~|ÿŸf6ûyÿ|v¶Á<C2B6>ëøóÙ¡¸Æ>¾ÕÏgc[ú¸Šíåãšû|t(¾‡<C2BE>ïêóáÁØæ=¾<>ÏgcÛö¸>>ŠíÖãû÷|x0þØû³/o»¹¶AŸŠkäÛ}v0¶+<2B>kôÙ¡Øn@®=Ðg‡âšù¶@L3Í|; ÏÆvýqm€><ÛìÇ·ÿùð`f«Ÿ§íÏGàºû¸v?ŸŠkêãÛü|v0¶<C2B6>kïóÙ¡Ø.>®­Ïg‡âš÷øv>ŒmÚãÛø|v0¶[<5B>kßóá¡Ø&=¾mÏg?»áõƒÍ¾µÍù±là%"êøï¤LÿPZú+{­>] 0ϼ`ñéüyž<79>à<®Z`éY¥ñC½«^<19>ïU¥FóC=«^<19>ïQ¥FóC½ª^<1A>ëM¥Gó3=ª^<19>ëI¥ó3½©^ëE¥ó3=©^ºÿ¹TÏh~ªÕK£q½§ôh~¦Õ;k<>/
ç§2Ò_ßúÕƒøÔµà>|ïlå0 Xj4?Ô ë•ÑøÎWj4?Ôë•ÑøŽWj4?Ôùê¥ÑØNWz0?ÒñꕱøWj0?Ôéê¥Ñ¸ÎVz4?Óáê•ÑøŽVj4?ÔÙê¥Ñ¸NVz4?ÓÑê¥ÑØVz0?ÒÉꕱøÎUj0?ÔÁê•g"ß±êÍOu®zi4®S•ÍÏt¬ze4¾C•ÍuªzééÕv¦Rƒù™U/<2F>Åu¤Òƒù™ÎT/<2F>Æu¢Ò£ù™ŽT/mz¸Tj4?Ô‰ê<E280B0>-=šÏïÀø>Xj4?Ôë•ÑøþWj4?Ôë•Ñø¾Wj4?Ôÿê•Ñø~Wj4?Ô÷ê¥Ñ¸>Wz4?Óïê…ÑøþVÏ`~¨ÏÕ+cq}­ÔX~¦¿Õ cñý¬ž±üP_«WÆâúX©±üL?«ÆâûW=cù¡>V/ŒÅ÷­zÆòCý«^ëWõ ågúV½´ lûTéÝàéWõÒ^£íO¥·¤OÕ+Ï*®/•zTù™þT/=Ãý2ý¨ô3ܯŸèKõÊýÈõ¡R·£ŸéGõú©^ó~ö€³á¨â8â™>tv²ñ>Ì >{v²q>Ìh>{v²ñ=Ìh>{v²q=ìh>zv²zf0=;Ù8v0=;Ùøz4>;Ù¸v4=;ÙßëÑ|üôÞ<C3B4><C39E>˜Ñ|öìd£†˜Ñ|öìd£…˜Ñ|öìdUBì`>yv²ÑAÌ`>{v²QAìh>zv²Ñ@Ìh>{v²Q@ìh>zv²êv0Ÿ<;Ù¨f0Ÿ=;Ùhz4>;Ù(v4=;Ùèf4Ÿ=;YU3˜<33>ž<EFBFBD>l4;˜<>ž<EFBFBD>l<>ž<EFBFBD>3šÏž<C38F>l³$õh>Ÿ$iÏNÌh>{v²±CÌh>{v²1CÌh>{v²±BÌh>{v²1Bìh>zv²Ú z0Ÿ=;YM3<33>ž<EFBFBD>¬ˆËgÏNVÄŒå£g'«ý¡ÇòÙ³“ÕüÐcùìÙÉb}è¡|ôìd5>ìnð'ÏNVÛÃn5~òìd5=Ì£ÊGÏNVËÃ>Ã}òìd5<Ìíè£g'ªðD¯yå•ÿåßC*'>ª>¾ÓüÇ
0ϼ`ñéüyž<79>à<®Z`éY¥ñC½«^<19>ïU¥FóC=«^<19>ïQ¥FóC½ª^<1A>ëM¥Gó3=ª^<19>ëI¥ó3½©^ëE¥ó3=©^ºÿ¹TÏh~ªÕK£q½§ôh~¦Õ;k<>/ þÍ?N¨cÙi`,¨ñKç2î cLÿúÇ~ãŸÃ×?—±"‰ñHñ«þÊ)ÅT¾þøÇ×ÿø/ØEü¯_ÿóë<C3B3>ÿþOÿöýõ?ö©ãx(†ÍKFýôg÷ñÀø«<C3B8>ògÿìXÆc_Á1œ_q¬9ÆB~ûwË{ÿ· "ŒµiÄÿÛ "mñÝ ã@n,«j*eý4Ú¯2®ÄñÏÿäðÛ—Œy\såÈÿ© àûïýoÇð»÷~7ˆo¿÷m¬ B­ã%>õÖÿæ?õÎÿf¯]ô¨ù•»zãÇôzÐÿV#PcÓÿ“<C3BF>ó˜<C3B3>{Éé<òW©Çø:¶ùg<C3B9>
Xj4?Ô ë•ÑøÎWj4?Ôë•ÑøŽWj4?Ôùê¥ÑØNWz0?ÒñꕱøWj0?Ôéê¥Ñ¸ÎVz4?Óáê•ÑøŽVj4?ÔÙê¥Ñ¸NVz4?ÓÑê¥ÑØVz0?ÒÉꕱøÎUj0?ÔÁê•g"ß±êÍOu®zi4®S•ÍÏt¬ze4¾C•ÍuªzééÕv¦Rƒù™U/<2F>Åu¤Òƒù™ÎT/<2F>Æu¢Ò£ù™ŽT/mz¸Tj4?Ô‰ê<E280B0>-=šÏïÀø>Xj4?Ôë•ÑøþWj4?Ôë•Ñø¾Wj4?Ôÿê•Ñø~Wj4?Ô÷ê¥Ñ¸>Wz4?Óïê…ÑøþVÏ`~¨ÏÕ+cq}­ÔX~¦¿Õ cñý¬ž±üP_«WÆâúX©±üL?«ÆâûW=cù¡>V/ŒÅ÷­zÆòCý«^ëWõ ågúV½´ lûTéÝàéWõÒ^£íO¥·¤OÕ+Ï*®/•zTù™þT/=Ãý2ý¨ô3ܯŸèKõÊýÈõ¡R·£ŸéGõú©^ó~ö€³á¨â8â™>tv²ñ>Ì >{v²q>Ìh>{v²ñ=Ìh>{v²q=ìh>zv²zf0=;Ù8v0=;Ùøz4>;Ù¸v4=;ÙßëÑ|üôÞ<C3B4><C39E>˜Ñ|öìd£†˜Ñ|öìd£…˜Ñ|öìdUBì`>yv²ÑAÌ`>{v²QAìh>zv²Ñ@Ìh>{v²Q@ìh>zv²êv0Ÿ<;Ù¨f0Ÿ=;Ùhz4>;Ù(v4=;Ùèf4Ÿ=;YU3˜<33>ž<EFBFBD>l4;˜<>ž<EFBFBD>l<>ž<EFBFBD>3šÏž<C38F>l³$õh>Ÿ$iÏNÌh>{v²±CÌh>{v²1CÌh>{v²±BÌh>{v²1Bìh>zv²Ú z0Ÿ=;YM3<33>ž<EFBFBD>¬ˆËgÏNVÄŒå£g'«ý¡ÇòÙ³“ÕüÐcùìÙÉb}è¡|ôìd5>ìnð'ÏNVÛÃn5~òìd5=Ì£ÊGÏNVËÃ>Ã}òìd5<Ìíè£g'ªðD¯yå•ÿåßC*'>ª>¾ÓüÇ óO ãñƒ¬ÏF¿™<14>"ýK¿;ßÈÆ{ÐûÎøwë¯ñ?ˆ©ÞkÿŸ¾ga<9a÷ž¥õ"þûF~…±¸ûÿÛGÇR¯=æÍ'—?øöŒåoéã«V7ã(GŽtßÅ·ÿ÷Wò7W[ã•s¯6&þq1üŸfñ5I°ñ¬<16>žÒ.5¹)ñ¬¿R,)´Ômì¢X-GM¹µ]lüç³ÄPÖXû5¾()eó{
þÍ?N¨cÙi`,¨ñKç2î cLÿúÇ~ãŸÃ×?—±"‰ñHñ«þÊ)ÅT¾þøÇ×ÿø/ØEü¯_ÿóë<C3B3>ÿþOÿöýõ?ö©ãx(†ÍKFýôg÷ñÀø«<C3B8>ògÿìXÆc_Á1œ_q¬9ÆB~ûwË{ÿ· "ŒµiÄÿÛ "mñÝ ã@n,«j*eý4Ú¯2®ÄñÏÿäðÛ—Œy\såÈÿ© àûïýoÇð»÷~7ˆo¿÷m¬ B­ã%>õÖÿæ?õÎÿf¯]ô¨ù•»zãÇôzÐÿV#PcÓÿ“<C3BF>ó˜<C3B3>{Éé<òW©Çø:¶ùg<C3B9> }µjnçö÷Î2žJJk =K[ì±…]¬celCçXÙ†7ÞX<C39E>qkÀ ²‰•qÃ*1n†yŽ© <20>é¨ëïa÷6¢DZþÞˆKWÏ.6VĽǾþ
óO ãñƒ¬ÏF¿™<14>"ýK¿;ßÈÆ{ÐûÎøwë¯ñ?ˆ©ÞkÿŸ¾ga<9a÷ž¥õ"þûF~…±¸ûÿÛGÇR¯=æÍ'—?øöŒåoéã«V7ã(GŽtßÅ·ÿ÷Wò7W[ã•s¯6&þq1üŸfñ5I°ñ¬<16>žÒ.5¹)ñ¬¿R,)´Ômì¢X-GM¹µ]lüç³ÄPÖXû5¾()eó{ gÝ%Ž;×.TÆÛZYÿ¼Šd†ÒS>7ËáÂX«å]l|èãŸmÛßë)ôñ¼°ù½11<31>¯B-eóç¥1O<31>w÷ÀM¬<1F>ÖØ¸<C398>§¿/£•kNc°»X멇´ùØkùŽ3¤C}ì¹Mb9匱îbãou x<>Õ±Ó_R— Šåpäq—8w±6féÐÔ7ìŽ<C3AC>µE·Âß°^3ÍðXïX:ÎÍïõ_GjGîió÷õ_©Žij<$ïbµ<62>a|kìü5¾ì˜æ7ßù+¥ñ[­oÆyâø{¬YÕWLÅÎ~޶®¿×Ž1³Ž5]8Öß±ñ¬SsÏëß7b#2f—¾þ}m|ÅÎ#ö´
}µjnçö÷Î2žJJk =K[ì±…]¬celCçXÙ†7ÞX<C39E>qkÀ ²‰•qÃ*1n†yŽ© <20>é¨ëïa÷6¢DZþÞˆKWÏ.6VĽǾþ <EFBFBD>Ûì˜\Êúç<C3BA>ؙǵÔÎÍ0#ºÃÅ1co~o|ÅÆ-*$õ±Ç³<>ИòÕÄzÇÆB2Çñ=*yý¸¸õ3ö®æÕ;4Ö¡<E2809A>ÉE}ÃTlÌU%ôc3Ìük<òu¼×kl|ÃÆz7¤¾ù=lÅŸã†7^ù5>¸1»ÔÍ8Ç]´c©}lþ¼ñ
gÝ%Ž;×.TÆÛZYÿ¼Šd†ÒS>7ËáÂX«å]l|èãŸmÛßë)ôñ¼°ù½11<31>¯B-eóç¥1O<31>w÷ÀM¬<1F>ÖØ¸<C398>§¿/£•kNc°»X멇´ùØkùŽ3¤C}ì¹Mb9匱îbãou x<>Õ±Ó_R— Šåpäq—8w±6féÐÔ7ìŽ<C3AC>µE·Âß°^3ÍðXïX:ÎÍïõ_GjGîió÷õ_©Žij<$ïbµ<62>a|kìü5¾ì˜æ7ßù+¥ñ[­oÆyâø{¬YÕWLÅÎ~޶®¿×Ž1³Ž5]8Öß±ñ¬SsÏëß7b#2f—¾þ}m|ÅÎ#ö´ ;¹¨UhüqcriaŽ»k®aL„u·WºZv±vÖ1¹¨/X7lŠuì2„4¾™»Ø¸g<C2B8>?°¥]lÜݨô_°³<C2B0>ÉeóOŽõï˜Ã<CB9C>£÷]lÜõZ;×WëcIÓÆ…[ëúk#–Æ•ò±þuý vzãë·¥‡_G“À¸Êv±ÔJ_‡õ¯C>\}éù~õž<C3B5>D±øîëÈIÙÄÆ¥™Ú™¶¿WVKmó{i,çâòó©ëXŠmL-Ï÷KÇj‰ãrÞO<1B>lž5Çb(<28>©¥nÆ™Çb¨×#<_0_“³<E2809C>Ï´:¾p<C2BE>æ<EFBFBD>^ÐÀ}Ì-ÏÇ®cõ—uŽu¿…åd^cu¬†JÌçóÓ±ñÙtŸÞÅΣŒO½mÆÙ~ÅDi3ßCã™q³9Ëö÷zcryæÕ^Æ<>bc!x´u+¼šÍ»X_³|†¸ÆÎ±ïJ-»Ð¸¯<C2B8>¹¥Ÿ»Ø˜R;ò;|è<Æb7õ©Ó±"¸=ébÀ'ÒÇ•>ž1Š<31>„± ûXy­<>î<0ÖÈXÀŽoAõ<41>±öC\R_ª;2ÞÕ\ŸÅϘù)¥¡VÇ2åTŸòߨގs,cv±ñ|é˾‰µqLA}£îXÆéXR<wdnrDZ4®·ú¬
<EFBFBD>Ûì˜\Êúç<C3BA>ؙǵÔÎÍ0#ºÃÅ1co~o|ÅÆ-*$õ±Ç³<>ИòÕÄzÇÆB2Çñ=*yý¸¸õ3ö®æÕ;4Ö¡<E2809A>ÉE}ÃTlÌU%ôc3Ìük<òu¼×kl|ÃÆz7¤¾ù=lÅŸã†7^ù5>¸1»ÔÍ8Ç]´c©}lþ¼ñ <EFBFBD>9!—°ùµ2Ö>çQŸ<1B><0E>¿;a¾ãÿËÞ»ìJ<>ûþŠü<C5A0>{hï0€œ! p9Ó;[rqWóÿETÕÌÍÜýfvœ·Q]@W†d„«»©é[n.Ç׺äX8xJRvI Š9Æà↵cäØO+Öû¦š¨ŠO™ò±<C3B2>j*Õ lN(ØrƒàÇ óñº'„­„…Ók¼~ ¬nŸj¾<6A>ÌŠÁ7&'1¸TÆ3ܸ; ¯JäØI+Ö±ßSŽ—ïAýÃè<C383>6[ž?„hLE¨&×î0ü`£ØW æ^pÐ!Ç~Z18i(?o¿Ü:1,tè<74>⯶U‡¦kîæ{°÷à(§|¼ïÖR<C396>9vÖ<76>Á¥ªkη; J$­ÓÃV¬AØ/óþ`†JâLÌ÷Àï
;¹¨UhüqcriaŽ»k®aL„u·WºZv±vÖ1¹¨/X7lŠuì2„4¾™»Ø¸g<C2B8>?°¥]lÜݨô_°³<C2B0>ÉeóOŽõï˜Ã<CB9C>£÷]lÜõZ;×WëcIÓÆ…[ëúk#–Æ•ò±þuý vzãë·¥‡_G“À¸Êv±ÔJ_‡õ¯C>\}éù~õž<C3B5>D±øîëÈIÙÄÆ¥™Ú™¶¿WVKmó{i,çâòó©ëXŠmL-Ï÷KÇj‰ãrÞO<1B>lž5Çb(<28>©¥nÆ™Çb¨×#<_0_“³<E2809C>Ï´:¾p<C2BE>æ<EFBFBD>^ÐÀ}Ì-ÏÇ®cõ—uŽu¿…åd^cu¬†JÌçóÓ±ñÙtŸÞÅΣŒO½mÆÙ~ÅDi3ßCã™q³9Ëö÷zcryæÕ^Æ<>bc!x´u+¼šÍ»X_³|†¸ÆÎ±ïJ-»Ð¸¯<C2B8>¹¥Ÿ»Ø˜R;ò;|è<Æb7õ©Ó±"¸=ébÀ'ÒÇ•>ž1Š<31>„± ûXy­<>î<0ÖÈXÀŽoAõ<41>±öC\R_ª;2ÞÕ\ŸÅϘù)¥¡VÇ2åTŸòߨގs,cv±ñ|é˾‰µqLA}£îXÆéXR<wdnrDZ4®·ú¬ wNw*'‡™ƒzÜ_HEŸ >Ýäþï}Űßáûï–ÑŽ& >žüõP`+fvóþ Ú[1¬ÂÌŽ0”¯\ªŠ;9¶Â
