Delete unused sections (analytical models)
This commit is contained in:
		
							
								
								
									
										782
									
								
								index.org
									
									
									
									
									
								
							
							
						
						
									
										782
									
								
								index.org
									
									
									
									
									
								
							@@ -818,533 +818,6 @@ The obtained transmissibility in Open-loop, for the centralized control as well
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
[[file:figs/gravimeter_platform_simscape_cl_transmissibility.png]]
 | 
			
		||||
 | 
			
		||||
* Gravimeter - Analytical Model                                     :noexport:
 | 
			
		||||
** System Identification - With Gravity                            :noexport:
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  g = 9.80665; % Gravity [m/s2]
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  Gg = linearize(mdl, io);
 | 
			
		||||
  Gg.InputName  = {'F1', 'F2', 'F3'};
 | 
			
		||||
  Gg.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
We can now see that the system is unstable due to gravity.
 | 
			
		||||
#+begin_src matlab :results output replace :exports results
 | 
			
		||||
  pole(Gg)
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
#+begin_example
 | 
			
		||||
      -7.49865861504606e-05 +      8.65948534948982i
 | 
			
		||||
      -7.49865861504606e-05 -      8.65948534948982i
 | 
			
		||||
          -4.76450798645977 +                     0i
 | 
			
		||||
            4.7642612321107 +                     0i
 | 
			
		||||
      -7.34348883628024e-05 +      4.29133825321225i
 | 
			
		||||
      -7.34348883628024e-05 -      4.29133825321225i
 | 
			
		||||
#+end_example
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
  freqs = logspace(-2, 2, 1000);
 | 
			
		||||
 | 
			
		||||
  figure;
 | 
			
		||||
  for in_i = 1:3
 | 
			
		||||
      for out_i = 1:4
 | 
			
		||||
          subplot(4, 3, 3*(out_i-1)+in_i);
 | 
			
		||||
          hold on;
 | 
			
		||||
          plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
 | 
			
		||||
          plot(freqs, abs(squeeze(freqresp(Gg(out_i,in_i), freqs, 'Hz'))), '-');
 | 
			
		||||
          hold off;
 | 
			
		||||
          set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
      end
 | 
			
		||||
  end
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :tangle no :exports results :results file replace
 | 
			
		||||
  exportFig('figs/open_loop_tf_g.pdf', 'width', 'full', 'height', 'full');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+name: fig:open_loop_tf_g
 | 
			
		||||
#+caption: Open Loop Transfer Function from 3 Actuators to 4 Accelerometers with an without gravity
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
[[file:figs/open_loop_tf_g.png]]
 | 
			
		||||
 | 
			
		||||
** Parameters
 | 
			
		||||
Bode options.
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  P = bodeoptions;
 | 
			
		||||
  P.FreqUnits = 'Hz';
 | 
			
		||||
  P.MagUnits = 'abs';
 | 
			
		||||
  P.MagScale = 'log';
 | 
			
		||||
  P.Grid = 'on';
 | 
			
		||||
  P.PhaseWrapping = 'on';
 | 
			
		||||
  P.Title.FontSize = 14;
 | 
			
		||||
  P.XLabel.FontSize = 14;
 | 
			
		||||
  P.YLabel.FontSize = 14;
 | 
			
		||||
  P.TickLabel.FontSize = 12;
 | 
			
		||||
  P.Xlim = [1e-1,1e2];
 | 
			
		||||
  P.MagLowerLimMode = 'manual';
 | 
			
		||||
  P.MagLowerLim= 1e-3;
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
Frequency vector.
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  w = 2*pi*logspace(-1,2,1000); % [rad/s]
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Generation of the State Space Model
 | 
			
		||||
Mass matrix
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  M = [m 0 0
 | 
			
		||||
       0 m 0
 | 
			
		||||
       0 0 I];
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
Jacobian of the bottom sensor
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  Js1 = [1 0  h/2
 | 
			
		||||
         0 1 -l/2];
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
Jacobian of the top sensor
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  Js2 = [1 0 -h/2
 | 
			
		||||
         0 1  0];
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
Jacobian of the actuators
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  Ja = [1 0  ha   % Left horizontal actuator
 | 
			
		||||
        0 1 -la   % Left vertical actuator
 | 
			
		||||
        0 1  la]; % Right vertical actuator
 | 
			
		||||
  Jta = Ja';
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
Stiffness and Damping matrices
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  K = k*Jta*Ja;
 | 
			
		||||
  C = c*Jta*Ja;
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
State Space Matrices
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  E = [1 0 0
 | 
			
		||||
       0 1 0
 | 
			
		||||
       0 0 1]; %projecting ground motion in the directions of the legs
 | 
			
		||||
 | 
			
		||||
  AA = [zeros(3) eye(3)
 | 
			
		||||
        -M\K -M\C];
 | 
			
		||||
 | 
			
		||||
  BB = [zeros(3,6)
 | 
			
		||||
        M\Jta M\(k*Jta*E)];
 | 
			
		||||
 | 
			
		||||
  CC = [[Js1;Js2] zeros(4,3);
 | 
			
		||||
        zeros(2,6)
 | 
			
		||||
        (Js1+Js2)./2 zeros(2,3)
 | 
			
		||||
        (Js1-Js2)./2 zeros(2,3)
 | 
			
		||||
        (Js1-Js2)./(2*h) zeros(2,3)];
 | 
			
		||||
 | 
			
		||||
  DD = [zeros(4,6)
 | 
			
		||||
        zeros(2,3) eye(2,3)
 | 
			
		||||
        zeros(6,6)];
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
State Space model:
 | 
			
		||||
- Input = three actuators and three ground motions
 | 
			
		||||
- Output = the bottom sensor; the top sensor; the ground motion; the half sum; the half difference; the rotation
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  system_dec = ss(AA,BB,CC,DD);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :results output replace
 | 
			
		||||
  size(system_dec)
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
: State-space model with 12 outputs, 6 inputs, and 6 states.
 | 
			
		||||
 | 
			
		||||
** Comparison with the Simscape Model
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
  freqs = logspace(-2, 2, 1000);
 | 
			
		||||
 | 
			
		||||
  figure;
 | 
			
		||||
  for in_i = 1:3
 | 
			
		||||
      for out_i = 1:4
 | 
			
		||||
          subplot(4, 3, 3*(out_i-1)+in_i);
 | 
			
		||||
          hold on;
 | 
			
		||||
          plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
 | 
			
		||||
          plot(freqs, abs(squeeze(freqresp(system_dec(out_i,in_i)*s^2, freqs, 'Hz'))), '-');
 | 
			
		||||
          hold off;
 | 
			
		||||
          set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
      end
 | 
			
		||||
  end
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :tangle no :exports results :results file replace
 | 
			
		||||
  exportFig('figs/gravimeter_analytical_system_open_loop_models.pdf', 'width', 'full', 'height', 'full');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+name: fig:gravimeter_analytical_system_open_loop_models
 | 
			
		||||
#+caption: Comparison of the analytical and the Simscape models
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
[[file:figs/gravimeter_analytical_system_open_loop_models.png]]
 | 
			
		||||
 | 
			
		||||
** Analysis
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  % figure
 | 
			
		||||
  % bode(system_dec,P);
 | 
			
		||||
  % return
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  %% svd decomposition
 | 
			
		||||
  % system_dec_freq = freqresp(system_dec,w);
 | 
			
		||||
  % S = zeros(3,length(w));
 | 
			
		||||
  % for m = 1:length(w)
 | 
			
		||||
  %     S(:,m) = svd(system_dec_freq(1:4,1:3,m));
 | 
			
		||||
  % end
 | 
			
		||||
  % figure
 | 
			
		||||
  % loglog(w./(2*pi), S);hold on;
 | 
			
		||||
  % % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
 | 
			
		||||
  % xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
 | 
			
		||||
  % legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
 | 
			
		||||
  % ylim([1e-8 1e-2]);
 | 
			
		||||
  %
 | 
			
		||||
  % %condition number
 | 
			
		||||
  % figure
 | 
			
		||||
  % loglog(w./(2*pi), S(1,:)./S(3,:));hold on;
 | 
			
		||||
  % % loglog(w./(2*pi), abs(Val(1,:)),w./(2*pi), abs(Val(2,:)),w./(2*pi), abs(Val(3,:)));
 | 
			
		||||
  % xlabel('Frequency [Hz]');ylabel('Condition number [-]');
 | 
			
		||||
  % % legend('\sigma_1','\sigma_2','\sigma_3');%,'\sigma_4','\sigma_5','\sigma_6');
 | 
			
		||||
  %
 | 
			
		||||
  % %performance indicator
 | 
			
		||||
  % system_dec_svd = freqresp(system_dec(1:4,1:3),2*pi*10);
 | 
			
		||||
  % [U,S,V] = svd(system_dec_svd);
 | 
			
		||||
  % H_svd_OL = -eye(3,4);%-[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*40,-2*pi*200,40/200) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
 | 
			
		||||
  % H_svd = pinv(V')*H_svd_OL*pinv(U);
 | 
			
		||||
  % % system_dec_control_svd_ = feedback(system_dec,g*pinv(V')*H*pinv(U));
 | 
			
		||||
  %
 | 
			
		||||
  % OL_dec = g_svd*H_svd*system_dec(1:4,1:3);
 | 
			
		||||
  % OL_freq = freqresp(OL_dec,w); % OL = G*H
 | 
			
		||||
  % CL_system = feedback(eye(3),-g_svd*H_svd*system_dec(1:4,1:3));
 | 
			
		||||
  % CL_freq = freqresp(CL_system,w); % CL = (1+G*H)^-1
 | 
			
		||||
  % % CL_system_2 = feedback(system_dec,H);
 | 
			
		||||
  % % CL_freq_2 = freqresp(CL_system_2,w); % CL = G/(1+G*H)
 | 
			
		||||
  % for i = 1:size(w,2)
 | 
			
		||||
  %     OL(:,i) = svd(OL_freq(:,:,i));
 | 
			
		||||
  %     CL (:,i) = svd(CL_freq(:,:,i));
 | 
			
		||||
  %     %CL2 (:,i) = svd(CL_freq_2(:,:,i));
 | 
			
		||||
  % end
 | 
			
		||||
  %
 | 
			
		||||
  % un = ones(1,length(w));
 | 
			
		||||
  % figure
 | 
			
		||||
  % loglog(w./(2*pi),OL(3,:)+1,'k',w./(2*pi),OL(3,:)-1,'b',w./(2*pi),1./CL(1,:),'r--',w./(2*pi),un,'k:');hold on;%
 | 
			