<EFBFBD>9!—°ùµ2Ö>çQŸ<1B><0E>¿;a¾ãæåþ_öÞeW÷WÔÜM?A)Q4”îLÐ”Ô ïHÿp-3s÷ˆ¸U<C2B8>{çÉn}*We†E„»¹½\gècáà)IÙ%1(æƒwÖŒc?­j> *>eÊÇvª©Tƒ°9¡`Ë %ldÎiœ¼ƒj(P*Ç[Ÿü)xæ0óû
ƒÌÇëžN¯ñú-|°º}ªùb0+ܘœÄàRÏpãî0¼r(c'­XÇ~O9^¾õ£Úlyþ8¢A0¡š\»Ãðƒ<C3B0>b_1˜{ÁA‡ûiÅà¤q ü¼=8ürëİСCŠ¿bØV𮹛ïÁÞƒ£œòñ¾ ¬poXKJäØY Då†å0ïMMTÅ* Ø ùŠÁÚÃ"òùp±3Ki 9B§äp‡ÁÜ©pm<70>ï¹ ¼Üð"aó¤Í¿Y±ˆÝœOr…JN°jܼ»Tµ~<7E>˜è—ꃹ‡ÇÒqþL †ß+ =ÜaNzÄ^Ÿ^²,w
ª®9ßî0(´NI`¿Ìûƒ*‰/2=0ß¿7Üa8Ý©œüfêq!}f0øt“û; ?¥r¼öÃ~‡ïw¼[F;š`0øxò×C<C397>­X KWºÃðڱŽWžð½a<C2BD>µ6‡@QêþX‡8°ˆ
x˜ÙÍûƒjoŰ ƒI£gÞ^eê†uø} aÜ)¼¿„°bêRRM,ÃKkÅp¤uÌÇ÷bo<+X<ÐÓíxë+ñîÒaDñfA
3;ÂP¾bp©*îäØ ÊºÈô^ÅàvYd›«Ñ±;6׊eÏ=rø×°‰K3 †zóK )©(oíq˜o}ÅàÕeï<65>·Î„³7¬Á ƒ<K€Í¨¯îT„<56>$zäˆ[zœÝ0쨕#‚…£±‰*fºÛG1³&Æ!dž¥Ø°ªŽÖŠÕ"ÞÆ¼;Ïà±à¤(¿{|&q4 ŠzåxéŽö²a<C2B2>Ô±¿Ü$ybî”CˆlU<>3q `¹Ð¥õgy' Y÷Z4ža0¨bOs{µÞ8<W±SÖûùÒ<1B>6y,üòpTn¶NܰHïÏnbxëѰBí`5Ü_ª†‰³}°Z«ZBBlW€ÓׇþöR|.ü8°_ýÀ3UR2 2_;1Ÿ»>N¬O ¸ßsÜŠÑúbgãÀj³Ç gJO¶y{Z\'œ)jø#~§?cŒJl¢¹¿œêX
+”°9§qbðN ª¡@©o}Bð§à™ÃÌï7ü75Q«0l`3ä+k‹ÈçÃÅÎ,¥1,æ<08>Ãs§Âµ=¾çðrÄ͓6ÿfÅ"vs:<É*9ÁªqóîRÕúAb¢S\ªW æKÇù31ì„n~¯0ôp‡u8é{}bxɲT<Ü),=ÃkÇ ëˆ_µ"Šœ)\¬–ùÖž_Œ†e¼wØeÇ÷bhÞ0Ú¯ÞO­Š'V³þ&,@þ3ïæHè†d_5ºkÁ0ˆŒ+Ìð 6¦`Ø_Ø\í_1ŸW“aŒ8÷#|Õ$nc¼,}Ï;Xtlæ„^;^:£´Ù°ÄSÐ/Î<>š]Àö 3VtT )£Ã}n/œ<>U
;^yÂ_ô†uÖÚE©ûcâÀ"D6 V$<24>žy{x•©ÖáOô%„u`p§ð~üŠ©KI5± ,.!¬ÃÖq0ßI¾ñ¬`ñ@O·ã­¯XÆ»K‡Å›-5(ë"Ó{ƒ Øeyl®FÇîØ\+=÷Èá_Ã&.Í0êÍ/!,<¤¤¢p¼µÇa~¼õƒW—½?Þ:ÎÞ°' vð|,6£¾¸S~X¹Cè#néqftð ŽÆ&ª˜énÅÌšbê:"X+Vxóî<ƒÄ‚“¢üîñ=˜ÄÑ0(Fè•ã¥;ÚˆAbPÇþrp“䉸S|mw ¬¹#°T=ÎÄ%€åB—Ö œMä<4D>€f9ÜkÑx†Á Š=ÍíÕzãð\Å y‰é<EFBFBD>Ïð|à–0 &᫊.•dât?¢W8@¼êÀà“¤Z<C2A4>w޳2WÃjÅ ˜Žíå±»UL€°S©'†<1B>†¥Pa‰OÈqT3°#zMO•@ žTc9¢W4Qô4F—¥Ñ+Þì€ðʾ­O* <«œàºÍwÕžUO­™¦N­ÌðŽïÁb…b™/ˆ{Kõm$)ÀZö
LYïçKo<Ú䱨~ðËÃQ¹Ù:MpÃ"½S<»‰á­ 3'
]´#€Õp©&ÎöÀj­j 9p°]N_úÛKñ¹ðãÀ~õG ÎTIÉ0È,~íÄ|îú89°>1àr|Ïqg(Fë<C3AB><E280B9>«Í'œ)=ÙæíUhq}œp¦¨á<C2A8>øœ~üŒa0*±‰æþjpªc5¬¬¥#~ÕŠl(bp¦p±Zæ[ox~1ñÞa—ß¡yÃh¿z?µ*žXÍú°ùϼ˜aü¥#|Õè®à 2®0ÃWx$ؘaasµ#|Å|^M†1âÜ<C3A2>ðU“¸<E2809C>að²ô=`ѱ™zíxéŒÒfÃOA¼t8jvÛƒÎXÑQ-¤<08>J ÷¹½p6V)ä%¦w>ÃWð $BC§ÃCªÐõª<19>jGð
ƒZÀ$˜t„¯Z(ºTb<54>‰Óýˆñz¨ƒOj=Þ9ÎÊ\ &XÐýaü9y€Sʉ½a1»>÷Ö‚“ê,bðÕ
«'`:¶—ÇîV1aÂN¥zœn<B…%>!ÇhPÍÀŽè4=U1xVP<56>åˆ^ÑDÑÓ]vD¯x³Â+g|<ø¶>©$ð¬rë6ß9T{V= Ñüžä½ ãÛêi¾s,œ®*'ÂÊÒ‰¹hkîÍœ#xU%¬f¬üä ^1Åçõz,šÂ<17>àU¥ÚކíêMÃ"+†Áfè´¡xÄü+hB<¨ù=Ó@p€C«Ì€eõ¥JÏ1d]X^¿÷*füÈ ]UX|RåE,ÃîOGèªJ§aX­¡+hƒ¤glýç%V;¤„:<3A>ºK€åX² þ[3 êÖÀÔ¨x“^·»q.ÃK ãv3,c“û#t…U…SаÆrÏ#t…<74>ÖtM'¸é]Aiª”äDšîvÁ"vÅ0üôÊŒ\á g§? ï
L´fš:µ2Ã;¾Še¾ î-Õ·‘¤kÙ7Ìœ4<C593> ¦!¼Ïù=èvU©ÀxÄÁ˜ßƒ«R
<EFBFBD>©B׫fVx¨Á+˜`A÷k„ñçäN) $ö†EÆìúÜ[X Nª³ˆÁW+xDó{÷2Œo«§ùαpºªœv(kH'梭¸W4sŽàU•°ša°Bð“3xÅŸ×ë±h #5M<05>“ÌëJ°ÿüjŽù£A V@8"W|]®VKÆR<C386>±+Ý|a{Áì)Gô
_<W•j;V´«7M ‹¬›¡Ó†XàMK刻ñ æ÷LÁ­2–Õ—*=Äp<C384>ul`!xýÜ«˜ñ#3tUañI•± »?¡«*}œ†am´r„®  ÏD[ŸˆaÅŠ4±`«<>¥KNÙÜ]ø}õ8Sc ÔÊ|åp‚ªí1LOTŘQóó,ÌðÕ”Ip®R„V™Î¶09xÃ`å°ža,ñ¥ ç0öÌ|ãª^Ïó ë
’ž± öŸ—Xí<58>ê<ê.cÉR:0øoÍ0¨;XS£âMzÝ Ol~ÿ§g/0Tù¼;ÜO˜„¨ëÜ]T:…ÇÚ¸»Ô¨RƒñÜ’?<3F>ÿ¬7/Jen-ì2§®•ÔJ;ºhub 
ìĹ /1LŒÛͰŒMî<4D>ÐVNAÃË=<3D>Ð6ZÓ5<C393>à^AK¤#t¥©j PiºÛ‹ØÃðÐ+3r…'œ<>þ$¼+˜†ð>ç÷ ÛU¥ãGb~®J5HŒÔ4N2¯{(Áþó«9Vä<56>%Xáˆ\ñu¹fX-KuÆ®tó †í³§Ñ+<m}"†+VÐÄ­>.y8eswá÷ÕãL<C3A3>=€P+ó•ÃQª€Å´KÆ0=QcFÍϳ0ÃOTS&Á¹JZe:ÛÂäà †­Å%•§BåÉ«?0Ø”X²ó<C2B2>³ôAMi`ø,<2C>ùƃËúPà[qøB<C3B8>Ù,¯
ƒ• Ãz†±`Ä—>0œÃØ3ó<33>g¨z=Ï3¬?(l<±ù=üŸž½ÀpPE8äóîp?y`¢®swiPP!èkãîR£J Æ_pKþþ³Þ¼t(•¹µ°ËœºVR+íè¢Õ‰1l(—Tž uÕ¡†9œÑ0F¤üÔ8¦¢=g¸VØ©á­nX®ËÜZ<éuk´<óÔ§°ƒZ9“ßÖ×ÜZ0OtGfö|vêªqwX
•'¯üÀ`SbÉÎ7ÎÒ<35>áW°<æO .ëC<C3AB>oÅá uf°¼*ÔU‡æpòSà˜ŠöœáZa§†#<23>¥¶ºa¹F,skñ¤×-¬ÑòÌSŸÂF j!äL~GX_skÁ<Ñ™ÙóÙ©«ÆÝa54=z<>µ=·aš©Û• ;Ó%Å50¬DuLÈ5äçKà g ž•$<24>g( 6µSC:s˜cqÓ M<EFBFBD>^`mÏ­D˜fêvåÂÎtIq
+2 v ~u¾ô@»aÚ3Ÿ&¤lj§exVxXÄc—Àoµ°¤q™q{ÁW Oc¸¦¡¬@§BïŒN„²|kÍ^,|+Úñe]•bX(¸à eyxOzï.€j~/]µËoí¦ùÖ™kÐp0èDè•©Pѳ«À·R+nÜÜëªg0i<30>?BYp»ºž%äVÄFðG(Ë1î ϺÀ¹Âb‰G( !ªŸ ú:tªT¼X<C2BC>@ ‡#ëÒç÷cE#agŒ÷ŽuL÷Ê0øNÐ,#„ÙxȪ· +Q2‡`
Œ¯¹ÎXVã! ¢ÀúcÙùŒeáuÝn¾þñ3˜5|ZÅð꜊Aªç0äX¸ãµCï3´!Ì?LjÎPªX±aÌJè±ÃeÛø^׈߸½§YýÃÖXO:¢YÍÎbÅ ùùxÂÙƒg% äÊMíÔ<C3AD>ÎfÁXÜôƒäŠ ƒƒ_<C692>/=Pän˜¶à̧ )Úiž^ñØ%ð[-,i\fÜ^ðÕÂÀ®éG(+ЩÐ{€í£Ó¡,ßZ³ ß
Ž<EFBFBD>>ÜJ\9¾,<?£YpɘŒTn¸ñaÀÂ*àÊ27Žç<^:ÓÞ:ä†Q?bÓM|h<>àYEúu#5ÐX„­{Ô4^Áp¶[ÃØ0xAøßˆe5¾{`°þ¼ÎJ1¨DS€pæHŠh`Xªä€áâ­7 ‡v<BYFW¥
UU쮦§aа± . DL˜< .8CYÞ“Þ{<7B>í‡ à„šßÃKW-Æò›@»i¾uæ4 :ze*TFFôì*ð­ÔŠ÷÷ºêLZç<5A>PÜ®®g ¹±üÊrŒ;ȳ.p®°XâÊFˆêçƒ>€<0E>*/VgÃáȺôù=ǘ„`ÄHØã½cÓ½2 ¾a6²êmãk®3Õx¨(°þXv>cY8D]·[€o…ü f
ŸV1¼ú"ç‡b<E280A1>¤ê¹ 9îxíÐû móÏ1¢3”*ÖGl³ºeì°ÆfÙ6¾×5â7n¯ÁiVÿ°`‡5Ö“ŽhV³³X±c ·’$WÎÄ„o ÏÏh\2& #•n|°°
¸² Â<>ã9<C3A3>—δ·¹!†GÔ<47>ØtZ xV~ÝH
4aëÞ5<>W0œíVä06 ^þ7bY<62>¯Á¬?¯³R *ÑÔ œ9"–‡*9`¸xëCÇ<43>B@»«©Çi4l,ƒËG¦ ˜?×:îŽJTíŽ
ת(o”a¸ñ¨QV`ЯÐ,ÃÕnǵ5À`»ùÀ#k•¼Q)æbÓ• ,™i¦<69>&p
© ·hèTÜäˆq¶r™{+àdVƒ lè•É¢Yf+´ñ0<C3B1>XàÔ9¬Ø\ØNuF²``9DÃoÓé¹ ¯+RñìüŒd5aCÓg Ϫ@;<3B>·Êˆ«-Y@øí´É0˜µU ‡c¢
Ç*Á š<>,øcÁÞ*<+ˆUf«²1<>¯Ú_3ŽÅÓ!ª^+
Va4Øs†gÅ?3Ž?Švˆaxë…™ÃDgEÃ4)3^9«Û“K+Œ?üµ0sÃ`S4Yôä»ê}`x(ê¶6&ȶ£À)¯3<C2AF>U±Úùl³Â¨ñ=èr¯º˜e™Æ÷°ïªF<C2AA><+:è~(TœMRy„fBC!éÁ †á †VáK<±a.7)³ÅÚq,x°µéc†;ÊeƱàÌ03lX§†žq,<16>9u­ì?¨0Hgß+]£ZŠá$¤ÉL*0Ö„A}ØíQ1ªgÕ`þ¹ /Ú hÃht7ÔÊpµqÉ^0h†f«H|@ï ±£je„±°éƒ¹ïÀà+¥qþà¤òæni0¤pã[¸ó«ü*X³4´0Dc_ƒ[%žÓ]Br_ÖøðæÃBÑhY†¡ZÃŒb˜¬f‡K9§4£X8µ¢ˆ<C2A2>D«g G½5Á`üĄ́ãÅÁÆ(¦i%fIëxáô㸠ƒ9+În€vÔó Á¯jQ˜ŽÌ4°¤¥Avs\5 Lÿ0X|˜M
ðÇ
(Í Væ,ouu™1,lciEl²U+äŠWï¯Ã­Š0Åêxߦ<>>I@þkÕçßY<C39F><59>ýƶÂ<1B>Uµs‡Õ§Åqk°óª:½Àb”ÌŒýfÂÞ,º<1D>ÑKO3 Û,Ö›:Ö†A½uu«:+Ài <0B>¯áì°¼(”±«ðq^zÃø{uØŸ‰±H]y»ªÕ dA]{<7B>I+~4,ht]1<-:
ãî<_Yé=±E
eD°ðÈ}Pw˜úðã…G¸cM—%0˜Ø÷"O§O^U‡Ëî!Ò×ã7Ú\²‘‘UÏ€šzjv{Q½Á`óA¯¹Àâëjjê÷"R‡ÀÀp`B£ ';zîýMì,x !]
¾¨‹
 Õ¾Hj¨áaŽeÃQžçŽ L<>¨KÜYÆ=îζVÐóΰ¤zÝn<C39D>Æa kÔn3ŪŒn«<6E>
š°ÊgkT(<06>N
s,ÝÖôîP¦<50>¹iܴߌºb·Ùýùн%ÞŠPãìf»?(L¯o<C2AF>X•´õˆ[b P4Á°¿z¦'eû &c†%ñ
•ÖKò†UÎ ˜!,ØkQ¶^upªÆ!¦<>8ùÉ0Vúbï<62>¯eÍ*+VƒÎ4,¶š«bpªTX<1B>K˜
=2†k˜µŠ®<>Â-}õØi½?X‰kÚ¥flM.(ÄŒ2 ?<3F>í`Q,Ü'Eé†qÒ Ÿ¡aŽF½Þl?¬X!ö=œpPþÞ°µÊÊ
gU<1D>˜<CB9C>š» Û<>áöÅŠò¬4LÝb%Ž#<18>^•¾ôh˜&3ƒWõ=«±’Çc3ŒMªŒö^»aØ%¬¬ßsŒ‡ë÷àW±+ÃâJø4â)eƒ°Û Zlƒ¥ÂˆT_c}wq,h£Ç[‡ép»#Ž•Ø#®.±Ìš¾ǶÀ_MÕ0Tmcát/:ÓƒìñXîjs+µŠWBŒ ‰b×Îã{
çK6§žåÂ86ååy¸u„±¸EK
H Ë?õÆJ,Ó 1xK<áíî°ðwåÎ9¥ï•e܆©ígX?æÊxéQΉl˜$”âx鸧1.ø1_Œ¨Ò]3¬h'<27>b‰†µùUx9Ž6ƒA:!ÕâX G`Óaøâ0<C3A2>š„ ƒêq` *À<>8VbøÂÖ°Êà@7­Š%¡YÁàY5ùšÉâö´Ç™ùW¹tìö° Y0e˜D½½tˆ%¸¢¯®ší/<1C>0 uƒ Õbž6| Dº¿¼Œl(}ıb«Þ^<«(õÁÉ-4Œ®ÚôëqÂ{—Lì.X)8 ì{Øöf‡Vó'<Nèh_S¸À¢äH-x #«±ÄòÂ<X.N¢fXo8¯F‹¡¶q óÏK…‰™Y~\ªa8¡Xl½CQŽ$31->³—鎱—+[p4`Ù÷X×™u±°áѳ4ĶÇOÖµ¸Ýn/L¿¸²<C2B8>±0Žj^ÖºÏá";MQ 2prYKúò§é2Œfû 7[iÔØ*fM{l:j‡\~Ñî<C391>¹Î!'ö¼FN@Œ%šVv€ã þF2¥XšQõY±ûhÞ)ÔÏÖÕ šÅ|mÎ^¨ÚŽRÙ,
ÝQG+ðälq`8ý¡Z,Ž˜L-¤Íš,FùJ2Qà\­éT ³×b<]±×è@k<l<>Æ6Ø€ Pž•ûatN)„S"åÈ
,gª®V;cÈbš F1Ø€|?Ù`M(^µ7 fqš5Yp?Šú‡„°4 Y쥳9¯<39>»Ãþ꺟Ã1ª†<C2AA>bIzw³K±Jƒ×Ö˜gñ`Lzãð®*”èdáÉŠ`†E)Õ±ýŶ¢®þ41¼ø2K²<÷žæúñs°ƒºNÈ,±iQmP-öÒ}ä)®>°"#Ï-9ë/K•1˜žP Ž1†`X¤“ná*:¸´sib,gRM×V<E28094>Z(9ƪu!Ä,‰®bâ”ÃI=1!yûŠáuu ¿¢!‡õa_à ȸ°`²ä×»“ÞʪZX1{F1V¼¶ù½ŽS=<3D>PcTÝ9}*p±8r„²`pâÏ=Æäà,Ógr˜¾Áä%¿žÊUov:v`Q Ï™åM†ÍX `°º5¬ë[<5B>ŠÑ
U7
ý¦ ¬ÀVÜBdÔ+~G"Y,©„•jbÂÃjŽšÆÄ XM7PZ_,Ž<>µÚ×àȘI «1Ó·PŒ•ôIu?0êú²Þc  &Ãц+xòÓê_Å$Ñg·+Ší¦·‡ã>¤Ý:\¬ÌˆžS9q5Q4†Á|çØLûžg¼ÂV,@ÇÖ—fßsâ!Ëo&¸XùIÙ_pHX_©YNbRVŠÞ¶ú4"€Áð©Ý9½¿JG̉7 ÝÀñÅ´ôþðÿÁV æ[ÒØýfíôh$‰0<E280B0>f1á¤iUÁ°¿ø˜œ½õB÷Ûë£XõWí­c“¦è¢A<C2A2>žDÔ»c#OÐü {tdƒ·p0±ÈR8çõî`Dô¤•IÄ8”Âil€5½VÙJ ŽÎ<C5BD>Tæ"j·ËÁÁ‰™4œÅS5K “aXÞ8÷UJÆY¨F86{ç«N &Nôdßc„·÷ÿŠöKhzwp¢JT6…8m
±uÞÙ<EFBFBD>ÃþóÒT­7‰#Hý`¬X
öƒže®­Ò‡C,b3ã‰é}Wžý1˜z€Â¦Ó™
𠃟^Ì<>Mœlç;tŠ…¬Ç¹Îój¥«(xÙX4.鞺¨7VÍ&ÄV'Wmkæž´ò›ó‹§]°ÝêßìMÊθð±dƒó#üO ²<>
%,Å8„2Œ?Ï_Яylb^,°ÌÙ Ù6Ú¹ªö<C2AA>ñ4ªͲǯ›$ûŠ“4˜Øz¬Ľï4(Z[¹b-i%@K”AdÆÞÑX/â¨/$F]6RˆxC¨ÚpîÛ·û(à«rDÃýÈ`#JcuL0,Yc¦b4®Ý6v5”Å›§É­×㔜è-¸ -Q«¤ c/nÐPc4«¡<C2AB>ïAeá“¢rVÖ)ëÊØVRæôk…©àª»˜¦Õ’~
O¹ÒØ3LCMo<4D>Õ0…&¿Êz:Ë…Ñ0o˜´Ök$Ë3l׊SóÃk±«<C2B1>F²XÕ‰Ã.©+š+ÏvX+Qå\]_ί€µ˜4Åbë(•ô†UǦ¯ßÃÖ«ëaùAá/Û÷˜QÔB-b8D"CôÑ+f Þ0¦«†²üWPG_ŸKg»*‹¿ƒ`XU<58>^al,uÊòìÁ)Ý|X`ЃÐ)Iå„âaYúÀ:˜h¯Ý1ö¦†8' 66¬—×Î&<26>Ê&¼n˜4´7I0KEµ¥ÏX·zÁ_zJr~kF4Åš\Ï}1LÊU4ÅèbÁ
©:Æâ„ a;e=Ð
u ¸²¤KL4ÇW4_œ^k)t$eÝõ[û¬fue
Ý èžVõÖüÝ[E VSÄŒoÃØU5ˆÅ¬<04>`{ °ú+y»Š¨]²*|` `;‰/pbˆ(õhP³BÁ<£ Ý„„OÕ$Ž*<2A>;ÊOeÇŠª¤_sx<73>8^a<E2809A>!ÈÆÈ%k‡î5)‚ÇýÅÂÂ,‡•ne!rφqÒ@• 1û¥Ø€Õ'zƒ^6)‚õš«tÔ©gá ©f:[“á*é×öeºÏ°
€3»1V>¿›Ï[¸A0OgY7çΙ³"«c<C2AB>S3¹p¬—ø'zwA<18>LJl,®UbX©oÄÆÃ’—>Ký”Ke$Ä0<;Ö©ó{QŽl‡ V9ÙWê|¼`­ÚP Å¢Y€„°¾JtêcW.n(pÏwž8jÏÈNùŠíi
N0èGF¬apËc0š"8YŠab½K Õ<C395>£¡UUxé:Û†G~eE•}
‡>n<>ƒ†óü}]•C+ÙFãôæã fùphŽS‰z±0話[<13>îö \&–¤
ªi<EFBFBD>±Ú7J ¥ †Aÿ÷,1¬Ä*œÈ ¼,wN­`´DbX¬.å8<C3A5>ª/\…¢³mv)a K¯ú=šPE*'|* ïS²š•=.ÚyKlVLzeÑ<Åú0Ùˆ>˜ ^Ì<F+)K veíÝž'¶\¸*A,šŽxuNkBpF3•‘ô{´b´0^¤´ÿyè†áÖh óö˜jehaN­À:vÒF¤x„í"Þ°l
J0ø£E»5*J aÑf†òèÚ/€ÿÂQWBX‰lØÁjAsh…D#Á3¼Ï0)°-œƒ¼ôDÅÅú;yA
Ú0q6
5jÒfiVWlŽÖHb¹Ä®©CBÚ¨ÈÀe"R¯mi0>¾´Æ›þ¦h¢˜ÉÈæbÅwСŠY¢! V¬ñM0X~ê¢ÁX½V ÃjgM•~ϳ­Àâ«<C3A2>®ž‡.<2E>WN[d¹sf…™
Ö<EFBFBD>VSÁÁn£‡M<4D>…õ¤V93+0¢”ØžÌà£:
7 o$J eXMN¬À—³°M8íU7ŒBUX‰¦‡.Ts¤áUâ”c"V0†=ƒ³—<C2B3>åp¬NÞ¹£Ý™Ú6¬p 
ÝE¶@<40>tížÃscφLŒëžg½a1Z©”§'nƒ†ì¬(¬Ès?£¹:Ϋ<C38E>â
ƯØOi¨èi\f¶¥gÀ€•~^·$°¡*
˜ÚÃäÜ2èbzµ ô+{±iµGžp©Yá2ÛÙ<E28098>¥ZûÀºE§<45>QdvúêŽlœ[&¥lY0hÅÀ0„aÔ“YâW±HÙœeCÇIœš_Ë,çJR
¬;yYy
˜¾‡çôPë[&ÏwÇ” ˜¾‡çôPë[&ÏwÇ”
.`°U WF$f™m`x¬ÐÆÃtb€Sç°bsa;ÕÉEå Ýþñµ&][U
K¾M§ ç2¼®dHųó3Õ„ :ÓÐ$èòL­Ò=Õ~¤™fíœZÆÙjŒ^E ȪE¨Ä`¿Kq¡0,°E‡9fÁ8µLúû”}Ásm(û1hk9 <0C>yI3ÿbX“Úmyåœ à¸õzÜ…Ø!bTEŽè,
MŸ%<«í4Þ*#®¶dá·ÓŠQ?$Ã`ÖV%ˆ*«ƒh²à<C2B2>{«ð¬ V™q¬ÊBÄ4¾VhÍ8O‡¨>x­,4”ÝjX…Ñ`ÏžüÌ8ü(Ú!†á­f~ <13> h†%«óþåÙ¼Ö8‰LM `
Ó¤Ìxå¬nO,­0þð×ÂÌmVõ_ ƒMYÒ dÑ“ïª÷<C2AA>ᡨÛjؘ SØŽ§¼Î@VÅjç³UÌ ÍIøŠ
£Æ÷ Ë½êZ`eßþ«jð¬è û¡Pqz4Iåš
u»vN-ãHe¡»f¡u+Ãt6s<36>žf6¿¨VáðŠ&ÇU;FYõàê0ý|R†1ìvŒIÄÞ0QSïœ<C3AF>Žœ¦£eŽÄ`R²ïŒìl¬dõ<64>šœ^aEaÁµ­ô¬
£Qà$zÅÆÑ€‡§ £Qà$zÅÆÑ€‡§
JÄê0¤H;ÁµáMSuž äôœ<C3B4>âdðaQIÒpL'EVUª•Ý9´¬hE¸gf«:逬Q1;ŽdV(‹÷Ú)AŒYø*á+6X³kPsˆV[HøÊ3^X ¤rrhY£R Ñ·ç@VdGÃ"gÆJüŠmõ4¦Ç3ãвƈäd›ÕQ<><±€á#%QB9qT3áJ_œs…ÎïÑÙ¨l ކèíÌÉ!X©•N„z1fiZN<13>ôKœXÙ#ÐuYp ºƒ£‰RÒÕé¥q @„°PºL³¡ŽdQj8h0¥x­þb%!NPjzƒØþD£ê­$øâpÌšA,ô·h÷&O¼BLÞÀûbƒÞ=Ýù '¡¬žù/våö JÄê0¤H;ÁµáMSuž äôœ<C3B4>âdðaQIÒpL'EVUª•Ý9´¬hE¸gf«:逬Q1;ŽdV(‹÷Ú)AŒYø*á+6X³kPsˆV[HøÊ3^X ¤rrhY£R Ñ·ç@VdGÃ"gÆJüŠmõ4¦Ç3ãвƈäd›ÕQ<><±€á#%QB9qT3áJ_œs…ÎïÑÙ¨l ކèíÌÉ!X©•N„z1fiZN<13>ôKœXÙ#ÐuYp ºƒ£‰RÒÕé¥q @„°PºL³¡ŽdQj8h0¥x­þb%!NPjzƒØþD£ê­$øâpÌšA,ô·h÷&O¼BLÞÀûbƒÞ=Ýù '¡¬žù/våö
ùdÈa ¸s™ß•ÙXÒ1JíVIþU VŸJÿ¦tSr¶ ×·Â‰i-ËlFBkz2HŸXqRSΰ<C38E>½0ÎK£<47>fÖ e&z5© íYmKB-ÙÄ¡&ƒ!¤ÛP "³ªkƒ£¢RLÕ=N¡áz“ªçbòqRšNyÂ* ,çÞ Úµ± ùdÈa ¸s™ß•ÙXÒ1JíVIþU VŸJÿ¦tSr¶ ×·Â‰i-ËlFBkz2HŸXqRSΰ<C38E>½0ÎK£<47>fÖ e&z5© íYmKB-ÙÄ¡&ƒ!¤ÛP "³ªkƒ£¢RLÕ=N¡áz“ªçbòqRšNyÂ* ,çÞ Úµ±
Œ+»ÂrÞ°ÓI“¾“Y€ÇH5ŒlŽ,»l‰ÿãÀbꈙ¥(;—õvT½†%»mÑÐ2°kl…pRZ•P#ûõµV¿“ÓEÆã©•ÂùélÿqPZ“rBÑu¸oŸµE<C2B5>X…hšbþÅ,²ègÐÉõ¢ÉÙª9Ùt`Ô'4dôt¨,ÍU«ÃXi”ÚB¯F,N^Zy(gŸ Uï†É¼<>13”éÂùñ=†TÄÎ$Uy´a' Œ+»ÂrÞ°ÓI“¾“Y€ÇH5ŒlŽ,»l‰ÿãÀbꈙ¥(;—õvT½†%»mÑÐ2°kl…pRZ•P#ûõµV¿“ÓEÆã©•ÂùélÿqPZ“rBÑu¸oŸµE<C2B5>X…hšbþÅ,²ègÐÉõ¢ÉÙª9Ùt`Ô'4dôt¨,ÍU«ÃXi”ÚB¯F,N^Zy(gŸ Uï†É¼<>13”éÂùñ=†TÄÎ$Uy´a'
3ŠU`²š t7ÃfF-­Y½Ê>5w\4žªLÕëªpM…ܨ/yJ²¤<C2B2>Æ#ËKRéq¢6'&‰hHÁc<C381>î7ÚÓó!(·¤W œÑ7áˆJ[•ž3Ò´NWÝ²š²Œ“R ¿ ®Š8ÀZ諈¦¹¢Fð|ªL"5ÕØm$ÑRš)( ÇsBš6CZHWýZÃØ‹Õ'Â%ÇRw§áè E"†Œ¿HR/[K±ÌDÃf'…=WÓøùv†ÍØ^)ì»ú˜9!Mµ5°Ê9†Þªlˆ1êÄâE`2Ú,h«!6Ù`oñö¤F)ÂÂÒË5šÉ<È“°‰ekµ2,Û$>`Œ¤:<3A>¢£öµôæ3††»sÞ&Ç£±ê›Þ=G¹vö ”`›ÜÕäHÖÄ<C396>³Õ <06>œDÎØÔX+†=¶ŸXÉ<12>Åò[©éˆ%l*öУ·+aioXãø"¶E[Æ{Òß„Ëdf(o®3Ë8”7 `âpQ?]Bš»àÎb(o_ÎwbAN•&¡3†T89A<39>Gb¬
,åœÒŒbáLÔŠ"B­žA, ,\û¾Ê„'™ågX…o×Xçâ«TfÚè1‰­¶±°ò1ª;60¶Õ{ÖÆÃ8ä?J쌣29p°«2
ôÖƒñ3£Ž£˜¦”˜%­ã…Ó<E280A6>ã&T æ¬8»ØQσ¿ªIFab82ÓÀÙÍqUÔ00ýÃbña65À+< 4ƒX™³d¼AÔÕeư°<C2B0>±ÉV­<56>+^½¿·*«ã}g˜Bú$EZøC X®UŸgu6ö{Û <­ð+´¬pÀÛi\&éÝI쌟õ)V½Žñ&]x#b9â,ƒ©È`hzó6XÉÉ0©*<2A>ÁÐ쀠À¦291®·“Ø}o'a }C4Þ´9{<7B>X<EFBFBD>Ú“uÜz¶$h =¦ÅLü
o4VÕÎVŸfÇ­ÁΫêôQ23ö {³èvF/=Í,l³dXoêXõÖխ꬧-<¾†³ÃNd@ðj PÆ®Â;Äyé ¹87%'ftiLo5^t»Ø‘|);kÒ"*£aì¾ §wÊÑBn~?Ø› †¦ Š7.Ówˆ5©Æq<kErÊUK=‰1ëâ%xÆù†²¨T NMÃÒè¼»HoΔ<0E> c
ãïÕa&Æ"uåuìªVƒý uí5&¬XøÑ° ÑuÅð´è4Œ»ót|e¥÷ÄM(”ÁÂ#÷AÝ}`êÃ<C3AA>áŽ5]–À`J1_`ß‹<Eœ>xUQ.»‡Hg\<5C>`ÜhsÉFF:T=jê©ÙíEõBƒÍ½æf¯«©©ßHf F jpÃ<> <09>2œìè¹ô7±³à1„8t)<ø¢.* X0üUûZ ©¡†‡9 ¸¿¤’ž¬°¶»ŒÐ¨=c¹<äÐÀ!¦Á´Œ^CšyoêÉ„"ƒ¡éEjvÕ9À¤O=s÷J¢‰w¤e§ÀdŒæ¨Þkdójl@Πay2lÖÓ{ú?°#ÅQ¬1Î.Á3`<60>å•I<E280A2>Ä(i?&5('gÃâ¨TúmbGcÁÐZ.:Ã0Î Íy,z1s*Jñ ^*_;ã9™¹S ËV¢ŒŽGiHB*ƱNYKga@K€8JôŒN§>hõ1v´É\<5C>@CŸ-ÚêG¬I«šSU:¬šDƒ—þ%‡œ M¨šƒ`öabs80愱MGpjFå¤ ¼öàdöbÐÀF‡_³ZI ¬1igÎCI.cÕ$”WtÕ°ÊN<C38A>ÊàxlJH Õ 2¯<32>Óœ½AМÄÌ{ãÏ3J!n.1þÅ̱X<EFBFBD>æ£Sþ\Á;fÓ+çìs¸ZaØPõ4‡fXX[+K‰±TÑ1zhi2œîm½SÝG'C҉щðæˆDÇxÐ%A<>6Ë@¡«ìy±Ìtê ±Ä™iZ‰Nˆc%‹öùÞDúÁëä$)MP¬ÐY☌àe:âŠu3Ù£ö)ZßKóÒ>Œw@{ÈsܦšÑŒÁÁˆ2:bÐ/V JHºÈ*³ŠØ1çâÄ´eÊQð2ÝUMKÅ8<C385>ƒÓƒ5U¡Õ <>ÕyÀ<50>£»<±ÆŽ¡gs56ЩVIÒ6ËmžkìŠmj1#O&s!Àس¿¹«­Ìˆ,^9Ç1þ
Gyž;205¢.qod÷¸;ÛZAÏ;Ãêu»=‡- ¬Q»Í«2º­v6hÂ*Ÿ¬QI <:)X6̱t{`X{лC™Bæ¦qKÒ~3êŠÝf÷ç+öx+B ްíþ 0½¾ubUÒÖ#n‰%@ÑÃþꙞ”í/˜HŒ}ÄO6(TZ/ÉV9ƒ`†°`¯EÙzÕÁ©˜Bâä'ÃXé½?¾5«¬X 4 ms7œCE¨jB:ÔDõñ…s ¶.^¼~-³ŽO:ÈÌø2ÓÂIs7ÃÄ`°ê³Ö¤+He%ëÄôr$q×> ÆÒCbÒT¦Ì^Š=èé Œ^6<08>4<EFBFBD>¾¤1œž Ëð n®n Œ† Œã·ŠäÌd~<7E>bË™ç¹ë™Æ|
:ÿѰØj®ŠÁ©JPam.aº0+llöÈ®avÔ*V¸>F ôiÔ[`§ôþb%®i—ša°}4¹ X3Ê0ü¶ƒE±pŸ¥ÆI'|††9õz°ý°z`…Ø÷pÂAù{ÃÖ*g(+œUu@Z1b&vjZì.l?†ÛG +ʳVÐ0uW,Š•8Ž`<NxUúÒ£ašÌ ^Ô÷¬ÆJ<1C>Í04e\¨b0Ú{í†a—°²z|Ï1®ßƒ_Å® +áÓˆ§”  $Vu ¯AäV”îœeô º×Zbôä%ë2kB<6B>B&Æ<ÛX<C39B>r³TNzÜ£µ'ùÈ N“ùµ†A5W©ü"¦-ͺ%u™4Á$T'<27>ÅÕ°4Œ‰Àk«tø±Ên(Nƒ&½á¬ãµI†[ÆH¡2<C2A1><í´)¬I?«1è°3Ƨv4kK}H²]¦è¤â¤ð+0&ÚøhÃÀXÔÐ0§3Ä<19>ãXN<>V¸ÞxÈè-ÐáÃb`5ùß™´a©q†¡ÎaÐÄX³š4=MŒ3ØÛŒjϯé+ÊŒêÕ.M<03>zº÷¤ßƒ" fôÑvŽLÅ0®v©ü
Ânƒj± TiŽEAn|<7C>Ãôhf}D²Ê83CgHó{^š4Ùi˜åãk—”Cæ¨ïlX·Q]q:V1WŽC3¤'”Û‹.%Mõ¤‡YH´¨÷Ç$
#Rq|<7C>õÝ}ı <C2B1>Ro¦_ÀíŽ8Vb<56>¸º\Ä2kúF Û5UÃ`PµYŽ…Ó½èL²Çc¹«Í­Ô*^ 1þI&Š9\;<3B>ï5œ/Ùœz ãØ”—çáVaKÖÆâ-I4 1,ÿÔGL0Äà-ñ„·»ÃVÀß•;甼Wq¦¶Ÿa þ˜+ã¥G9'²aPŠã¥ã~œÆ¸àÇ|1¢JwͰ¢<C2B0>@Š%ÖæWáå8Ú é„Tc%<1C>MK„áÃjF0 ª#Ä<>?âX‰á [cÀ*ƒÝ´*”„fƒgÕäk&cØÓgæ_åÒ±ÛÃ.dÁ”aYôöÒq –àŠ¾"¸Vlh¶¿p<Â0ÔE &$TyÚð-péþò2²¡ôÇŠ­z{ ð¬¢Ô'C´Ð0ºjÓ¯Ç ï]2I°»`¥à,°ïaÛZ=Ì?œð8¡£ap|Má#µà%Œ¬ÆbË óbE¸x8‰ša½á¼A,†ØÆ%Ì?/F&ffùq©†á,†b±õE9ÌÄ´øÌ^z¤;^Ä^®lÁmÒ€eßc]gÖņGÏÒÛ^\?iX×âv»½0ýâÊÆÂ8ªyXë>k„Xî4E-ÈÀÉe-éË œ¦Ë0ší/Ül¥Q#X`«p˜5YXî±é¨bpaøE»?æ:‡œØ_ð9Q0hZÙŽ'XBøÉ”j`iFÕgÄî£y§Pc<[W ,hóµ9{¡j;Je³4tGa¬À“³Å<C2B3>áô‡j±8V`0µlN<>6k²å+ÉD<C389>sU´¦S1XÌ^kpˆñtÅ^{ ­ñlb°5Û\ c.\dXByVî‡Ñ9¥N‰”G +°œ©ºnXíŒIX iJ,Å`òý g5¡xÕÞ0˜ÅiÖdÁý(êÂÒ€f±—Îæ¼6îû«ë~ ǨvŠ%M8èÝÍ",Å*
§~X ‰,$Z“«tºnxS#·˜œbÅ•œ™1Ê!±{—]®†aŸÓ?Ä+gŽ­P!9, §~X ‰,$Z“«tºnxS#·˜œbÅ•œ™1Ê!±{—]®†aŸÓ?Ä+gŽ­P!9,
g-ƒg!‰ãV„ÛN±<F{£ÑYp„8Œ°4ùI:°ÐÑZ1ÒHA"ÏñÞ:;'°×'Ÿ<>în¬r<C2AC>Pr¸ƒGXwÀál]­4̨<C2A8>Ä׸-"+Ü5 g-ƒg!‰ãV„ÛN±<F{£ÑYp„8Œ°4ùI:°ÐÑZ1ÒHA"ÏñÞ:;'°×'Ÿ<>în¬r<C2AC>Pr¸ƒGXwÀál]­4̨<C2A8>Ä׸-"+Ü5
Bo<EFBFBD>§üý µ9EšÕ ±zŒ\)ýÂCÖ"ÕV8,Mü†*Ϙ[cì*d‰ëañçñ=Ðl a:̬‰í]EáÞöl) Bo<EFBFBD>§üý µ9EšÕ ±zŒ\)ýÂCÖ"ÕV8,Mü†*Ϙ[cì*d‰ëañçñ=Ðl a:̬‰í]EáÞöl)
ËN«“DŸÝ:\¬(¶›ÞŽCø<43>vëp±2#zNåÄÕDÑó<>c3í{žñ ‚Í¸Š±·…Å_<C385>5CÐPbo+Ä!I2f&àí³ÇL&:cå0NýRbæ?h‰P²Ž)`´[¬N˜He×ÏÓÀ©àPÃNÈN#”JËYB8XÍÏðU<C3B0>BxÉ ž†tÒ Öu‡^<5E>N]—áW(Ú« ªbð©¤A;½çœ$b2b§2 c`kGÍŸ5<35>ŒÒê@×=“æpb2}ˆ¬ÀÔ»Ö‹á|âÂð<11>ü .*©GXÕÏq:<3A>wÊ)O¶åH=U8:°"…ƒkµD€42|ᔸsT¤†%8+ƒsA  ,-ÁvÁÙÄèá(`ås(ÒðÌ?uÊVc5ÁªŽØ†áç».hx)OP99*ÍzRCzI>VXÉ$I<>Ž ËF¡…Ö_cÍFga¼ž•Ôì2"·ÇÂŒåAsZ†f ½`8tD¹bÝ2×ÀxtIc æY•ØÝLŠÊå–ÙÖÂʘÚÌ~`ðke" 0fl#§çË£&õNW™§EH^ùDc݆?̉ð™ÞaMÊÁ¹¹8 <>qQÁ¤A+>h»ÙÀò0s‰UíRΆ1ö(k5TåˆÔ1j­& ¯Ñ<C2AF>D{»W؉%¶ 1ˆE¬r†<72>×ÕBêø‹¬æû˜ø<CB9C>
ÓïqAò/ò­3½ï9‰FWuå¬4©6iMZë‰9[*0K<30>çkÍM<C38D>Ì#ê£âîZ”²† )ob2!ƒa,bP££%…Xe13ÃX<C383>Ñ~UCÎ|€ì0g+<2B>Í"J<>²b0âd¦`ö1ŽagI0¶eB<65>é9ØWXã6)"0“Íg«“ãÒä@Ä*EŸl$ !ö€x†±ˆÑж™näh•1 cá0`ïŠô3YAÏ0V ÝA`IîYÌКŽ(kédb ÓïqAò/ò­3½ï9‰FWuå¬4©6iMZë‰9[*0K<30>çkÍM<C38D>Ì#ê£âîZ”²† )ob2!ƒa,bP££%…Xe13ÃX<C383>Ñ~UCÎ|€ì0g+<2B>Í"J<>²b0âd¦`ö1ŽagI0¶eB<65>é9ØWXã6)"0“Íg«“ãÒä@Ä*EŸl$ !ö€x†±ˆÑж™näh•1 cá0`ïŠô3YAÏ0V ÝA`IîYÌКŽ(kédb
0r<EFBFBD>•ªd«³ÖÄ,øÊï±yŠæ¿®ˆÆÄ˜°A0¦®½N²]6À—¦d5?I1®ð3±q 0r<EFBFBD>•ªd«³ÖÄ,øÊï±yŠæ¿®ˆÆÄ˜°A0¦®½N²]6À—¦d5?I1®ð3±q
ÓPmÏ«’ËïŽ\<5C>¬“»'Wã¼[Íú\ÉÕD ÓPmÏ«’ËïŽ\<5C>¬“»'Wã¼[Íú\ÉÕD
@@ -3347,46 +3404,46 @@ xref
5050 5050
endobj endobj
360 0 obj 360 0 obj
/DescendantFonts [365 0 R] << /Length 362 0 R /Filter /FlateDecode >>
>> stream
endobj xœk`¶``[äÒ*.ô[Ìi
365 0 obj endstream
<< /Type /Font endobj
/BaseFont /EAAAAC+mwa_cmr10 362 0 obj
/CIDToGIDMap /Identity 20
/Subtype /CIDFontType2 endobj
/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> 363 0 obj
/FontDescriptor 358 0 R <<
/DW 0 /Type /Font