		||||
  % % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
 | 
			
		||||
  % % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
 | 
			
		||||
  % xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
 | 
			
		||||
  % legend('GH \sigma_{inf} +1 ','GH \sigma_{inf} -1','S 1/\sigma_{sup}');%,'\lambda_1','\lambda_2','\lambda_3');
 | 
			
		||||
  %
 | 
			
		||||
  % figure
 | 
			
		||||
  % loglog(w./(2*pi),OL(1,:)+1,'k',w./(2*pi),OL(1,:)-1,'b',w./(2*pi),1./CL(3,:),'r--',w./(2*pi),un,'k:');hold on;%
 | 
			
		||||
  % % loglog(w./(2*pi), 1./(CL(2,:)),w./(2*pi), 1./(CL(3,:)));
 | 
			
		||||
  % % semilogx(w./(2*pi), 1./(CL2(1,:)),w./(2*pi), 1./(CL2(2,:)),w./(2*pi), 1./(CL2(3,:)));
 | 
			
		||||
  % xlabel('Frequency [Hz]');ylabel('Singular Value [-]');
 | 
			
		||||
  % legend('GH \sigma_{sup} +1 ','GH \sigma_{sup} -1','S 1/\sigma_{inf}');%,'\lambda_1','\lambda_2','\lambda_3');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Control Section
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  system_dec_10Hz = freqresp(system_dec,2*pi*10);
 | 
			
		||||
  system_dec_0Hz = freqresp(system_dec,0);
 | 
			
		||||
 | 
			
		||||
  system_decReal_10Hz = pinv(align(system_dec_10Hz));
 | 
			
		||||
  [Ureal,Sreal,Vreal] = svd(system_decReal_10Hz(1:4,1:3));
 | 
			
		||||
  normalizationMatrixReal = abs(pinv(Ureal)*system_dec_0Hz(1:4,1:3)*pinv(Vreal'));
 | 
			
		||||
 | 
			
		||||
  [U,S,V] = svd(system_dec_10Hz(1:4,1:3));
 | 
			
		||||
  normalizationMatrix = abs(pinv(U)*system_dec_0Hz(1:4,1:3)*pinv(V'));
 | 
			
		||||
 | 
			
		||||
  H_dec = ([zpk(-2*pi*5,-2*pi*30,30/5) 0 0 0
 | 
			
		||||
            0 zpk(-2*pi*4,-2*pi*20,20/4) 0 0
 | 
			
		||||
            0 0 0 zpk(-2*pi,-2*pi*10,10)]);
 | 
			
		||||
  H_cen_OL = [zpk(-2*pi,-2*pi*10,10) 0 0; 0 zpk(-2*pi,-2*pi*10,10) 0;
 | 
			
		||||
              0 0 zpk(-2*pi*5,-2*pi*30,30/5)];
 | 
			
		||||
  H_cen = pinv(Jta)*H_cen_OL*pinv([Js1; Js2]);
 | 
			
		||||
  % H_svd_OL = -[1/normalizationMatrix(1,1) 0 0 0
 | 
			
		||||
  %     0 1/normalizationMatrix(2,2) 0 0
 | 
			
		||||
  %     0 0 1/normalizationMatrix(3,3) 0];
 | 
			
		||||
  % H_svd_OL_real = -[1/normalizationMatrixReal(1,1) 0 0 0
 | 
			
		||||
  %     0 1/normalizationMatrixReal(2,2) 0 0
 | 
			
		||||
  %     0 0 1/normalizationMatrixReal(3,3) 0];
 | 
			
		||||
  H_svd_OL = -[1/normalizationMatrix(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
 | 
			
		||||
               0 1/normalizationMatrix(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
 | 
			
		||||
               0 0 1/normalizationMatrix(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
 | 
			
		||||
  H_svd_OL_real = -[1/normalizationMatrixReal(1,1)*zpk(-2*pi*10,-2*pi*60,60/10) 0 0 0
 | 
			
		||||
                    0 1/normalizationMatrixReal(2,2)*zpk(-2*pi*5,-2*pi*30,30/5) 0 0
 | 
			
		||||
                    0 0 1/normalizationMatrixReal(3,3)*zpk(-2*pi*2,-2*pi*10,10/2) 0];
 | 
			
		||||
  % H_svd_OL_real = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 10*zpk(-2*pi*10,-2*pi*100,100/10) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];%-eye(3,4);
 | 
			
		||||
  % H_svd_OL = -[zpk(-2*pi*10,-2*pi*40,40/10) 0 0 0; 0 zpk(-2*pi*4,-2*pi*20,4/20) 0 0; 0 0 zpk(-2*pi*2,-2*pi*10,10/2) 0];% - eye(3,4);%
 | 
			