/W [ 0 [365 500 500 500 276 776 555 443 555 333 625 500 722 388 391 500 276 276 443 555 555 750 763 651 526 555 443 526 276 750 276 ] ] /Subtype /Type0
>> /BaseFont /EAAAAC+mwa_cmr10
endobj /Encoding /Identity-H
364 0 obj /ToUnicode 364 0 R
<< /Length 366 0 R /Filter /FlateDecode >> /DescendantFonts [365 0 R]
stream >>
xœ]Kk„0…÷ó+²œ.<06>Ï„2¥à¢br<62> endobj
5†¨ ÿ}cN°Ð€<C390>/9÷$‡ÜèV?ÕºŸYônGÙÐ̺^+KÓ¸XI¬¥{¯<aª—s ÿƒ0‡È7ë4ÓPënd)Tj1AÉXôá~¦Ù®ìø¨Æ–˜¢n³Šl¯ïìøuköÙf1æ‡Ò3ýiå¿ÑíE˜W1¼Ï©VNÔÏëÉ•ÿ)>WC,ñÌq9*šŒ<C5A1>d…¾Óá»Q±ë³Õæþo= 365 0 obj
em'¿…Ýå<C39D>•'î(ŽSJ@1(% ÌS"A¹§,¸žÊPWz*rÐD  \HÀ%x¶PO‰µ¤°C"P8Y‡:dà1žùŠ ùJžùrìÇ//@È—%òea << /Type /Font
ùʰ;ò•ÈΑ¯žÈW†³ _Þ<C39E>/;ƒ<>/WþJÃÝm—»5éÞ9r±Ö5<C396>ïQß-[Ÿôšöf7£Ùªüó -nΪ /BaseFont /EAAAAC+mwa_cmr10
endstream /CIDToGIDMap /Identity
endobj /Subtype /CIDFontType2
366 0 obj /CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >>
363 /FontDescriptor 358 0 R
endobj /DW 0
339 0 obj /W [ 0 [365 500 500 500 276 776 555 443 555 333 625 500 722 388 391 500 276 276 443 555 555 750 763 651 526 555 443 526 276 750 276 ] ]
<< /Type /Pages >>
/Count 1 endobj
/Kids [337 0 R ] >> 364 0 obj
endobj << /Length 366 0 R /Filter /FlateDecode >>
367 0 obj stream
<< xœ]Kk„0…÷ó+²œ.<06>Ï„2¥à¢br<62>
5†¨ ÿ}cN°Ð€<C390>/9÷$‡ÜèV?ÕºŸYônGÙÐ̺^+KÓ¸XI¬¥{¯<aª—s ÿƒ0‡È7ë4ÓPënd)Tj1AÉXôá~¦Ù®ìø¨Æ–˜¢n³Šl¯ïìøuköÙf1æ‡Ò3ýiå¿ÑíE˜W1¼Ï©VNÔÏëÉ•ÿ)>WC,ñÌq9*šŒ<C5A1>d…¾Óá»Q±ë³Õæþo= 5†¨ ÿ}cN°Ð€<C390>/9÷$‡ÜèV?ÕºŸYônGÙÐ̺^+KÓ¸XI¬¥{¯<aª—s ÿƒ0‡È7ë4ÓPënd)Tj1AÉXôá~¦Ù®ìø¨Æ–˜¢n³Šl¯ïìøuköÙf1æ‡Ò3ýiå¿ÑíE˜W1¼Ï©VNÔÏëÉ•ÿ)>WC,ñÌq9*šŒ<C5A1>d…¾Óá»Q±ë³Õæþo=
em'¿…Ýå<C39D>•'î(ŽSJ@1(% ÌS"A¹§,¸žÊPWz*rÐD  \HÀ%x¶PO‰µ¤°C"P8Y‡:dà1žùŠ ùJžùrìÇ//@È—%òea em'¿…Ýå<C39D>•'î(ŽSJ@1(% ÌS"A¹§,¸žÊPWz*rÐD  \HÀ%x¶PO‰µ¤°C"P8Y‡:dà1žùŠ ùJžùrìÇ//@È—%òea
ùʰ;ò•ÈΑ¯žÈW†³ _Þ<C39E>/;ƒ<>/WþJÃÝm—»5éÞ9r±Ö5<C396>ïQß-[Ÿôšöf7£Ùªüó -nΪ ùʰ;ò•ÈΑ¯žÈW†³ _Þ<C39E>/;ƒ<>/WþJÃÝm—»5éÞ9r±Ö5<C396>ïQß-[Ÿôšöf7£Ùªüó -nΪ
endstream endstream
endobj endobj
366 0 obj 366 0 obj
363 363
endobj endobj
/F1358 345 0 R 339 0 obj
<< /Type /Pages << /Type /Pages

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.4 KiB

After

Width:  |  Height:  |  Size: 7.9 KiB

View File

@@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head> <head>
<!-- 2020-11-09 lun. 10:54 --> <!-- 2020-11-09 lun. 14:36 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>SVD Control</title> <title>SVD Control</title>
<meta name="generator" content="Org mode" /> <meta name="generator" content="Org mode" />
@@ -35,57 +35,57 @@
<h2>Table of Contents</h2> <h2>Table of Contents</h2>
<div id="text-table-of-contents"> <div id="text-table-of-contents">
<ul> <ul>
<li><a href="#org8480cb8">1. Gravimeter - Simscape Model</a> <li><a href="#org4262bdd">1. Gravimeter - Simscape Model</a>
<ul> <ul>
<li><a href="#org669566a">1.1. Introduction</a></li> <li><a href="#org46fc636">1.1. Introduction</a></li>
<li><a href="#org513c970">1.2. Simscape Model - Parameters</a></li> <li><a href="#org137a1ed">1.2. Simscape Model - Parameters</a></li>
<li><a href="#org7e0371b">1.3. System Identification - Without Gravity</a></li> <li><a href="#org08acfbd">1.3. System Identification - Without Gravity</a></li>
<li><a href="#org9dfc541">1.4. System Identification - With Gravity</a></li> <li><a href="#orge4c219d">1.4. System Identification - With Gravity</a></li>
<li><a href="#org06067ff">1.5. Analytical Model</a> <li><a href="#org744c6c9">1.5. Analytical Model</a>
<ul> <ul>
<li><a href="#org063c200">1.5.1. Parameters</a></li> <li><a href="#orga42f590">1.5.1. Parameters</a></li>
<li><a href="#orgec24c80">1.5.2. Generation of the State Space Model</a></li> <li><a href="#org288ddf0">1.5.2. Generation of the State Space Model</a></li>
<li><a href="#org1590891">1.5.3. Comparison with the Simscape Model</a></li> <li><a href="#orgcd68a21">1.5.3. Comparison with the Simscape Model</a></li>
<li><a href="#orgb615e54">1.5.4. Analysis</a></li> <li><a href="#orga3239b9">1.5.4. Analysis</a></li>
<li><a href="#org2243155">1.5.5. Control Section</a></li> <li><a href="#orgda0f1ad">1.5.5. Control Section</a></li>
<li><a href="#orgd28ecdb">1.5.6. Greshgorin radius</a></li> <li><a href="#org7ffae54">1.5.6. Greshgorin radius</a></li>
<li><a href="#org24f83eb">1.5.7. Injecting ground motion in the system to have the output</a></li> <li><a href="#org72dd1a0">1.5.7. Injecting ground motion in the system to have the output</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</li> </li>
<li><a href="#orgc1560cf">2. Gravimeter - Functions</a> <li><a href="#org01bdedf">2. Gravimeter - Functions</a>
<ul> <ul>
<li><a href="#org814c22c">2.1. <code>align</code></a></li> <li><a href="#org4647e37">2.1. <code>align</code></a></li>
<li><a href="#orga936ee3">2.2. <code>pzmap_testCL</code></a></li> <li><a href="#orga0981c0">2.2. <code>pzmap_testCL</code></a></li>
</ul> </ul>
</li> </li>
<li><a href="#orgf783e5e">3. Stewart Platform - Simscape Model</a> <li><a href="#orgd6f892a">3. Stewart Platform - Simscape Model</a>
<ul> <ul>
<li><a href="#org698a574">3.1. Simscape Model - Parameters</a></li> <li><a href="#org98f27a1">3.1. Simscape Model - Parameters</a></li>
<li><a href="#orgdfc6136">3.2. Identification of the plant</a></li> <li><a href="#orgfc4057f">3.2. Identification of the plant</a></li>
<li><a href="#orgadaff5c">3.3. Physical Decoupling using the Jacobian</a></li> <li><a href="#org06bff3b">3.3. Physical Decoupling using the Jacobian</a></li>
<li><a href="#org6ba1c1a">3.4. Real Approximation of \(G\) at the decoupling frequency</a></li> <li><a href="#org7208fcb">3.4. Real Approximation of \(G\) at the decoupling frequency</a></li>
<li><a href="#org7e2a42e">3.5. SVD Decoupling</a></li> <li><a href="#orgdcfefc4">3.5. SVD Decoupling</a></li>
<li><a href="#orgc6f3016">3.6. Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</a></li> <li><a href="#orgeedb4ac">3.6. Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</a></li>
<li><a href="#orgedf5c94">3.7. Obtained Decoupled Plants</a></li> <li><a href="#orga3edea8">3.7. Obtained Decoupled Plants</a></li>
<li><a href="#orgff44b51">3.8. Diagonal Controller</a></li> <li><a href="#orgb371cb1">3.8. Diagonal Controller</a></li>
<li><a href="#org949d9ca">3.9. Closed-Loop system Performances</a></li> <li><a href="#orgb6d90eb">3.9. Closed-Loop system Performances</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</div> </div>
</div> </div>
<div id="outline-container-org8480cb8" class="outline-2"> <div id="outline-container-org4262bdd" class="outline-2">
<h2 id="org8480cb8"><span class="section-number-2">1</span> Gravimeter - Simscape Model</h2> <h2 id="org4262bdd"><span class="section-number-2">1</span> Gravimeter - Simscape Model</h2>
<div class="outline-text-2" id="text-1"> <div class="outline-text-2" id="text-1">
</div> </div>
<div id="outline-container-org669566a" class="outline-3"> <div id="outline-container-org46fc636" class="outline-3">
<h3 id="org669566a"><span class="section-number-3">1.1</span> Introduction</h3> <h3 id="org46fc636"><span class="section-number-3">1.1</span> Introduction</h3>
<div class="outline-text-3" id="text-1-1"> <div class="outline-text-3" id="text-1-1">
<div id="org1f9eedf" class="figure"> <div id="orgca5b956" class="figure">
<p><img src="figs/gravimeter_model.png" alt="gravimeter_model.png" /> <p><img src="figs/gravimeter_model.png" alt="gravimeter_model.png" />
</p> </p>
<p><span class="figure-number">Figure 1: </span>Model of the gravimeter</p> <p><span class="figure-number">Figure 1: </span>Model of the gravimeter</p>
@@ -93,8 +93,8 @@
</div> </div>
</div> </div>
<div id="outline-container-org513c970" class="outline-3"> <div id="outline-container-org137a1ed" class="outline-3">
<h3 id="org513c970"><span class="section-number-3">1.2</span> Simscape Model - Parameters</h3> <h3 id="org137a1ed"><span class="section-number-3">1.2</span> Simscape Model - Parameters</h3>
<div class="outline-text-3" id="text-1-2"> <div class="outline-text-3" id="text-1-2">
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">open(<span class="org-string">'gravimeter.slx'</span>) <pre class="src src-matlab">open(<span class="org-string">'gravimeter.slx'</span>)
@@ -125,8 +125,8 @@ g = 0; <span class="org-comment">% Gravity [m/s2]</span>
</div> </div>
</div> </div>
<div id="outline-container-org7e0371b" class="outline-3"> <div id="outline-container-org08acfbd" class="outline-3">
<h3 id="org7e0371b"><span class="section-number-3">1.3</span> System Identification - Without Gravity</h3> <h3 id="org08acfbd"><span class="section-number-3">1.3</span> System Identification - Without Gravity</h3>
<div class="outline-text-3" id="text-1-3"> <div class="outline-text-3" id="text-1-3">
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
@@ -148,7 +148,7 @@ G.OutputName = {<span class="org-string">'Ax1'</span>, <span class="org-string">
</pre> </pre>
</div> </div>
<pre class="example" id="org6eb6401"> <pre class="example" id="org2c5c71d">
pole(G) pole(G)
ans = ans =
-0.000473481142385795 + 21.7596190728632i -0.000473481142385795 + 21.7596190728632i
@@ -173,7 +173,7 @@ State-space model with 4 outputs, 3 inputs, and 6 states.
<div id="org3874001" class="figure"> <div id="orgddb1793" class="figure">
<p><img src="figs/open_loop_tf.png" alt="open_loop_tf.png" /> <p><img src="figs/open_loop_tf.png" alt="open_loop_tf.png" />
</p> </p>
<p><span class="figure-number">Figure 2: </span>Open Loop Transfer Function from 3 Actuators to 4 Accelerometers</p> <p><span class="figure-number">Figure 2: </span>Open Loop Transfer Function from 3 Actuators to 4 Accelerometers</p>
@@ -181,8 +181,8 @@ State-space model with 4 outputs, 3 inputs, and 6 states.
</div> </div>
</div> </div>
<div id="outline-container-org9dfc541" class="outline-3"> <div id="outline-container-orge4c219d" class="outline-3">
<h3 id="org9dfc541"><span class="section-number-3">1.4</span> System Identification - With Gravity</h3> <h3 id="orge4c219d"><span class="section-number-3">1.4</span> System Identification - With Gravity</h3>
<div class="outline-text-3" id="text-1-4"> <div class="outline-text-3" id="text-1-4">
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">g = 9.80665; <span class="org-comment">% Gravity [m/s2]</span> <pre class="src src-matlab">g = 9.80665; <span class="org-comment">% Gravity [m/s2]</span>
@@ -199,7 +199,7 @@ Gg.OutputName = {<span class="org-string">'Ax1'</span>, <span class="org-string"
<p> <p>
We can now see that the system is unstable due to gravity. We can now see that the system is unstable due to gravity.
</p> </p>
<pre class="example" id="orga5f4271"> <pre class="example" id="org78beae2">
pole(Gg) pole(Gg)
ans = ans =
-10.9848275341252 + 0i -10.9848275341252 + 0i
@@ -211,7 +211,7 @@ ans =
</pre> </pre>
<div id="org5e8aee0" class="figure"> <div id="org70961c1" class="figure">
<p><img src="figs/open_loop_tf_g.png" alt="open_loop_tf_g.png" /> <p><img src="figs/open_loop_tf_g.png" alt="open_loop_tf_g.png" />
</p> </p>
<p><span class="figure-number">Figure 3: </span>Open Loop Transfer Function from 3 Actuators to 4 Accelerometers with an without gravity</p> <p><span class="figure-number">Figure 3: </span>Open Loop Transfer Function from 3 Actuators to 4 Accelerometers with an without gravity</p>
@@ -219,12 +219,12 @@ ans =
</div> </div>
</div> </div>
<div id="outline-container-org06067ff" class="outline-3"> <div id="outline-container-org744c6c9" class="outline-3">
<h3 id="org06067ff"><span class="section-number-3">1.5</span> Analytical Model</h3> <h3 id="org744c6c9"><span class="section-number-3">1.5</span> Analytical Model</h3>
<div class="outline-text-3" id="text-1-5"> <div class="outline-text-3" id="text-1-5">
</div> </div>
<div id="outline-container-org063c200" class="outline-4"> <div id="outline-container-orga42f590" class="outline-4">
<h4 id="org063c200"><span class="section-number-4">1.5.1</span> Parameters</h4> <h4 id="orga42f590"><span class="section-number-4">1.5.1</span> Parameters</h4>
<div class="outline-text-4" id="text-1-5-1"> <div class="outline-text-4" id="text-1-5-1">
<p> <p>
Bode options. Bode options.
@@ -256,8 +256,8 @@ Frequency vector.
</div> </div>
</div> </div>
<div id="outline-container-orgec24c80" class="outline-4"> <div id="outline-container-org288ddf0" class="outline-4">
<h4 id="orgec24c80"><span class="section-number-4">1.5.2</span> Generation of the State Space Model</h4> <h4 id="org288ddf0"><span class="section-number-4">1.5.2</span> Generation of the State Space Model</h4>
<div class="outline-text-4" id="text-1-5-2"> <div class="outline-text-4" id="text-1-5-2">
<p> <p>
Mass matrix Mass matrix
@@ -358,11 +358,11 @@ State-space model with 12 outputs, 6 inputs, and 6 states.
</div> </div>
</div> </div>
<div id="outline-container-org1590891" class="outline-4"> <div id="outline-container-orgcd68a21" class="outline-4">
<h4 id="org1590891"><span class="section-number-4">1.5.3</span> Comparison with the Simscape Model</h4> <h4 id="orgcd68a21"><span class="section-number-4">1.5.3</span> Comparison with the Simscape Model</h4>
<div class="outline-text-4" id="text-1-5-3"> <div class="outline-text-4" id="text-1-5-3">
<div id="orgfa66619" class="figure"> <div id="orgacf77cc" class="figure">
<p><img src="figs/gravimeter_analytical_system_open_loop_models.png" alt="gravimeter_analytical_system_open_loop_models.png" /> <p><img src="figs/gravimeter_analytical_system_open_loop_models.png" alt="gravimeter_analytical_system_open_loop_models.png" />
</p> </p>
<p><span class="figure-number">Figure 4: </span>Comparison of the analytical and the Simscape models</p> <p><span class="figure-number">Figure 4: </span>Comparison of the analytical and the Simscape models</p>
@@ -370,8 +370,8 @@ State-space model with 12 outputs, 6 inputs, and 6 states.
</div> </div>
</div> </div>
<div id="outline-container-orgb615e54" class="outline-4"> <div id="outline-container-orga3239b9" class="outline-4">
<h4 id="orgb615e54"><span class="section-number-4">1.5.4</span> Analysis</h4> <h4 id="orga3239b9"><span class="section-number-4">1.5.4</span> Analysis</h4>
<div class="outline-text-4" id="text-1-5-4"> <div class="outline-text-4" id="text-1-5-4">
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab"><span class="org-comment">% figure</span> <pre class="src src-matlab"><span class="org-comment">% figure</span>
@@ -439,8 +439,8 @@ State-space model with 12 outputs, 6 inputs, and 6 states.
</div> </div>
</div> </div>
<div id="outline-container-org2243155" class="outline-4"> <div id="outline-container-orgda0f1ad" class="outline-4">
<h4 id="org2243155"><span class="section-number-4">1.5.5</span> Control Section</h4> <h4 id="orgda0f1ad"><span class="section-number-4">1.5.5</span> Control Section</h4>
<div class="outline-text-4" id="text-1-5-5"> <div class="outline-text-4" id="text-1-5-5">
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">system_dec_10Hz = freqresp(system_dec,2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>10); <pre class="src src-matlab">system_dec_10Hz = freqresp(system_dec,2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>10);
@@ -580,8 +580,8 @@ legend(<span class="org-string">'Control OFF'</span>,<span class="org-string">'D
</div> </div>
</div> </div>
<div id="outline-container-orgd28ecdb" class="outline-4"> <div id="outline-container-org7ffae54" class="outline-4">
<h4 id="orgd28ecdb"><span class="section-number-4">1.5.6</span> Greshgorin radius</h4> <h4 id="org7ffae54"><span class="section-number-4">1.5.6</span> Greshgorin radius</h4>
<div class="outline-text-4" id="text-1-5-6"> <div class="outline-text-4" id="text-1-5-6">
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">system_dec_freq = freqresp(system_dec,w); <pre class="src src-matlab">system_dec_freq = freqresp(system_dec,w);
@@ -627,8 +627,8 @@ ylabel(<span class="org-string">'Greshgorin radius [-]'</span>);
</div> </div>
</div> </div>
<div id="outline-container-org24f83eb" class="outline-4"> <div id="outline-container-org72dd1a0" class="outline-4">
<h4 id="org24f83eb"><span class="section-number-4">1.5.7</span> Injecting ground motion in the system to have the output</h4> <h4 id="org72dd1a0"><span class="section-number-4">1.5.7</span> Injecting ground motion in the system to have the output</h4>
<div class="outline-text-4" id="text-1-5-7"> <div class="outline-text-4" id="text-1-5-7">
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">Fr = logspace(<span class="org-type">-</span>2,3,1e3); <pre class="src src-matlab">Fr = logspace(<span class="org-type">-</span>2,3,1e3);
@@ -684,15 +684,15 @@ rot = PHI(<span class="org-type">:</span>,11,11);
</div> </div>
</div> </div>
<div id="outline-container-orgc1560cf" class="outline-2"> <div id="outline-container-org01bdedf" class="outline-2">
<h2 id="orgc1560cf"><span class="section-number-2">2</span> Gravimeter - Functions</h2> <h2 id="org01bdedf"><span class="section-number-2">2</span> Gravimeter - Functions</h2>
<div class="outline-text-2" id="text-2"> <div class="outline-text-2" id="text-2">
</div> </div>
<div id="outline-container-org814c22c" class="outline-3"> <div id="outline-container-org4647e37" class="outline-3">
<h3 id="org814c22c"><span class="section-number-3">2.1</span> <code>align</code></h3> <h3 id="org4647e37"><span class="section-number-3">2.1</span> <code>align</code></h3>
<div class="outline-text-3" id="text-2-1"> <div class="outline-text-3" id="text-2-1">
<p> <p>
<a id="org3643797"></a> <a id="org787b0b4"></a>
</p> </p>
<p> <p>
@@ -721,11 +721,11 @@ This Matlab function is accessible <a href="gravimeter/align.m">here</a>.
</div> </div>
<div id="outline-container-orga936ee3" class="outline-3"> <div id="outline-container-orga0981c0" class="outline-3">
<h3 id="orga936ee3"><span class="section-number-3">2.2</span> <code>pzmap_testCL</code></h3> <h3 id="orga0981c0"><span class="section-number-3">2.2</span> <code>pzmap_testCL</code></h3>
<div class="outline-text-3" id="text-2-2"> <div class="outline-text-3" id="text-2-2">
<p> <p>
<a id="org7c6bace"></a> <a id="org6adb39c"></a>
</p> </p>
<p> <p>
@@ -774,11 +774,11 @@ This Matlab function is accessible <a href="gravimeter/pzmap_testCL.m">here</a>.
</div> </div>
</div> </div>
<div id="outline-container-orgf783e5e" class="outline-2"> <div id="outline-container-orgd6f892a" class="outline-2">
<h2 id="orgf783e5e"><span class="section-number-2">3</span> Stewart Platform - Simscape Model</h2> <h2 id="orgd6f892a"><span class="section-number-2">3</span> Stewart Platform - Simscape Model</h2>
<div class="outline-text-2" id="text-3"> <div class="outline-text-2" id="text-3">
<p> <p>
In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure <a href="#org325e3af">5</a>. In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure <a href="#org2113119">5</a>.
</p> </p>
<p> <p>
@@ -791,7 +791,7 @@ Some notes about the system:
</ul> </ul>
<div id="org325e3af" class="figure"> <div id="org2113119" class="figure">
<p><img src="figs/SP_assembly.png" alt="SP_assembly.png" /> <p><img src="figs/SP_assembly.png" alt="SP_assembly.png" />
</p> </p>
<p><span class="figure-number">Figure 5: </span>Stewart Platform CAD View</p> <p><span class="figure-number">Figure 5: </span>Stewart Platform CAD View</p>
@@ -801,22 +801,22 @@ Some notes about the system:
The analysis of the SVD control applied to the Stewart platform is performed in the following sections: The analysis of the SVD control applied to the Stewart platform is performed in the following sections:
</p> </p>
<ul class="org-ul"> <ul class="org-ul">
<li>Section <a href="#org46c7682">3.1</a>: The parameters of the Simscape model of the Stewart platform are defined</li> <li>Section <a href="#org9eff470">3.1</a>: The parameters of the Simscape model of the Stewart platform are defined</li>
<li>Section <a href="#orgacf8e97">3.2</a>: The plant is identified from the Simscape model and the system coupling is shown</li> <li>Section <a href="#orgb8efc36">3.2</a>: The plant is identified from the Simscape model and the system coupling is shown</li>
<li>Section <a href="#orgf5489c1">3.3</a>: The plant is first decoupled using the Jacobian</li> <li>Section <a href="#org9d45510">3.3</a>: The plant is first decoupled using the Jacobian</li>
<li>Section <a href="#orgccd7599">3.4</a>: A real approximation of the plant is computed for further decoupling using the Singular Value Decomposition (SVD)</li> <li>Section <a href="#orgbe757a9">3.4</a>: A real approximation of the plant is computed for further decoupling using the Singular Value Decomposition (SVD)</li>
<li>Section <a href="#org5abe937">3.5</a>: The decoupling is performed thanks to the SVD</li> <li>Section <a href="#orgb593bce">3.5</a>: The decoupling is performed thanks to the SVD</li>
<li>Section <a href="#org7691f01">3.6</a>: The effectiveness of the decoupling with the Jacobian and SVD are compared using the Gershorin Radii</li> <li>Section <a href="#org9c68bed">3.6</a>: The effectiveness of the decoupling with the Jacobian and SVD are compared using the Gershorin Radii</li>
<li>Section <a href="#orgabc21ab">3.7</a>: The dynamics of the decoupled plants are shown</li> <li>Section <a href="#orgc065295">3.7</a>: The dynamics of the decoupled plants are shown</li>
<li>Section <a href="#org9620c1c">3.8</a>: A diagonal controller is defined to control the decoupled plant</li> <li>Section <a href="#orgaf53d60">3.8</a>: A diagonal controller is defined to control the decoupled plant</li>
<li>Section <a href="#org823e1cb">3.9</a>: Finally, the closed loop system properties are studied</li> <li>Section <a href="#org60a86ad">3.9</a>: Finally, the closed loop system properties are studied</li>
</ul> </ul>
</div> </div>
<div id="outline-container-org698a574" class="outline-3"> <div id="outline-container-org98f27a1" class="outline-3">
<h3 id="org698a574"><span class="section-number-3">3.1</span> Simscape Model - Parameters</h3> <h3 id="org98f27a1"><span class="section-number-3">3.1</span> Simscape Model - Parameters</h3>
<div class="outline-text-3" id="text-3-1"> <div class="outline-text-3" id="text-3-1">
<p> <p>
<a id="org46c7682"></a> <a id="org9eff470"></a>
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">open(<span class="org-string">'drone_platform.slx'</span>); <pre class="src src-matlab">open(<span class="org-string">'drone_platform.slx'</span>);
@@ -864,14 +864,14 @@ Kc = tf(zeros(6));
</div> </div>
<div id="org48cc1aa" class="figure"> <div id="orgf541900" class="figure">
<p><img src="figs/stewart_simscape.png" alt="stewart_simscape.png" /> <p><img src="figs/stewart_simscape.png" alt="stewart_simscape.png" />
</p> </p>
<p><span class="figure-number">Figure 6: </span>General view of the Simscape Model</p> <p><span class="figure-number">Figure 6: </span>General view of the Simscape Model</p>
</div> </div>
<div id="orgd93f514" class="figure"> <div id="orge4629ec" class="figure">
<p><img src="figs/stewart_platform_details.png" alt="stewart_platform_details.png" /> <p><img src="figs/stewart_platform_details.png" alt="stewart_platform_details.png" />
</p> </p>
<p><span class="figure-number">Figure 7: </span>Simscape model of the Stewart platform</p> <p><span class="figure-number">Figure 7: </span>Simscape model of the Stewart platform</p>
@@ -879,15 +879,15 @@ Kc = tf(zeros(6));
</div> </div>
</div> </div>
<div id="outline-container-orgdfc6136" class="outline-3"> <div id="outline-container-orgfc4057f" class="outline-3">
<h3 id="orgdfc6136"><span class="section-number-3">3.2</span> Identification of the plant</h3> <h3 id="orgfc4057f"><span class="section-number-3">3.2</span> Identification of the plant</h3>
<div class="outline-text-3" id="text-3-2"> <div class="outline-text-3" id="text-3-2">
<p> <p>
<a id="orgacf8e97"></a> <a id="orgb8efc36"></a>
</p> </p>
<p> <p>
The plant shown in Figure <a href="#org6611cbe">8</a> is identified from the Simscape model. The plant shown in Figure <a href="#orge3a32c6">8</a> is identified from the Simscape model.
</p> </p>
<p> <p>
@@ -903,10 +903,10 @@ The outputs are the 6 accelerations measured by the inertial unit.
</p> </p>
<div id="org6611cbe" class="figure"> <div id="orge3a32c6" class="figure">
<p><img src="figs/stewart_platform_plant.png" alt="stewart_platform_plant.png" /> <p><img src="figs/stewart_platform_plant.png" alt="stewart_platform_plant.png" />
</p> </p>
<p><span class="figure-number">Figure 8: </span>Considered plant \(\bm{G} = \begin{bmatrix}G_d\\G\end{bmatrix}\). \(D_w\) is the translation/rotation of the support, \(\tau\) the actuator forces, \(a\) the acceleration/angular acceleration of the top platform</p> <p><span class="figure-number">Figure 8: </span>Considered plant \(\bm{G} = \begin{bmatrix}G_d\\G_u\end{bmatrix}\). \(D_w\) is the translation/rotation of the support, \(\tau\) the actuator forces, \(a\) the acceleration/angular acceleration of the top platform</p>
</div> </div>
<div class="org-src-container"> <div class="org-src-container">
@@ -923,6 +923,11 @@ G = linearize(mdl, io);
G.InputName = {<span class="org-string">'Dwx'</span>, <span class="org-string">'Dwy'</span>, <span class="org-string">'Dwz'</span>, <span class="org-string">'Rwx'</span>, <span class="org-string">'Rwy'</span>, <span class="org-string">'Rwz'</span>, ... G.InputName = {<span class="org-string">'Dwx'</span>, <span class="org-string">'Dwy'</span>, <span class="org-string">'Dwz'</span>, <span class="org-string">'Rwx'</span>, <span class="org-string">'Rwy'</span>, <span class="org-string">'Rwz'</span>, ...
<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; <span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Ax'</span>, <span class="org-string">'Ay'</span>, <span class="org-string">'Az'</span>, <span class="org-string">'Arx'</span>, <span class="org-string">'Ary'</span>, <span class="org-string">'Arz'</span>}; G.OutputName = {<span class="org-string">'Ax'</span>, <span class="org-string">'Ay'</span>, <span class="org-string">'Az'</span>, <span class="org-string">'Arx'</span>, <span class="org-string">'Ary'</span>, <span class="org-string">'Arz'</span>};
<span class="org-comment">% Plant</span>
Gu = G(<span class="org-type">:</span>, {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>});
<span class="org-comment">% Disturbance dynamics</span>
Gd = G(<span class="org-type">:</span>, {<span class="org-string">'Dwx'</span>, <span class="org-string">'Dwy'</span>, <span class="org-string">'Dwz'</span>, <span class="org-string">'Rwx'</span>, <span class="org-string">'Rwy'</span>, <span class="org-string">'Rwz'</span>});
</pre> </pre>
</div> </div>
@@ -940,7 +945,7 @@ State-space model with 6 outputs, 12 inputs, and 24 states.
<p> <p>
The elements of the transfer matrix \(\bm{G}\) corresponding to the transfer function from actuator forces \(\tau\) to the measured acceleration \(a\) are shown in Figure <a href="#org3e2e269">9</a>. The elements of the transfer matrix \(\bm{G}\) corresponding to the transfer function from actuator forces \(\tau\) to the measured acceleration \(a\) are shown in Figure <a href="#org602aa13">9</a>.
</p> </p>
<p> <p>
@@ -948,25 +953,25 @@ One can easily see that the system is strongly coupled.