		||||
  H_svd = pinv(V')*H_svd_OL*pinv(U);
 | 
			
		||||
  H_svd_real = pinv(Vreal')*H_svd_OL_real*pinv(Ureal);
 | 
			
		||||
 | 
			
		||||
  OL_dec = g*H_dec*system_dec(1:4,1:3);
 | 
			
		||||
  OL_cen = g*H_cen_OL*pinv([Js1; Js2])*system_dec(1:4,1:3)*pinv(Jta);
 | 
			
		||||
  OL_svd = 100*H_svd_OL*pinv(U)*system_dec(1:4,1:3)*pinv(V');
 | 
			
		||||
  OL_svd_real = 100*H_svd_OL_real*pinv(Ureal)*system_dec(1:4,1:3)*pinv(Vreal');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  % figure
 | 
			
		||||
  % bode(OL_dec,w,P);title('OL Decentralized');
 | 
			
		||||
  % figure
 | 
			
		||||
  % bode(OL_cen,w,P);title('OL Centralized');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  figure
 | 
			
		||||
  bode(g*system_dec(1:4,1:3),w,P);
 | 
			
		||||
  title('gain * Plant');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  figure
 | 
			
		||||
  bode(OL_svd,OL_svd_real,w,P);
 | 
			
		||||
  title('OL SVD');
 | 
			
		||||
  legend('SVD of Complex plant','SVD of real approximation of the complex plant')
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  figure
 | 
			
		||||
  bode(system_dec(1:4,1:3),pinv(U)*system_dec(1:4,1:3)*pinv(V'),P);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  CL_dec = feedback(system_dec,g*H_dec,[1 2 3],[1 2 3 4]);
 | 
			
		||||
  CL_cen = feedback(system_dec,g*H_cen,[1 2 3],[1 2 3 4]);
 | 
			
		||||
  CL_svd = feedback(system_dec,100*H_svd,[1 2 3],[1 2 3 4]);
 | 
			
		||||
  CL_svd_real = feedback(system_dec,100*H_svd_real,[1 2 3],[1 2 3 4]);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  pzmap_testCL(system_dec,H_dec,g,[1 2 3],[1 2 3 4])
 | 
			
		||||
  title('Decentralized control');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  pzmap_testCL(system_dec,H_cen,g,[1 2 3],[1 2 3 4])
 | 
			
		||||
  title('Centralized control');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  pzmap_testCL(system_dec,H_svd,100,[1 2 3],[1 2 3 4])
 | 
			
		||||
  title('SVD control');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  pzmap_testCL(system_dec,H_svd_real,100,[1 2 3],[1 2 3 4])
 | 
			
		||||
  title('Real approximation SVD control');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  P.Ylim = [1e-8 1e-3];
 | 
			
		||||
  figure
 | 
			
		||||
  bodemag(system_dec(1:4,1:3),CL_dec(1:4,1:3),CL_cen(1:4,1:3),CL_svd(1:4,1:3),CL_svd_real(1:4,1:3),P);
 | 
			
		||||
  title('Motion/actuator')
 | 
			
		||||
  legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  P.Ylim = [1e-5 1e1];
 | 
			
		||||
  figure
 | 
			
		||||
  bodemag(system_dec(1:4,4:6),CL_dec(1:4,4:6),CL_cen(1:4,4:6),CL_svd(1:4,4:6),CL_svd_real(1:4,4:6),P);
 | 
			
		||||
  title('Transmissibility');
 | 
			
		||||
  legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  figure
 | 
			
		||||
  bodemag(system_dec([7 9],4:6),CL_dec([7 9],4:6),CL_cen([7 9],4:6),CL_svd([7 9],4:6),CL_svd_real([7 9],4:6),P);
 | 
			
		||||
  title('Transmissibility from half sum and half difference in the X direction');
 | 
			
		||||
  legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  figure
 | 
			
		||||
  bodemag(system_dec([8 10],4:6),CL_dec([8 10],4:6),CL_cen([8 10],4:6),CL_svd([8 10],4:6),CL_svd_real([8 10],4:6),P);
 | 
			
		||||
  title('Transmissibility from half sum and half difference in the Z direction');
 | 
			
		||||
  legend('Control OFF','Decentralized control','Centralized control','SVD control','SVD control real appr.');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Greshgorin radius
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  system_dec_freq = freqresp(system_dec,w);
 | 
			
		||||
  x1 = zeros(1,length(w));
 | 
			
		||||
  z1 = zeros(1,length(w));
 | 
			
		||||
  x2 = zeros(1,length(w));
 | 
			
		||||
  S1 = zeros(1,length(w));
 | 
			
		||||
  S2 = zeros(1,length(w));
 | 
			
		||||
  S3 = zeros(1,length(w));
 | 
			
		||||
 | 
			
		||||
  for t = 1:length(w)
 | 
			
		||||
      x1(t) = (abs(system_dec_freq(1,2,t))+abs(system_dec_freq(1,3,t)))/abs(system_dec_freq(1,1,t));
 | 
			
		||||
      z1(t) = (abs(system_dec_freq(2,1,t))+abs(system_dec_freq(2,3,t)))/abs(system_dec_freq(2,2,t));
 | 
			
		||||
      x2(t) = (abs(system_dec_freq(3,1,t))+abs(system_dec_freq(3,2,t)))/abs(system_dec_freq(3,3,t));
 | 
			