</p> </p>
<div id="org3e2e269" class="figure"> <div id="org602aa13" class="figure">
<p><img src="figs/stewart_platform_coupled_plant.png" alt="stewart_platform_coupled_plant.png" /> <p><img src="figs/stewart_platform_coupled_plant.png" alt="stewart_platform_coupled_plant.png" />
</p> </p>
<p><span class="figure-number">Figure 9: </span>Magnitude of all 36 elements of the transfer function matrix \(\bm{G}\)</p> <p><span class="figure-number">Figure 9: </span>Magnitude of all 36 elements of the transfer function matrix \(G_u\)</p>
</div> </div>
</div> </div>
</div> </div>
<div id="outline-container-orgadaff5c" class="outline-3"> <div id="outline-container-org06bff3b" class="outline-3">
<h3 id="orgadaff5c"><span class="section-number-3">3.3</span> Physical Decoupling using the Jacobian</h3> <h3 id="org06bff3b"><span class="section-number-3">3.3</span> Physical Decoupling using the Jacobian</h3>
<div class="outline-text-3" id="text-3-3"> <div class="outline-text-3" id="text-3-3">
<p> <p>
<a id="orgf5489c1"></a> <a id="org9d45510"></a>
Consider the control architecture shown in Figure <a href="#orgeef0f77">10</a>. Consider the control architecture shown in Figure <a href="#org1c673db">10</a>.
The Jacobian matrix is used to transform forces/torques applied on the top platform to the equivalent forces applied by each actuator. The Jacobian matrix is used to transform forces/torques applied on the top platform to the equivalent forces applied by each actuator.
</p> </p>
<div id="orgeef0f77" class="figure"> <div id="org1c673db" class="figure">
<p><img src="figs/plant_decouple_jacobian.png" alt="plant_decouple_jacobian.png" /> <p><img src="figs/plant_decouple_jacobian.png" alt="plant_decouple_jacobian.png" />
</p> </p>
<p><span class="figure-number">Figure 10: </span>Decoupled plant \(\bm{G}_x\) using the Jacobian matrix \(J\)</p> <p><span class="figure-number">Figure 10: </span>Decoupled plant \(\bm{G}_x\) using the Jacobian matrix \(J\)</p>
@@ -982,31 +987,27 @@ We define a new plant:
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">Gx = G<span class="org-type">*</span>blkdiag(eye(6), inv(J<span class="org-type">'</span>)); <pre class="src src-matlab">Gx = Gu<span class="org-type">*</span>inv(J<span class="org-type">'</span>);
Gx.InputName = {<span class="org-string">'Dwx'</span>, <span class="org-string">'Dwy'</span>, <span class="org-string">'Dwz'</span>, <span class="org-string">'Rwx'</span>, <span class="org-string">'Rwy'</span>, <span class="org-string">'Rwz'</span>, ... Gx.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
</pre> </pre>
</div> </div>
</div> </div>
</div> </div>
<div id="outline-container-org6ba1c1a" class="outline-3"> <div id="outline-container-org7208fcb" class="outline-3">
<h3 id="org6ba1c1a"><span class="section-number-3">3.4</span> Real Approximation of \(G\) at the decoupling frequency</h3> <h3 id="org7208fcb"><span class="section-number-3">3.4</span> Real Approximation of \(G\) at the decoupling frequency</h3>
<div class="outline-text-3" id="text-3-4"> <div class="outline-text-3" id="text-3-4">
<p> <p>
<a id="orgccd7599"></a> <a id="orgbe757a9"></a>
</p> </p>
<p> <p>
Let&rsquo;s compute a real approximation of the complex matrix \(H_1\) which corresponds to the the transfer function \(G(j\omega_c)\) from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency \(\omega_c\). Let&rsquo;s compute a real approximation of the complex matrix \(H_1\) which corresponds to the the transfer function \(G_u(j\omega_c)\) from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency \(\omega_c\).
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>30; <span class="org-comment">% Decoupling frequency [rad/s]</span> <pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>30; <span class="org-comment">% Decoupling frequency [rad/s]</span>
Gc = G({<span class="org-string">'Ax'</span>, <span class="org-string">'Ay'</span>, <span class="org-string">'Az'</span>, <span class="org-string">'Arx'</span>, <span class="org-string">'Ary'</span>, <span class="org-string">'Arz'</span>}, ... H1 = evalfr(Gu, <span class="org-constant">j</span><span class="org-type">*</span>wc);
{<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}); <span class="org-comment">% Transfer function to find a real approximation</span>
H1 = evalfr(Gc, <span class="org-constant">j</span><span class="org-type">*</span>wc);
</pre> </pre>
</div> </div>
@@ -1094,9 +1095,9 @@ H1 = inv(D<span class="org-type">*</span>real(H1<span class="org-type">'*</span>
<p> <p>
Note that the plant \(G\) at \(\omega_c\) is already an almost real matrix. Note that the plant \(G_u\) at \(\omega_c\) is already an almost real matrix.
This can be seen on the Bode plots where the phase is close to 1. This can be seen on the Bode plots where the phase is close to 1.
This can be verified below where only the real value of \(G(\omega_c)\) is shown This can be verified below where only the real value of \(G_u(\omega_c)\) is shown
</p> </p>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
@@ -1174,11 +1175,11 @@ This can be verified below where only the real value of \(G(\omega_c)\) is shown
</div> </div>
</div> </div>
<div id="outline-container-org7e2a42e" class="outline-3"> <div id="outline-container-orgdcfefc4" class="outline-3">
<h3 id="org7e2a42e"><span class="section-number-3">3.5</span> SVD Decoupling</h3> <h3 id="orgdcfefc4"><span class="section-number-3">3.5</span> SVD Decoupling</h3>
<div class="outline-text-3" id="text-3-5"> <div class="outline-text-3" id="text-3-5">
<p> <p>
<a id="org5abe937"></a> <a id="orgb593bce"></a>
</p> </p>
<p> <p>
@@ -1187,16 +1188,16 @@ First, the Singular Value Decomposition of \(H_1\) is performed:
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">[U,S,V] = svd(H1); <pre class="src src-matlab">[U,<span class="org-type">~</span>,V] = svd(H1);
</pre> </pre>
</div> </div>
<p> <p>
The obtained matrices \(U\) and \(V\) are used to decouple the system as shown in Figure <a href="#orga151aa3">11</a>. The obtained matrices \(U\) and \(V\) are used to decouple the system as shown in Figure <a href="#orgfbe015c">11</a>.
</p> </p>
<div id="orga151aa3" class="figure"> <div id="orgfbe015c" class="figure">
<p><img src="figs/plant_decouple_svd.png" alt="plant_decouple_svd.png" /> <p><img src="figs/plant_decouple_svd.png" alt="plant_decouple_svd.png" />
</p> </p>
<p><span class="figure-number">Figure 11: </span>Decoupled plant \(\bm{G}_{SVD}\) using the Singular Value Decomposition</p> <p><span class="figure-number">Figure 11: </span>Decoupled plant \(\bm{G}_{SVD}\) using the Singular Value Decomposition</p>
@@ -1204,22 +1205,32 @@ The obtained matrices \(U\) and \(V\) are used to decouple the system as shown i
<p> <p>
The decoupled plant is then: The decoupled plant is then:
\[ G_{SVD}(s) = U^{-1} G(s) V^{-H} \] \[ G_{SVD}(s) = U^{-1} G_u(s) V^{-H} \]
</p> </p>
<div class="org-src-container">
<pre class="src src-matlab">Gsvd = inv(U)<span class="org-type">*</span>Gu<span class="org-type">*</span>inv(V<span class="org-type">'</span>);
</pre>
</div>
</div> </div>
</div> </div>
<div id="outline-container-orgc6f3016" class="outline-3"> <div id="outline-container-orgeedb4ac" class="outline-3">
<h3 id="orgc6f3016"><span class="section-number-3">3.6</span> Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</h3> <h3 id="orgeedb4ac"><span class="section-number-3">3.6</span> Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</h3>
<div class="outline-text-3" id="text-3-6"> <div class="outline-text-3" id="text-3-6">
<p> <p>
<a id="org7691f01"></a> <a id="org9c68bed"></a>
</p> </p>
<p> <p>
The &ldquo;Gershgorin Radii&rdquo; is computed for the coupled plant \(G(s)\), for the &ldquo;Jacobian plant&rdquo; \(G_x(s)\) and the &ldquo;SVD Decoupled Plant&rdquo; \(G_{SVD}(s)\): The &ldquo;Gershgorin Radii&rdquo; is computed for the coupled plant \(G(s)\), for the &ldquo;Jacobian plant&rdquo; \(G_x(s)\) and the &ldquo;SVD Decoupled Plant&rdquo; \(G_{SVD}(s)\):
</p> </p>
<p>
The &ldquo;Gershgorin Radii&rdquo; of a matrix \(S\) is defined by:
\[ \zeta_i(j\omega) = \frac{\sum\limits_{j\neq i}|S_{ij}(j\omega)|}{|S_{ii}(j\omega)|} \]
</p>
<p> <p>
This is computed over the following frequencies. This is computed over the following frequencies.
</p> </p>
@@ -1229,7 +1240,7 @@ This is computed over the following frequencies.
</div> </div>
<div id="orgea46431" class="figure"> <div id="org0864583" class="figure">
<p><img src="figs/simscape_model_gershgorin_radii.png" alt="simscape_model_gershgorin_radii.png" /> <p><img src="figs/simscape_model_gershgorin_radii.png" alt="simscape_model_gershgorin_radii.png" />
</p> </p>
<p><span class="figure-number">Figure 12: </span>Gershgorin Radii of the Coupled and Decoupled plants</p> <p><span class="figure-number">Figure 12: </span>Gershgorin Radii of the Coupled and Decoupled plants</p>
@@ -1237,30 +1248,30 @@ This is computed over the following frequencies.
</div> </div>
</div> </div>
<div id="outline-container-orgedf5c94" class="outline-3"> <div id="outline-container-orga3edea8" class="outline-3">
<h3 id="orgedf5c94"><span class="section-number-3">3.7</span> Obtained Decoupled Plants</h3> <h3 id="orga3edea8"><span class="section-number-3">3.7</span> Obtained Decoupled Plants</h3>
<div class="outline-text-3" id="text-3-7"> <div class="outline-text-3" id="text-3-7">
<p> <p>
<a id="orgabc21ab"></a> <a id="orgc065295"></a>
</p> </p>
<p> <p>
The bode plot of the diagonal and off-diagonal elements of \(G_{SVD}\) are shown in Figure <a href="#org0947ccc">13</a>. The bode plot of the diagonal and off-diagonal elements of \(G_{SVD}\) are shown in Figure <a href="#org57489d0">13</a>.
</p> </p>
<div id="org0947ccc" class="figure"> <div id="org57489d0" class="figure">
<p><img src="figs/simscape_model_decoupled_plant_svd.png" alt="simscape_model_decoupled_plant_svd.png" /> <p><img src="figs/simscape_model_decoupled_plant_svd.png" alt="simscape_model_decoupled_plant_svd.png" />
</p> </p>
<p><span class="figure-number">Figure 13: </span>Decoupled Plant using SVD</p> <p><span class="figure-number">Figure 13: </span>Decoupled Plant using SVD</p>
</div> </div>
<p> <p>
Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant \(G_x(s)\) using the Jacobian are shown in Figure <a href="#org14484c8">14</a>. Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant \(G_x(s)\) using the Jacobian are shown in Figure <a href="#orga4b3cd1">14</a>.
</p> </p>
<div id="org14484c8" class="figure"> <div id="orga4b3cd1" class="figure">
<p><img src="figs/simscape_model_decoupled_plant_jacobian.png" alt="simscape_model_decoupled_plant_jacobian.png" /> <p><img src="figs/simscape_model_decoupled_plant_jacobian.png" alt="simscape_model_decoupled_plant_jacobian.png" />
</p> </p>
<p><span class="figure-number">Figure 14: </span>Stewart Platform Plant from forces (resp. torques) applied by the legs to the acceleration (resp. angular acceleration) of the platform as well as all the coupling terms between the two (non-diagonal terms of the transfer function matrix)</p> <p><span class="figure-number">Figure 14: </span>Stewart Platform Plant from forces (resp. torques) applied by the legs to the acceleration (resp. angular acceleration) of the platform as well as all the coupling terms between the two (non-diagonal terms of the transfer function matrix)</p>
@@ -1268,15 +1279,12 @@ Similarly, the bode plots of the diagonal elements and off-diagonal elements of
</div> </div>
</div> </div>
<div id="outline-container-orgff44b51" class="outline-3"> <div id="outline-container-orgb371cb1" class="outline-3">
<h3 id="orgff44b51"><span class="section-number-3">3.8</span> Diagonal Controller</h3> <h3 id="orgb371cb1"><span class="section-number-3">3.8</span> Diagonal Controller</h3>
<div class="outline-text-3" id="text-3-8"> <div class="outline-text-3" id="text-3-8">
<p> <p>
<a id="org9620c1c"></a> <a id="orgaf53d60"></a>
</p> The control diagram for the centralized control is shown in Figure <a href="#org457c7b6">15</a>.
<p>
The control diagram for the centralized control is shown in Figure <a href="#org656626f">15</a>.
</p> </p>
<p> <p>
@@ -1285,19 +1293,19 @@ The Jacobian is used to convert forces in the cartesian frame to forces applied
</p> </p>
<div id="org656626f" class="figure"> <div id="org457c7b6" class="figure">
<p><img src="figs/centralized_control.png" alt="centralized_control.png" /> <p><img src="figs/centralized_control.png" alt="centralized_control.png" />
</p> </p>
<p><span class="figure-number">Figure 15: </span>Control Diagram for the Centralized control</p> <p><span class="figure-number">Figure 15: </span>Control Diagram for the Centralized control</p>
</div> </div>
<p> <p>
The SVD control architecture is shown in Figure <a href="#org0f3cfd0">16</a>. The SVD control architecture is shown in Figure <a href="#org84af546">16</a>.
The matrices \(U\) and \(V\) are used to decoupled the plant \(G\). The matrices \(U\) and \(V\) are used to decoupled the plant \(G\).
</p> </p>
<div id="org0f3cfd0" class="figure"> <div id="org84af546" class="figure">
<p><img src="figs/svd_control.png" alt="svd_control.png" /> <p><img src="figs/svd_control.png" alt="svd_control.png" />
</p> </p>
<p><span class="figure-number">Figure 16: </span>Control Diagram for the SVD control</p> <p><span class="figure-number">Figure 16: </span>Control Diagram for the SVD control</p>
@@ -1314,31 +1322,31 @@ We choose the controller to be a low pass filter:
</p> </p>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>80; <pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>80; <span class="org-comment">% Crossover Frequency [rad/s]</span>
w0 = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>0.1; w0 = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>0.1; <span class="org-comment">% Controller Pole [rad/s]</span>
</pre> </pre>
</div> </div>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">K_cen = diag(1<span class="org-type">./</span>diag(abs(evalfr(Gx(1<span class="org-type">:</span>6, 7<span class="org-type">:</span>12), <span class="org-constant">j</span><span class="org-type">*</span>wc))))<span class="org-type">*</span>(1<span class="org-type">/</span>abs(evalfr(1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0), <span class="org-constant">j</span><span class="org-type">*</span>wc)))<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0); <pre class="src src-matlab">K_cen = diag(1<span class="org-type">./</span>diag(abs(evalfr(Gx, <span class="org-constant">j</span><span class="org-type">*</span>wc))))<span class="org-type">*</span>(1<span class="org-type">/</span>abs(evalfr(1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0), <span class="org-constant">j</span><span class="org-type">*</span>wc)))<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0);
L_cen = K_cen<span class="org-type">*</span>Gx(1<span class="org-type">:</span>6, 7<span class="org-type">:</span>12); L_cen = K_cen<span class="org-type">*</span>Gx;
G_cen = feedback(G, pinv(J<span class="org-type">'</span>)<span class="org-type">*</span>K_cen, [7<span class="org-type">:</span>12], [1<span class="org-type">:</span>6]); G_cen = feedback(G, pinv(J<span class="org-type">'</span>)<span class="org-type">*</span>K_cen, [7<span class="org-type">:</span>12], [1<span class="org-type">:</span>6]);
</pre> </pre>
</div> </div>
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">K_svd = diag(1<span class="org-type">./</span>diag(abs(evalfr(Gd, <span class="org-constant">j</span><span class="org-type">*</span>wc))))<span class="org-type">*</span>(1<span class="org-type">/</span>abs(evalfr(1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0), <span class="org-constant">j</span><span class="org-type">*</span>wc)))<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0); <pre class="src src-matlab">K_svd = diag(1<span class="org-type">./</span>diag(abs(evalfr(Gsvd, <span class="org-constant">j</span><span class="org-type">*</span>wc))))<span class="org-type">*</span>(1<span class="org-type">/</span>abs(evalfr(1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0), <span class="org-constant">j</span><span class="org-type">*</span>wc)))<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0);
L_svd = K_svd<span class="org-type">*</span>Gd; L_svd = K_svd<span class="org-type">*</span>Gsvd;
G_svd = feedback(G, inv(V<span class="org-type">'</span>)<span class="org-type">*</span>K_svd<span class="org-type">*</span>inv(U), [7<span class="org-type">:</span>12], [1<span class="org-type">:</span>6]); G_svd = feedback(G, inv(V<span class="org-type">'</span>)<span class="org-type">*</span>K_svd<span class="org-type">*</span>inv(U), [7<span class="org-type">:</span>12], [1<span class="org-type">:</span>6]);
</pre> </pre>
</div> </div>
<p> <p>
The obtained diagonal elements of the loop gains are shown in Figure <a href="#orgc313067">17</a>. The obtained diagonal elements of the loop gains are shown in Figure <a href="#org51e7e94">17</a>.
</p> </p>
<div id="orgc313067" class="figure"> <div id="org51e7e94" class="figure">
<p><img src="figs/stewart_comp_loop_gain_diagonal.png" alt="stewart_comp_loop_gain_diagonal.png" /> <p><img src="figs/stewart_comp_loop_gain_diagonal.png" alt="stewart_comp_loop_gain_diagonal.png" />
</p> </p>
<p><span class="figure-number">Figure 17: </span>Comparison of the diagonal elements of the loop gains for the SVD control architecture and the Jacobian one</p> <p><span class="figure-number">Figure 17: </span>Comparison of the diagonal elements of the loop gains for the SVD control architecture and the Jacobian one</p>
@@ -1346,11 +1354,11 @@ The obtained diagonal elements of the loop gains are shown in Figure <a href="#o
</div> </div>
</div> </div>
<div id="outline-container-org949d9ca" class="outline-3"> <div id="outline-container-orgb6d90eb" class="outline-3">
<h3 id="org949d9ca"><span class="section-number-3">3.9</span> Closed-Loop system Performances</h3> <h3 id="orgb6d90eb"><span class="section-number-3">3.9</span> Closed-Loop system Performances</h3>
<div class="outline-text-3" id="text-3-9"> <div class="outline-text-3" id="text-3-9">
<p> <p>
<a id="org823e1cb"></a> <a id="org60a86ad"></a>
</p> </p>
<p> <p>
@@ -1381,11 +1389,11 @@ ans =
<p> <p>
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure <a href="#org32234b0">18</a>. The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure <a href="#org5c79b0b">18</a>.