		||||
      system_svd = pinv(Ureal)*system_dec_freq(1:4,1:3,t)*pinv(Vreal');
 | 
			
		||||
      S1(t) = (abs(system_svd(1,2))+abs(system_svd(1,3)))/abs(system_svd(1,1));
 | 
			
		||||
      S2(t) = (abs(system_svd(2,1))+abs(system_svd(2,3)))/abs(system_svd(2,2));
 | 
			
		||||
      S2(t) = (abs(system_svd(3,1))+abs(system_svd(3,2)))/abs(system_svd(3,3));
 | 
			
		||||
  end
 | 
			
		||||
 | 
			
		||||
  limit = 0.5*ones(1,length(w));
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  figure
 | 
			
		||||
  loglog(w./(2*pi),x1,w./(2*pi),z1,w./(2*pi),x2,w./(2*pi),limit,'--');
 | 
			
		||||
  legend('x_1','z_1','x_2','Limit');
 | 
			
		||||
  xlabel('Frequency [Hz]');
 | 
			
		||||
  ylabel('Greshgorin radius [-]');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  figure
 | 
			
		||||
  loglog(w./(2*pi),S1,w./(2*pi),S2,w./(2*pi),S3,w./(2*pi),limit,'--');
 | 
			
		||||
  legend('S1','S2','S3','Limit');
 | 
			
		||||
  xlabel('Frequency [Hz]');
 | 
			
		||||
  ylabel('Greshgorin radius [-]');
 | 
			
		||||
  % set(gcf,'color','w')
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Injecting ground motion in the system to have the output
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  Fr = logspace(-2,3,1e3);
 | 
			
		||||
  w=2*pi*Fr*1i;
 | 
			
		||||
  %fit of the ground motion data in m/s^2/rtHz
 | 
			
		||||
  Fr_ground_x = [0.07 0.1 0.15 0.3 0.7 0.8 0.9 1.2 5 10];
 | 
			
		||||
  n_ground_x1 = [4e-7 4e-7 2e-6 1e-6 5e-7 5e-7 5e-7 1e-6 1e-5 3.5e-5];
 | 
			
		||||
  Fr_ground_v = [0.07 0.08 0.1 0.11 0.12 0.15 0.25 0.6 0.8 1 1.2 1.6 2 6 10];
 | 
			
		||||
  n_ground_v1 = [7e-7 7e-7 7e-7 1e-6 1.2e-6 1.5e-6 1e-6 9e-7 7e-7 7e-7 7e-7 1e-6 2e-6 1e-5 3e-5];
 | 
			
		||||
 | 
			
		||||
  n_ground_x = interp1(Fr_ground_x,n_ground_x1,Fr,'linear');
 | 
			
		||||
  n_ground_v = interp1(Fr_ground_v,n_ground_v1,Fr,'linear');
 | 
			
		||||
  % figure
 | 
			
		||||
  % loglog(Fr,abs(n_ground_v),Fr_ground_v,n_ground_v1,'*');
 | 
			
		||||
  % xlabel('Frequency [Hz]');ylabel('ASD [m/s^2 /rtHz]');
 | 
			
		||||
  % return
 | 
			
		||||
 | 
			
		||||
  %converting into PSD
 | 
			
		||||
  n_ground_x = (n_ground_x).^2;
 | 
			
		||||
  n_ground_v = (n_ground_v).^2;
 | 
			
		||||
 | 
			
		||||
  %Injecting ground motion in the system and getting the outputs
 | 
			
		||||
  system_dec_f = (freqresp(system_dec,abs(w)));
 | 
			
		||||
  PHI = zeros(size(Fr,2),12,12);
 | 
			
		||||
  for p = 1:size(Fr,2)
 | 
			
		||||
      Sw=zeros(6,6);
 | 
			
		||||
      Iact = zeros(3,3);
 | 
			
		||||
      Sw(4,4) = n_ground_x(p);
 | 
			
		||||
      Sw(5,5) = n_ground_v(p);
 | 
			
		||||
      Sw(6,6) = n_ground_v(p);
 | 
			
		||||
      Sw(1:3,1:3) = Iact;
 | 
			
		||||
      PHI(p,:,:) = (system_dec_f(:,:,p))*Sw(:,:)*(system_dec_f(:,:,p))';
 | 
			
		||||
  end
 | 
			
		||||
  x1 = PHI(:,1,1);
 | 
			
		||||
  z1 = PHI(:,2,2);
 | 
			
		||||
  x2 = PHI(:,3,3);
 | 
			
		||||
  z2 = PHI(:,4,4);
 | 
			
		||||
  wx = PHI(:,5,5);
 | 
			
		||||
  wz = PHI(:,6,6);
 | 
			
		||||
  x12 = PHI(:,1,3);
 | 
			
		||||
  z12 = PHI(:,2,4);
 | 
			
		||||
  PHIwx = PHI(:,1,5);
 | 
			
		||||
  PHIwz = PHI(:,2,6);
 | 
			
		||||
  xsum = PHI(:,7,7);
 | 
			
		||||
  zsum = PHI(:,8,8);
 | 
			
		||||
  xdelta = PHI(:,9,9);
 | 
			
		||||
  zdelta = PHI(:,10,10);
 | 
			
		||||
  rot = PHI(:,11,11);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
* Gravimeter - Functions                                            :noexport:
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :comments none :mkdirp yes :eval no
 | 
			