</p> </p>
<div id="org32234b0" class="figure"> <div id="org5c79b0b" class="figure">
<p><img src="figs/stewart_platform_simscape_cl_transmissibility.png" alt="stewart_platform_simscape_cl_transmissibility.png" /> <p><img src="figs/stewart_platform_simscape_cl_transmissibility.png" alt="stewart_platform_simscape_cl_transmissibility.png" />
</p> </p>
<p><span class="figure-number">Figure 18: </span>Obtained Transmissibility</p> <p><span class="figure-number">Figure 18: </span>Obtained Transmissibility</p>
@@ -1396,7 +1404,7 @@ The obtained transmissibility in Open-loop, for the centralized control as well
</div> </div>
<div id="postamble" class="status"> <div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p> <p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-11-09 lun. 10:54</p> <p class="date">Created: 2020-11-09 lun. 14:36</p>
</div> </div>
</body> </body>
</html> </html>

142
index.org
View File

@@ -820,7 +820,7 @@ The outputs are the 6 accelerations measured by the inertial unit.
#+begin_src latex :file stewart_platform_plant.pdf :tangle no :exports results #+begin_src latex :file stewart_platform_plant.pdf :tangle no :exports results
\begin{tikzpicture} \begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$}; \node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G_u\end{bmatrix}$};
\node[above] at (G.north) {$\bm{G}$}; \node[above] at (G.north) {$\bm{G}$};
% Inputs of the controllers % Inputs of the controllers
@@ -835,7 +835,7 @@ The outputs are the 6 accelerations measured by the inertial unit.
#+end_src #+end_src
#+name: fig:stewart_platform_plant #+name: fig:stewart_platform_plant
#+caption: Considered plant $\bm{G} = \begin{bmatrix}G_d\\G\end{bmatrix}$. $D_w$ is the translation/rotation of the support, $\tau$ the actuator forces, $a$ the acceleration/angular acceleration of the top platform #+caption: Considered plant $\bm{G} = \begin{bmatrix}G_d\\G_u\end{bmatrix}$. $D_w$ is the translation/rotation of the support, $\tau$ the actuator forces, $a$ the acceleration/angular acceleration of the top platform
#+RESULTS: #+RESULTS:
[[file:figs/stewart_platform_plant.png]] [[file:figs/stewart_platform_plant.png]]
@@ -853,6 +853,11 @@ The outputs are the 6 accelerations measured by the inertial unit.
G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ... G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; 'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}; G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};
% Plant
Gu = G(:, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'});
% Disturbance dynamics
Gd = G(:, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'});
#+end_src #+end_src
There are 24 states (6dof for the bottom platform + 6dof for the top platform). There are 24 states (6dof for the bottom platform + 6dof for the top platform).
@@ -876,15 +881,15 @@ One can easily see that the system is strongly coupled.
hold on; hold on;
for i_in = 1:6 for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6] for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, abs(squeeze(freqresp(G(i_out, 6+i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... plot(freqs, abs(squeeze(freqresp(Gu(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off'); 'HandleVisibility', 'off');
end end
end end
plot(freqs, abs(squeeze(freqresp(G(i_out, 6+i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... plot(freqs, abs(squeeze(freqresp(Gu(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G(i,j)\ i \neq j$'); 'DisplayName', '$G_u(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1) set(gca,'ColorOrderIndex',1)
for i_in_out = 1:6 for i_in_out = 1:6
plot(freqs, abs(squeeze(freqresp(G(i_in_out, 6+i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G(%d,%d)$', i_in_out, i_in_out)); plot(freqs, abs(squeeze(freqresp(Gu(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_u(%d,%d)$', i_in_out, i_in_out));
end end
hold off; hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
@@ -898,7 +903,7 @@ One can easily see that the system is strongly coupled.
#+end_src #+end_src
#+name: fig:stewart_platform_coupled_plant #+name: fig:stewart_platform_coupled_plant
#+caption: Magnitude of all 36 elements of the transfer function matrix $\bm{G}$ #+caption: Magnitude of all 36 elements of the transfer function matrix $G_u$
#+RESULTS: #+RESULTS:
[[file:figs/stewart_platform_coupled_plant.png]] [[file:figs/stewart_platform_coupled_plant.png]]
@@ -909,22 +914,16 @@ The Jacobian matrix is used to transform forces/torques applied on the top platf
#+begin_src latex :file plant_decouple_jacobian.pdf :tangle no :exports results #+begin_src latex :file plant_decouple_jacobian.pdf :tangle no :exports results
\begin{tikzpicture} \begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$}; \node[block] (G) {$G_u$};
\node[block, left=0.6 of G] (J) {$J^{-T}$};
% Inputs of the controllers
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
\node[block, left=0.6 of inputu] (J) {$J^{-T}$};
% Connections and labels % Connections and labels
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$}; \draw[<-] (J.west) -- ++(-1.0, 0) node[above right]{$\mathcal{F}$};
\draw[->] (G.east) -- ++( 0.8, 0) node[above left]{$a$}; \draw[->] (J.east) -- (G.west) node[above left]{$\tau$};
\draw[->] (J.east) -- (inputu) node[above left]{$\tau$}; \draw[->] (G.east) -- ++( 1.0, 0) node[above left]{$a$};
\draw[<-] (J.west) -- ++(-0.8, 0) node[above right]{$\mathcal{F}$};
\begin{scope}[on background layer] \begin{scope}[on background layer]
\node[fit={(J.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=8pt] (Gx) {}; \node[fit={(J.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gx) {};
\node[below right] at (Gx.north west) {$\bm{G}_x$}; \node[below right] at (Gx.north west) {$\bm{G}_x$};
\end{scope} \end{scope}
\end{tikzpicture} \end{tikzpicture}
@@ -941,22 +940,18 @@ We define a new plant:
$G_x(s)$ correspond to the transfer function from forces and torques applied to the top platform to the absolute acceleration of the top platform. $G_x(s)$ correspond to the transfer function from forces and torques applied to the top platform to the absolute acceleration of the top platform.
#+begin_src matlab #+begin_src matlab
Gx = G*blkdiag(eye(6), inv(J')); Gx = Gu*inv(J');
Gx.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ... Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
#+end_src #+end_src
** Real Approximation of $G$ at the decoupling frequency ** Real Approximation of $G$ at the decoupling frequency
<<sec:stewart_real_approx>> <<sec:stewart_real_approx>>
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$. Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_u(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
#+begin_src matlab #+begin_src matlab
wc = 2*pi*30; % Decoupling frequency [rad/s] wc = 2*pi*30; % Decoupling frequency [rad/s]
Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ... H1 = evalfr(Gu, j*wc);
{'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
H1 = evalfr(Gc, j*wc);
#+end_src #+end_src
The real approximation is computed as follows: The real approximation is computed as follows:
@@ -979,12 +974,12 @@ The real approximation is computed as follows:
| 220.6 | -220.6 | 220.6 | -220.6 | 220.6 | -220.6 | | 220.6 | -220.6 | 220.6 | -220.6 | 220.6 | -220.6 |
Note that the plant $G$ at $\omega_c$ is already an almost real matrix. Note that the plant $G_u$ at $\omega_c$ is already an almost real matrix.
This can be seen on the Bode plots where the phase is close to 1. This can be seen on the Bode plots where the phase is close to 1.
This can be verified below where only the real value of $G(\omega_c)$ is shown This can be verified below where only the real value of $G_u(\omega_c)$ is shown
#+begin_src matlab :exports results :results value table replace :tangle no #+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(real(evalfr(Gc, j*wc)), {}, {}, ' %.1f '); data2orgtable(real(evalfr(Gu, j*wc)), {}, {}, ' %.1f ');
#+end_src #+end_src
#+RESULTS: #+RESULTS:
@@ -1002,31 +997,26 @@ First, the Singular Value Decomposition of $H_1$ is performed:
\[ H_1 = U \Sigma V^H \] \[ H_1 = U \Sigma V^H \]
#+begin_src matlab #+begin_src matlab
[U,S,V] = svd(H1); [U,~,V] = svd(H1);
#+end_src #+end_src
The obtained matrices $U$ and $V$ are used to decouple the system as shown in Figure [[fig:plant_decouple_svd]]. The obtained matrices $U$ and $V$ are used to decouple the system as shown in Figure [[fig:plant_decouple_svd]].
#+begin_src latex :file plant_decouple_svd.pdf :tangle no :exports results #+begin_src latex :file plant_decouple_svd.pdf :tangle no :exports results
\begin{tikzpicture} \begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$}; \node[block] (G) {$G_u$};
% Inputs of the controllers \node[block, left=0.6 of G.west] (V) {$V^{-T}$};
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
\node[block, left=0.6 of inputu] (V) {$V^{-T}$};
\node[block, right=0.6 of G.east] (U) {$U^{-1}$}; \node[block, right=0.6 of G.east] (U) {$U^{-1}$};
% Connections and labels % Connections and labels
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$}; \draw[<-] (V.west) -- ++(-1.0, 0) node[above right]{$u$};
\draw[->] (V.east) -- (G.west) node[above left]{$\tau$};
\draw[->] (G.east) -- (U.west) node[above left]{$a$}; \draw[->] (G.east) -- (U.west) node[above left]{$a$};
\draw[->] (U.east) -- ++( 0.8, 0) node[above left]{$y$}; \draw[->] (U.east) -- ++( 1.0, 0) node[above left]{$y$};
\draw[->] (V.east) -- (inputu) node[above left]{$\tau$};
\draw[<-] (V.west) -- ++(-0.8, 0) node[above right]{$u$};
\begin{scope}[on background layer] \begin{scope}[on background layer]
\node[fit={(V.south west) (G.north-|U.east)}, fill=black!10!white, draw, dashed, inner sep=8pt] (Gsvd) {}; \node[fit={(V.south west) (G.north-|U.east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gsvd) {};
\node[below right] at (Gsvd.north west) {$\bm{G}_{SVD}$}; \node[below right] at (Gsvd.north west) {$\bm{G}_{SVD}$};
\end{scope} \end{scope}
\end{tikzpicture} \end{tikzpicture}
@@ -1038,13 +1028,20 @@ The obtained matrices $U$ and $V$ are used to decouple the system as shown in Fi
[[file:figs/plant_decouple_svd.png]] [[file:figs/plant_decouple_svd.png]]
The decoupled plant is then: The decoupled plant is then:
\[ G_{SVD}(s) = U^{-1} G(s) V^{-H} \] \[ G_{SVD}(s) = U^{-1} G_u(s) V^{-H} \]
#+begin_src matlab
Gsvd = inv(U)*Gu*inv(V');
#+end_src
** Verification of the decoupling using the "Gershgorin Radii" ** Verification of the decoupling using the "Gershgorin Radii"
<<sec:comp_decoupling>> <<sec:comp_decoupling>>
The "Gershgorin Radii" is computed for the coupled plant $G(s)$, for the "Jacobian plant" $G_x(s)$ and the "SVD Decoupled Plant" $G_{SVD}(s)$: The "Gershgorin Radii" is computed for the coupled plant $G(s)$, for the "Jacobian plant" $G_x(s)$ and the "SVD Decoupled Plant" $G_{SVD}(s)$:
The "Gershgorin Radii" of a matrix $S$ is defined by:
\[ \zeta_i(j\omega) = \frac{\sum\limits_{j\neq i}|S_{ij}(j\omega)|}{|S_{ii}(j\omega)|} \]
This is computed over the following frequencies. This is computed over the following frequencies.
#+begin_src matlab #+begin_src matlab
freqs = logspace(-2, 2, 1000); % [Hz] freqs = logspace(-2, 2, 1000); % [Hz]
@@ -1052,29 +1049,23 @@ This is computed over the following frequencies.
#+begin_src matlab :exports none #+begin_src matlab :exports none
% Gershgorin Radii for the coupled plant: % Gershgorin Radii for the coupled plant:
Gr_coupled = zeros(length(freqs), size(Gc,2)); Gr_coupled = zeros(length(freqs), size(Gu,2));
H = abs(squeeze(freqresp(Gu, freqs, 'Hz')));
H = abs(squeeze(freqresp(Gc, freqs, 'Hz'))); for out_i = 1:size(Gu,2)
for out_i = 1:size(Gc,2)
Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end end
% Gershgorin Radii for the decoupled plant using SVD: % Gershgorin Radii for the decoupled plant using SVD:
Gd = inv(U)*Gc*inv(V'); Gr_decoupled = zeros(length(freqs), size(Gsvd,2));
Gr_decoupled = zeros(length(freqs), size(Gd,2)); H = abs(squeeze(freqresp(Gsvd, freqs, 'Hz')));
for out_i = 1:size(Gsvd,2)
H = abs(squeeze(freqresp(Gd, freqs, 'Hz')));
for out_i = 1:size(Gd,2)
Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end end
% Gershgorin Radii for the decoupled plant using the Jacobian: % Gershgorin Radii for the decoupled plant using the Jacobian:
Gj = Gc*inv(J'); Gr_jacobian = zeros(length(freqs), size(Gx,2));
Gr_jacobian = zeros(length(freqs), size(Gj,2)); H = abs(squeeze(freqresp(Gx, freqs, 'Hz')));
for out_i = 1:size(Gx,2)
H = abs(squeeze(freqresp(Gj, freqs, 'Hz')));
for out_i = 1:size(Gj,2)
Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end end
#+end_src #+end_src
@@ -1126,15 +1117,15 @@ The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown i
hold on; hold on;
for i_in = 1:6 for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6] for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, abs(squeeze(freqresp(Gd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off'); 'HandleVisibility', 'off');
end end
end end
plot(freqs, abs(squeeze(freqresp(Gd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ... plot(freqs, abs(squeeze(freqresp(Gsvd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
'DisplayName', '$G_{SVD}(i,j),\ i \neq j$'); 'DisplayName', '$G_{SVD}(i,j),\ i \neq j$');
set(gca,'ColorOrderIndex',1) set(gca,'ColorOrderIndex',1)
for ch_i = 1:6 for ch_i = 1:6
plot(freqs, abs(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz'))), ... plot(freqs, abs(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))), ...
'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i)); 'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i));
end end
hold off; hold off;
@@ -1147,7 +1138,7 @@ The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown i
ax2 = nexttile; ax2 = nexttile;
hold on; hold on;
for ch_i = 1:6 for ch_i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))));
end end
hold off; hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
@@ -1180,7 +1171,7 @@ Similarly, the bode plots of the diagonal elements and off-diagonal elements of
hold on; hold on;
for i_in = 1:6 for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6] for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, abs(squeeze(freqresp(Gx(i_out, 6+i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... plot(freqs, abs(squeeze(freqresp(Gx(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off'); 'HandleVisibility', 'off');
end end
end end
@@ -1228,14 +1219,6 @@ Similarly, the bode plots of the diagonal elements and off-diagonal elements of
** Diagonal Controller ** Diagonal Controller
<<sec:stewart_diagonal_control>> <<sec:stewart_diagonal_control>>
#+begin_src matlab :exports none :tangle no
wc = 2*pi*0.1; % Crossover Frequency [rad/s]
C_g = 50; % DC Gain
Kc = eye(6)*C_g/(s+wc);
#+end_src
The control diagram for the centralized control is shown in Figure [[fig:centralized_control]]. The control diagram for the centralized control is shown in Figure [[fig:centralized_control]].
The controller $K_c$ is "working" in an cartesian frame. The controller $K_c$ is "working" in an cartesian frame.
@@ -1243,7 +1226,7 @@ The Jacobian is used to convert forces in the cartesian frame to forces applied
#+begin_src latex :file centralized_control.pdf :tangle no :exports results #+begin_src latex :file centralized_control.pdf :tangle no :exports results
\begin{tikzpicture} \begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$}; \node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G_u\end{bmatrix}$};
\node[above] at (G.north) {$\bm{G}$}; \node[above] at (G.north) {$\bm{G}$};
\node[block, below right=0.6 and -0.5 of G] (K) {$K_c$}; \node[block, below right=0.6 and -0.5 of G] (K) {$K_c$};
\node[block, below left= 0.6 and -0.5 of G] (J) {$J^{-T}$}; \node[block, below left= 0.6 and -0.5 of G] (J) {$J^{-T}$};
@@ -1271,7 +1254,8 @@ The matrices $U$ and $V$ are used to decoupled the plant $G$.
#+begin_src latex :file svd_control.pdf :tangle no :exports results #+begin_src latex :file svd_control.pdf :tangle no :exports results
\begin{tikzpicture} \begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$G$}; \node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G_u\end{bmatrix}$};
\node[above] at (G.north) {$\bm{G}$};
\node[block, below right=0.6 and 0 of G] (U) {$U^{-1}$}; \node[block, below right=0.6 and 0 of G] (U) {$U^{-1}$};
\node[block, below=0.6 of G] (K) {$K_{\text{SVD}}$}; \node[block, below=0.6 of G] (K) {$K_{\text{SVD}}$};
\node[block, below left= 0.6 and 0 of G] (V) {$V^{-T}$}; \node[block, below left= 0.6 and 0 of G] (V) {$V^{-T}$};
@@ -1302,19 +1286,19 @@ We choose the controller to be a low pass filter:
$G_0$ is tuned such that the crossover frequency corresponding to the diagonal terms of the loop gain is equal to $\omega_c$ $G_0$ is tuned such that the crossover frequency corresponding to the diagonal terms of the loop gain is equal to $\omega_c$
#+begin_src matlab #+begin_src matlab
wc = 2*pi*80; wc = 2*pi*80; % Crossover Frequency [rad/s]
w0 = 2*pi*0.1; w0 = 2*pi*0.1; % Controller Pole [rad/s]
#+end_src #+end_src
#+begin_src matlab #+begin_src matlab
K_cen = diag(1./diag(abs(evalfr(Gx(1:6, 7:12), j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0); K_cen = diag(1./diag(abs(evalfr(Gx, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
L_cen = K_cen*Gx(1:6, 7:12); L_cen = K_cen*Gx;
G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]); G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]);
#+end_src #+end_src
#+begin_src matlab #+begin_src matlab
K_svd = diag(1./diag(abs(evalfr(Gd, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0); K_svd = diag(1./diag(abs(evalfr(Gsvd, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
L_svd = K_svd*Gd; L_svd = K_svd*Gsvd;
G_svd = feedback(G, inv(V')*K_svd*inv(U), [7:12], [1:6]); G_svd = feedback(G, inv(V')*K_svd*inv(U), [7:12], [1:6]);
#+end_src #+end_src

View File

@@ -6,42 +6,14 @@ s = zpk('s');
addpath('STEP'); addpath('STEP');
% Jacobian % Simscape Model - Parameters
% First, the position of the "joints" (points of force application) are estimated and the Jacobian computed. % <<sec:stewart_simscape>>
open('drone_platform_jacobian.slx');
sim('drone_platform_jacobian');
Aa = [a1.Data(1,:);
a2.Data(1,:);
a3.Data(1,:);
a4.Data(1,:);
a5.Data(1,:);
a6.Data(1,:)]';
Ab = [b1.Data(1,:);
b2.Data(1,:);
b3.Data(1,:);
b4.Data(1,:);
b5.Data(1,:);
b6.Data(1,:)]';
As = (Ab - Aa)./vecnorm(Ab - Aa);
l = vecnorm(Ab - Aa)';
J = [As' , cross(Ab, As)'];
save('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
% Simscape Model
open('drone_platform.slx'); open('drone_platform.slx');
% Definition of spring parameters % Definition of spring parameters:
kx = 0.5*1e3/3; % [N/m] kx = 0.5*1e3/3; % [N/m]
ky = 0.5*1e3/3; ky = 0.5*1e3/3;
@@ -51,31 +23,53 @@ cx = 0.025; % [Nm/rad]
cy = 0.025; cy = 0.025;
cz = 0.025; cz = 0.025;
% Gravity:
g = 0; g = 0;
% We load the Jacobian. % We load the Jacobian (previously computed from the geometry):
load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J'); load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
% Identification of the plant
% The dynamics is identified from forces applied by each legs to the measured acceleration of the top platform.