		||||
:END:
 | 
			
		||||
** =align=
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :tangle gravimeter/align.m
 | 
			
		||||
:END:
 | 
			
		||||
<<sec:align>>
 | 
			
		||||
 | 
			
		||||
This Matlab function is accessible [[file:gravimeter/align.m][here]].
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  function [A] = align(V)
 | 
			
		||||
  %A!ALIGN(V) returns a constat matrix A which is the real alignment of the
 | 
			
		||||
  %INVERSE of the complex input matrix V
 | 
			
		||||
  %from Mohit slides
 | 
			
		||||
 | 
			
		||||
      if (nargin ==0) || (nargin > 1)
 | 
			
		||||
          disp('usage: mat_inv_real = align(mat)')
 | 
			
		||||
          return
 | 
			
		||||
      end
 | 
			
		||||
 | 
			
		||||
      D = pinv(real(V'*V));
 | 
			
		||||
      A = D*real(V'*diag(exp(1i * angle(diag(V*D*V.'))/2)));
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  end
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
** =pzmap_testCL=
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :tangle gravimeter/pzmap_testCL.m
 | 
			
		||||
:END:
 | 
			
		||||
<<sec:pzmap_testCL>>
 | 
			
		||||
 | 
			
		||||
This Matlab function is accessible [[file:gravimeter/pzmap_testCL.m][here]].
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  function [] = pzmap_testCL(system,H,gain,feedin,feedout)
 | 
			
		||||
  % evaluate and plot the pole-zero map for the closed loop system for
 | 
			
		||||
  % different values of the gain
 | 
			
		||||
 | 
			
		||||
      [~, n] = size(gain);
 | 
			
		||||
      [m1, n1, ~] = size(H);
 | 
			
		||||
      [~,n2] = size(feedin);
 | 
			
		||||
 | 
			
		||||
      figure
 | 
			
		||||
      for i = 1:n
 | 
			
		||||
          %     if n1 == n2
 | 
			
		||||
          system_CL = feedback(system,gain(i)*H,feedin,feedout);
 | 
			
		||||
 | 
			
		||||
          [P,Z] = pzmap(system_CL);
 | 
			
		||||
          plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
 | 
			
		||||
          xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
 | 
			
		||||
          %         clear P Z
 | 
			
		||||
          %     else
 | 
			
		||||
          %         system_CL = feedback(system,gain(i)*H(:,1+(i-1)*m1:m1+(i-1)*m1),feedin,feedout);
 | 
			
		||||
          %
 | 
			
		||||
          %         [P,Z] = pzmap(system_CL);
 | 
			
		||||
          %         plot(real(P(:)),imag(P(:)),'x',real(Z(:)),imag(Z(:)),'o');hold on
 | 
			
		||||
          %         xlabel('Real axis (s^{-1})');ylabel('Imaginary Axis (s^{-1})');
 | 
			
		||||
          %         clear P Z
 | 
			
		||||
          %     end
 | 
			
		||||
      end
 | 
			
		||||
      str = {strcat('gain = ' , num2str(gain(1)))};  % at the end of first loop, z being loop output
 | 
			
		||||
      str = [str , strcat('gain = ' , num2str(gain(1)))]; % after 2nd loop
 | 
			
		||||
      for i = 2:n
 | 
			
		||||
          str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
 | 
			
		||||
          str = [str , strcat('gain = ' , num2str(gain(i)))]; % after 2nd loop
 | 
			
		||||
      end
 | 
			
		||||
      legend(str{:})
 | 
			
		||||
  end
 | 
			
		||||
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
* Stewart Platform - Simscape Model
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :tangle stewart_platform/simscape_model.m
 | 
			
		||||
@@ -2393,258 +1866,3 @@ The system is identified again:
 | 
			
		||||
  ylim([1e-3, 1e2]);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
* Stewart Platform - Analytical Model                               :noexport:
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :tangle stewart_platform/analytical_model.m
 | 
			
		||||
:END:
 | 
			
		||||
** Matlab Init                                              :noexport:ignore:
 | 
			
		||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
 | 
			
		||||
  <<matlab-dir>>
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none :results silent :noweb yes
 | 
			
		||||
  <<matlab-init>>
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  %% Bode plot options
 | 
			
		||||
  opts = bodeoptions('cstprefs');
 | 
			
		||||
  opts.FreqUnits = 'Hz';
 | 
			
		||||
  opts.MagUnits = 'abs';
 | 
			
		||||
  opts.MagScale = 'log';
 | 
			
		||||
  opts.PhaseWrapping = 'on';
 | 
			
		||||
  opts.xlim = [1 1000];
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Characteristics
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  L  = 0.055; % Leg length [m]
 | 
			
		||||
  Zc = 0;     % ?
 | 
			
		||||
  m  = 0.2;   % Top platform mass [m]
 | 
			
		||||
  k  = 1e3;   % Total vertical stiffness [N/m]
 | 
			
		||||
  c  = 2*0.1*sqrt(k*m); % Damping ? [N/(m/s)]
 | 
			
		||||
 | 
			
		||||
  Rx = 0.04; % ?
 | 
			
		||||
  Rz = 0.04; % ?
 | 
			
		||||
  Ix = m*Rx^2; % ?
 | 
			
		||||
  Iy = m*Rx^2; % ?
 | 
			
		||||
  Iz = m*Rz^2; % ?
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Mass Matrix
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  M = m*[1   0 0  0         Zc        0;
 | 
			