% We initialize other parameters:
U = eye(6);
V = eye(6);
Kc = tf(zeros(6));
% #+name: fig:stewart_platform_plant
% #+caption: Considered plant $\bm{G} = \begin{bmatrix}G_d\\G_u\end{bmatrix}$. $D_w$ is the translation/rotation of the support, $\tau$ the actuator forces, $a$ the acceleration/angular acceleration of the top platform
% #+RESULTS:
% [[file:figs/stewart_platform_plant.png]]
%% Name of the Simulink File %% Name of the Simulink File
mdl = 'drone_platform'; mdl = 'drone_platform';
%% Input/Output definition %% Input/Output definition
clear io; io_i = 1; clear io; io_i = 1;
io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1; % Ground Motion
io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/V-T'], 1, 'openinput'); io_i = io_i + 1; % Actuator Forces
io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Top platform acceleration
G = linearize(mdl, io); G = linearize(mdl, io);
G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ... G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; 'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}; G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};
% Plant
Gu = G(:, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'});
% Disturbance dynamics
Gd = G(:, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'});
% There are 24 states (6dof for the bottom platform + 6dof for the top platform). % There are 24 states (6dof for the bottom platform + 6dof for the top platform).
@@ -87,176 +81,59 @@ size(G)
% #+RESULTS: % #+RESULTS:
% : State-space model with 6 outputs, 12 inputs, and 24 states. % : State-space model with 6 outputs, 12 inputs, and 24 states.
% The elements of the transfer matrix $\bm{G}$ corresponding to the transfer function from actuator forces $\tau$ to the measured acceleration $a$ are shown in Figure [[fig:stewart_platform_coupled_plant]].
% G = G*blkdiag(inv(J), eye(6)); % One can easily see that the system is strongly coupled.
% G.InputName = {'Dw1', 'Dw2', 'Dw3', 'Dw4', 'Dw5', 'Dw6', ...
% 'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
% Thanks to the Jacobian, we compute the transfer functions in the frame of the legs and in an inertial frame.
Gx = G*blkdiag(eye(6), inv(J'));
Gx.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
% Gl = J*G;
% Gl.OutputName = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};
% Obtained Dynamics
freqs = logspace(-1, 2, 1000); freqs = logspace(-1, 2, 1000);
figure; figure;
ax1 = subplot(2, 1, 1); % Magnitude
hold on; hold on;
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))), 'DisplayName', '$A_x/F_x$'); for i_in = 1:6
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))), 'DisplayName', '$A_y/F_y$'); for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))), 'DisplayName', '$A_z/F_z$'); plot(freqs, abs(squeeze(freqresp(Gu(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(Gu(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G_u(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for i_in_out = 1:6
plot(freqs, abs(squeeze(freqresp(Gu(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_u(%d,%d)$', i_in_out, i_in_out));
end
hold off; hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); xlabel('Frequency [Hz]'); ylabel('Magnitude');
legend('location', 'southeast'); ylim([1e-2, 1e5]);
legend('location', 'northwest');
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
% #+name: fig:stewart_platform_translations % #+name: fig:plant_decouple_jacobian
% #+caption: Stewart Platform Plant from forces applied by the legs to the acceleration of the platform % #+caption: Decoupled plant $\bm{G}_x$ using the Jacobian matrix $J$
% #+RESULTS: % #+RESULTS:
% [[file:figs/stewart_platform_translations.png]] % [[file:figs/plant_decouple_jacobian.png]]
% We define a new plant:
% \[ G_x(s) = G(s) J^{-T} \]
% $G_x(s)$ correspond to the transfer function from forces and torques applied to the top platform to the absolute acceleration of the top platform.
freqs = logspace(-1, 2, 1000); Gx = Gu*inv(J');
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))), 'DisplayName', '$A_{R_x}/M_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))), 'DisplayName', '$A_{R_y}/M_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))), 'DisplayName', '$A_{R_z}/M_z$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [rad/(Nm)]'); set(gca, 'XTickLabel',[]);
legend('location', 'southeast');
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
% #+name: fig:stewart_platform_rotations
% #+caption: Stewart Platform Plant from torques applied by the legs to the angular acceleration of the platform
% #+RESULTS:
% [[file:figs/stewart_platform_rotations.png]]
freqs = logspace(-1, 2, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for out_i = 1:5
for in_i = i+1:6
plot(freqs, abs(squeeze(freqresp(Gl(sprintf('A%i', out_i), sprintf('F%i', in_i)), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
for ch_i = 1:6
plot(freqs, abs(squeeze(freqresp(Gl(sprintf('A%i', ch_i), sprintf('F%i', ch_i)), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for ch_i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(sprintf('A%i', ch_i), sprintf('F%i', ch_i)), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
% #+name: fig:stewart_platform_legs
% #+caption: Stewart Platform Plant from forces applied by the legs to displacement of the legs
% #+RESULTS:
% [[file:figs/stewart_platform_legs.png]]
freqs = logspace(-1, 2, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_x/D_{w,x}$');
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_y/D_{w,y}$');
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Dwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_z/D_{w,z}$');
% set(gca,'ColorOrderIndex',1)
% plot(freqs, abs(squeeze(freqresp(TR(1,1), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
% plot(freqs, abs(squeeze(freqresp(TR(2,2), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
% plot(freqs, abs(squeeze(freqresp(TR(3,3), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - Translations'); xlabel('Frequency [Hz]');
legend('location', 'northeast');
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Rwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_x/R_{w,x}$');
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'Rwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_y/R_{w,y}$');
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Rwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_z/R_{w,z}$');
% set(gca,'ColorOrderIndex',1)
% plot(freqs, abs(squeeze(freqresp(TR(4,4), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
% plot(freqs, abs(squeeze(freqresp(TR(5,5), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
% plot(freqs, abs(squeeze(freqresp(TR(6,6), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - Rotations'); xlabel('Frequency [Hz]');
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
% Real Approximation of $G$ at the decoupling frequency % Real Approximation of $G$ at the decoupling frequency
% Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$. % <<sec:stewart_real_approx>>
% Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_u(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
wc = 2*pi*30; % Decoupling frequency [rad/s] wc = 2*pi*30; % Decoupling frequency [rad/s]
Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ... H1 = evalfr(Gu, j*wc);
{'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
H1 = evalfr(Gc, j*wc);
@@ -265,55 +142,58 @@ H1 = evalfr(Gc, j*wc);
D = pinv(real(H1'*H1)); D = pinv(real(H1'*H1));
H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2)))); H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
% Verification of the decoupling using the "Gershgorin Radii" % SVD Decoupling
% <<sec:stewart_svd_decoupling>>
% First, the Singular Value Decomposition of $H_1$ is performed: % First, the Singular Value Decomposition of $H_1$ is performed:
% \[ H_1 = U \Sigma V^H \] % \[ H_1 = U \Sigma V^H \]
[U,S,V] = svd(H1); [U,~,V] = svd(H1);
% Then, the "Gershgorin Radii" is computed for the plant $G_c(s)$ and the "SVD Decoupled Plant" $G_d(s)$: % #+name: fig:plant_decouple_svd
% \[ G_d(s) = U^T G_c(s) V \] % #+caption: Decoupled plant $\bm{G}_{SVD}$ using the Singular Value Decomposition
% #+RESULTS:
% [[file:figs/plant_decouple_svd.png]]
% The decoupled plant is then:
% \[ G_{SVD}(s) = U^{-1} G_u(s) V^{-H} \]
Gsvd = inv(U)*Gu*inv(V');
% Verification of the decoupling using the "Gershgorin Radii"
% <<sec:comp_decoupling>>
% The "Gershgorin Radii" is computed for the coupled plant $G(s)$, for the "Jacobian plant" $G_x(s)$ and the "SVD Decoupled Plant" $G_{SVD}(s)$:
% The "Gershgorin Radii" of a matrix $S$ is defined by:
% \[ \zeta_i(j\omega) = \frac{\sum\limits_{j\neq i}|S_{ij}(j\omega)|}{|S_{ii}(j\omega)|} \]
% This is computed over the following frequencies. % This is computed over the following frequencies.
freqs = logspace(-2, 2, 1000); % [Hz] freqs = logspace(-2, 2, 1000); % [Hz]
% Gershgorin Radii for the coupled plant: % Gershgorin Radii for the coupled plant:
Gr_coupled = zeros(length(freqs), size(Gu,2));
Gr_coupled = zeros(length(freqs), size(Gc,2)); H = abs(squeeze(freqresp(Gu, freqs, 'Hz')));
for out_i = 1:size(Gu,2)
H = abs(squeeze(freqresp(Gc, freqs, 'Hz')));
for out_i = 1:size(Gc,2)
Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end end
% Gershgorin Radii for the decoupled plant using SVD: % Gershgorin Radii for the decoupled plant using SVD:
Gr_decoupled = zeros(length(freqs), size(Gsvd,2));
Gd = U'*Gc*V; H = abs(squeeze(freqresp(Gsvd, freqs, 'Hz')));
Gr_decoupled = zeros(length(freqs), size(Gd,2)); for out_i = 1:size(Gsvd,2)
H = abs(squeeze(freqresp(Gd, freqs, 'Hz')));
for out_i = 1:size(Gd,2)
Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end end
% Gershgorin Radii for the decoupled plant using the Jacobian: % Gershgorin Radii for the decoupled plant using the Jacobian:
Gr_jacobian = zeros(length(freqs), size(Gx,2));
Gj = Gc*inv(J'); H = abs(squeeze(freqresp(Gx, freqs, 'Hz')));
Gr_jacobian = zeros(length(freqs), size(Gj,2)); for out_i = 1:size(Gx,2)
H = abs(squeeze(freqresp(Gj, freqs, 'Hz')));
for out_i = 1:size(Gj,2)
Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :)); Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end end
@@ -334,31 +214,55 @@ plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off; hold off;
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii') xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
legend('location', 'northeast'); legend('location', 'northwest');
ylim([1e-3, 1e3]);
% Decoupled Plant % Obtained Decoupled Plants
% Let's see the bode plot of the decoupled plant $G_d(s)$. % <<sec:stewart_decoupled_plant>>
% \[ G_d(s) = U^T G_c(s) V \]
% The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown in Figure [[fig:simscape_model_decoupled_plant_svd]].
freqs = logspace(-1, 2, 1000); freqs = logspace(-1, 2, 1000);
figure; figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on; hold on;
for ch_i = 1:6 for i_in = 1:6
plot(freqs, abs(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz'))), ... for i_out = [1:i_in-1, i_in+1:6]
'DisplayName', sprintf('$G(%i, %i)$', ch_i, ch_i)); plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
end
for in_i = 1:5
for out_i = in_i+1:6
plot(freqs, abs(squeeze(freqresp(Gd(out_i, in_i), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off'); 'HandleVisibility', 'off');
end end
end end
plot(freqs, abs(squeeze(freqresp(Gsvd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
'DisplayName', '$G_{SVD}(i,j),\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for ch_i = 1:6
plot(freqs, abs(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))), ...
'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i));
end
hold off; hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude'); xlabel('Frequency [Hz]'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
legend('location', 'southeast'); legend('location', 'northwest');
ylim([1e-1, 1e5])
% Phase
ax2 = nexttile;
hold on;
for ch_i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180:90:360]);
linkaxes([ax1,ax2],'x');
@@ -367,53 +271,135 @@ legend('location', 'southeast');
% #+RESULTS: % #+RESULTS:
% [[file:figs/simscape_model_decoupled_plant_svd.png]] % [[file:figs/simscape_model_decoupled_plant_svd.png]]
% Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant $G_x(s)$ using the Jacobian are shown in Figure [[fig:simscape_model_decoupled_plant_jacobian]].
freqs = logspace(-1, 2, 1000); freqs = logspace(-1, 2, 1000);
figure; figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on; hold on;
for ch_i = 1:6 for i_in = 1:6
plot(freqs, abs(squeeze(freqresp(Gj(ch_i, ch_i), freqs, 'Hz'))), ... for i_out = [1:i_in-1, i_in+1:6]
'DisplayName', sprintf('$G(%i, %i)$', ch_i, ch_i)); plot(freqs, abs(squeeze(freqresp(Gx(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
end
for in_i = 1:5
for out_i = in_i+1:6
plot(freqs, abs(squeeze(freqresp(Gj(out_i, in_i), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off'); 'HandleVisibility', 'off');
end end
end end
plot(freqs, abs(squeeze(freqresp(Gx(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
'DisplayName', '$G_x(i,j),\ i \neq j$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))), 'DisplayName', '$G_x(1,1) = A_x/F_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))), 'DisplayName', '$G_x(2,2) = A_y/F_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = A_z/F_z$');
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))), 'DisplayName', '$G_x(4,4) = A_{R_x}/M_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))), 'DisplayName', '$G_x(5,5) = A_{R_y}/M_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))), 'DisplayName', '$G_x(6,6) = A_{R_z}/M_z$');
hold off; hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude'); xlabel('Frequency [Hz]'); ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
legend('location', 'southeast'); legend('location', 'northwest');
ylim([1e-2, 2e6])
% Diagonal Controller % Phase
% The controller $K$ is a diagonal controller consisting a low pass filters with a crossover frequency $\omega_c$ and a DC gain $C_g$. ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([0, 180]);
yticks([0:45:360]);
linkaxes([ax1,ax2],'x');
wc = 2*pi*0.1; % Crossover Frequency [rad/s]
C_g = 50; % DC Gain
K = eye(6)*C_g/(s+wc);
% #+RESULTS:
% [[file:figs/centralized_control.png]]
G_cen = feedback(G, inv(J')*K, [7:12], [1:6]);
% #+name: fig:svd_control
% #+caption: Control Diagram for the SVD control
% #+RESULTS: % #+RESULTS:
% [[file:figs/svd_control.png]] % [[file:figs/svd_control.png]]
% SVD Control
G_svd = feedback(G, pinv(V')*K*pinv(U), [7:12], [1:6]); % We choose the controller to be a low pass filter:
% \[ K_c(s) = \frac{G_0}{1 + \frac{s}{\omega_0}} \]
% $G_0$ is tuned such that the crossover frequency corresponding to the diagonal terms of the loop gain is equal to $\omega_c$
wc = 2*pi*80; % Crossover Frequency [rad/s]
w0 = 2*pi*0.1; % Controller Pole [rad/s]
K_cen = diag(1./diag(abs(evalfr(Gx, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
L_cen = K_cen*Gx;
G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]);
K_svd = diag(1./diag(abs(evalfr(Gsvd, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
L_svd = K_svd*Gsvd;
G_svd = feedback(G, inv(V')*K_svd*inv(U), [7:12], [1:6]);
% The obtained diagonal elements of the loop gains are shown in Figure [[fig:stewart_comp_loop_gain_diagonal]].
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
plot(freqs, abs(squeeze(freqresp(L_svd(1, 1), freqs, 'Hz'))), 'DisplayName', '$L_{SVD}(i,i)$');
for i_in_out = 2:6
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
end
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(L_cen(1, 1), freqs, 'Hz'))), ...
'DisplayName', '$L_{J}(i,i)$');
for i_in_out = 2:6
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
legend('location', 'northwest');
ylim([5e-2, 2e3])
% Phase
ax2 = nexttile;
hold on;
for i_in_out = 1:6
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*angle(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))));
end
set(gca,'ColorOrderIndex',2)
for i_in_out = 1:6
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*angle(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180:90:360]);
linkaxes([ax1,ax2],'x');
% Closed-Loop system Performances
% <<sec:stewart_closed_loop_results>>
% Results
% Let's first verify the stability of the closed-loop systems: % Let's first verify the stability of the closed-loop systems:
isstable(G_cen) isstable(G_cen)
@@ -433,69 +419,61 @@ isstable(G_svd)
% #+RESULTS: % #+RESULTS:
% : ans = % : ans =
% : logical % : logical
% : 0 % : 1
% The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:stewart_platform_simscape_cl_transmissibility]]. % The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:stewart_platform_simscape_cl_transmissibility]].
freqs = logspace(-3, 3, 1000); freqs = logspace(-2, 2, 1000);
figure figure;
tiledlayout(2, 2, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = subplot(2, 3, 1); ax1 = nexttile;
hold on; hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop'); plot(freqs, abs(squeeze(freqresp(G( 'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized'); plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'SVD'); plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
hold off; hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - $D_x/D_{w,x}$'); xlabel('Frequency [Hz]'); ylabel('$D_x/D_{w,x}$, $D_y/D_{w, y}$'); set(gca, 'XTickLabel',[]);
legend('location', 'southwest'); legend('location', 'southwest');
ax2 = subplot(2, 3, 2); ax2 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - $D_y/D_{w,y}$'); xlabel('Frequency [Hz]');
ax3 = subplot(2, 3, 3);
hold on; hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Az', 'Dwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G( 'Az', 'Dwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz'))), '--');
hold off; hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - $D_z/D_{w,z}$'); xlabel('Frequency [Hz]'); ylabel('$D_z/D_{w,z}$'); set(gca, 'XTickLabel',[]);
ax4 = subplot(2, 3, 4); ax3 = nexttile;
hold on; hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Arx', 'Rwx')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G( 'Arx', 'Rwx')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz'))), '--');
hold off; set(gca,'ColorOrderIndex',1)
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - $R_x/R_{w,x}$'); xlabel('Frequency [Hz]');
ax5 = subplot(2, 3, 5);
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Ary', 'Rwy')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G( 'Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz'))), '--');
hold off; hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - $R_y/R_{w,y}$'); xlabel('Frequency [Hz]'); ylabel('$R_x/R_{w,x}$, $R_y/R_{w,y}$'); xlabel('Frequency [Hz]');
ax6 = subplot(2, 3, 6); ax4 = nexttile;
hold on; hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Arz', 'Rwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G( 'Arz', 'Rwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz'))), '--');
hold off; hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - $R_z/R_{w,z}$'); xlabel('Frequency [Hz]'); ylabel('$R_z/R_{w,z}$'); xlabel('Frequency [Hz]');
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x'); linkaxes([ax1,ax2,ax3,ax4],'xy');
xlim([freqs(1), freqs(end)]); xlim([freqs(1), freqs(end)]);
ylim([1e-3, 1e2]);