		||||
         0   1 0 -Zc        0         0;
 | 
			
		||||
         0   0 1  0         0         0;
 | 
			
		||||
         0 -Zc 0  Rx^2+Zc^2 0         0;
 | 
			
		||||
         Zc  0 0  0         Rx^2+Zc^2 0;
 | 
			
		||||
         0   0 0  0         0         Rz^2];
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Jacobian Matrix
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  Bj=1/sqrt(6)*[ 1             1          -2          1         1        -2;
 | 
			
		||||
                 sqrt(3)      -sqrt(3)     0          sqrt(3)  -sqrt(3)   0;
 | 
			
		||||
                 sqrt(2)       sqrt(2)     sqrt(2)    sqrt(2)   sqrt(2)   sqrt(2);
 | 
			
		||||
                 0             0           L          L        -L         -L;
 | 
			
		||||
                 -L*2/sqrt(3) -L*2/sqrt(3) L/sqrt(3)  L/sqrt(3) L/sqrt(3)  L/sqrt(3);
 | 
			
		||||
                 L*sqrt(2)    -L*sqrt(2)   L*sqrt(2) -L*sqrt(2) L*sqrt(2) -L*sqrt(2)];
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Stifnness and Damping matrices
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  kv = k/3;     % Vertical Stiffness of the springs [N/m]
 | 
			
		||||
  kh = 0.5*k/3; % Horizontal Stiffness of the springs [N/m]
 | 
			
		||||
 | 
			
		||||
  K = diag([3*kh, 3*kh, 3*kv, 3*kv*Rx^2/2, 3*kv*Rx^2/2, 3*kh*Rx^2]); % Stiffness Matrix
 | 
			
		||||
  C = c*K/100000; % Damping Matrix
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** State Space System
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  A  = [ zeros(6) eye(6); ...
 | 
			
		||||
        -M\K     -M\C];
 | 
			
		||||
  Bw = [zeros(6); -eye(6)];
 | 
			
		||||
  Bu = [zeros(6); M\Bj];
 | 
			
		||||
 | 
			
		||||
  Co = [-M\K -M\C];
 | 
			
		||||
 
 | 
			
		||||
  D  = [zeros(6) M\Bj];
 | 
			
		||||
 
 | 
			
		||||
  ST = ss(A,[Bw Bu],Co,D);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
- OUT 1-6: 6 dof
 | 
			
		||||
- IN 1-6 : ground displacement in the directions of the legs
 | 
			
		||||
- IN 7-12: forces in the actuators.
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  ST.StateName = {'x';'y';'z';'theta_x';'theta_y';'theta_z';...
 | 
			
		||||
                  'dx';'dy';'dz';'dtheta_x';'dtheta_y';'dtheta_z'};
 | 
			
		||||
 | 
			
		||||
  ST.InputName = {'w1';'w2';'w3';'w4';'w5';'w6';...
 | 
			
		||||
                  'u1';'u2';'u3';'u4';'u5';'u6'};
 | 
			
		||||
 | 
			
		||||
  ST.OutputName = {'ax';'ay';'az';'atheta_x';'atheta_y';'atheta_z'};
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Transmissibility
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  TR=ST*[eye(6); zeros(6)];
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  figure
 | 
			
		||||
  subplot(231)
 | 
			
		||||
  bodemag(TR(1,1));
 | 
			
		||||
  subplot(232)
 | 
			
		||||
  bodemag(TR(2,2));
 | 
			
		||||
  subplot(233)
 | 
			
		||||
  bodemag(TR(3,3));
 | 
			
		||||
  subplot(234)
 | 
			
		||||
  bodemag(TR(4,4));
 | 
			
		||||
  subplot(235)
 | 
			
		||||
  bodemag(TR(5,5));
 | 
			
		||||
  subplot(236)
 | 
			
		||||
  bodemag(TR(6,6));
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :tangle no :exports results :results file replace
 | 
			
		||||
  exportFig('figs/stewart_platform_analytical_transmissibility.pdf', 'width', 'full', 'height', 'full');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+name: fig:stewart_platform_analytical_transmissibility
 | 
			
		||||
#+caption: Transmissibility
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
[[file:figs/stewart_platform_analytical_transmissibility.png]]
 | 
			
		||||
 | 
			
		||||
** Real approximation of $G(j\omega)$ at decoupling frequency
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  sys1 = ST*[zeros(6); eye(6)]; % take only the forces inputs
 | 
			
		||||
 | 
			
		||||
  dec_fr = 20;
 | 
			
		||||
  H1 = evalfr(sys1,j*2*pi*dec_fr);
 | 
			
		||||
  H2 = H1;
 | 
			
		||||
  D = pinv(real(H2'*H2));
 | 
			
		||||
  H1 = inv(D*real(H2'*diag(exp(j*angle(diag(H2*D*H2.'))/2)))) ;
 | 
			
		||||
  [U,S,V] = svd(H1);
 | 
			
		||||
 | 
			
		||||
  wf = logspace(-1,2,1000);
 | 
			
		||||
  for i  = 1:length(wf)
 | 
			
		||||
      H = abs(evalfr(sys1,j*2*pi*wf(i)));
 | 
			
		||||
      H_dec = abs(evalfr(U'*sys1*V,j*2*pi*wf(i)));
 | 
			
		||||
      for j = 1:size(H,2)
 | 
			
		||||
          g_r1(i,j) =  (sum(H(j,:))-H(j,j))/H(j,j);
 | 
			
		||||
          g_r2(i,j) =  (sum(H_dec(j,:))-H_dec(j,j))/H_dec(j,j);
 | 
			
		||||
          %     keyboard
 | 
			
		||||
      end
 | 
			
		||||
      g_lim(i) = 0.5;
 | 
			
		||||
  end
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Coupled and Decoupled Plant "Gershgorin Radii"
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  figure;
 | 
			
		||||
  title('Coupled plant')
 | 
			
		||||
  loglog(wf,g_r1(:,1),wf,g_r1(:,2),wf,g_r1(:,3),wf,g_r1(:,4),wf,g_r1(:,5),wf,g_r1(:,6),wf,g_lim,'--');
 | 
			
		||||
  legend('$a_x$','$a_y$','$a_z$','$\theta_x$','$\theta_y$','$\theta_z$','Limit');
 | 
			
		||||
  xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :tangle no :exports results :results file replace
 | 
			
		||||
  exportFig('figs/gershorin_raddii_coupled_analytical.pdf', 'width', 'full', 'height', 'full');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+name: fig:gershorin_raddii_coupled_analytical
 | 
			
		||||
#+caption: Gershorin Raddi for the coupled plant
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
[[file:figs/gershorin_raddii_coupled_analytical.png]]
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  figure;
 | 
			
		||||
  title('Decoupled plant (10 Hz)')
 | 
			
		||||
  loglog(wf,g_r2(:,1),wf,g_r2(:,2),wf,g_r2(:,3),wf,g_r2(:,4),wf,g_r2(:,5),wf,g_r2(:,6),wf,g_lim,'--');
 | 
			
		||||
  legend('$S_1$','$S_2$','$S_3$','$S_4$','$S_5$','$S_6$','Limit');
 | 
			
		||||
  xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :tangle no :exports results :results file replace
 | 
			
		||||
  exportFig('figs/gershorin_raddii_decoupled_analytical.pdf', 'width', 'full', 'height', 'full');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+name: fig:gershorin_raddii_decoupled_analytical
 | 
			
		||||
#+caption: Gershorin Raddi for the decoupled plant
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
[[file:figs/gershorin_raddii_decoupled_analytical.png]]
 | 
			
		||||
 | 
			
		||||
** Decoupled Plant
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  figure;
 | 
			
		||||
  bodemag(U'*sys1*V,opts)
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :tangle no :exports results :results file replace
 | 
			
		||||
  exportFig('figs/stewart_platform_analytical_decoupled_plant.pdf', 'width', 'full', 'height', 'full');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+name: fig:stewart_platform_analytical_decoupled_plant
 | 
			
		||||
#+caption: Decoupled Plant
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
[[file:figs/stewart_platform_analytical_decoupled_plant.png]]
 | 
			
		||||
 | 
			
		||||
** Controller
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  fc = 2*pi*0.1; % Crossover Frequency [rad/s]
 | 
			
		||||
  c_gain = 50; %
 | 
			
		||||
 | 
			
		||||
  cont = eye(6)*c_gain/(s+fc);
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Closed Loop System
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  FEEDIN  = [7:12]; % Input of controller
 | 
			
		||||
  FEEDOUT = [1:6]; % Output of controller
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
Centralized Control
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  STcen = feedback(ST, inv(Bj)*cont, FEEDIN, FEEDOUT);
 | 
			
		||||
  TRcen = STcen*[eye(6); zeros(6)];
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
SVD Control
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  STsvd = feedback(ST, pinv(V')*cont*pinv(U), FEEDIN, FEEDOUT);
 | 
			
		||||
  TRsvd = STsvd*[eye(6); zeros(6)];
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Results
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  figure
 | 
			
		||||
  subplot(231)
 | 
			
		||||
  bodemag(TR(1,1),TRcen(1,1),TRsvd(1,1),opts)
 | 
			
		||||
  legend('OL','Centralized','SVD')
 | 
			
		||||
  subplot(232)
 | 
			
		||||
  bodemag(TR(2,2),TRcen(2,2),TRsvd(2,2),opts)
 | 
			
		||||
  legend('OL','Centralized','SVD')
 | 
			
		||||
  subplot(233)
 | 
			
		||||
  bodemag(TR(3,3),TRcen(3,3),TRsvd(3,3),opts)
 | 
			
		||||
  legend('OL','Centralized','SVD')
 | 
			
		||||
  subplot(234)
 | 
			
		||||
  bodemag(TR(4,4),TRcen(4,4),TRsvd(4,4),opts)
 | 
			
		||||
  legend('OL','Centralized','SVD')
 | 
			
		||||
  subplot(235)
 | 
			
		||||
  bodemag(TR(5,5),TRcen(5,5),TRsvd(5,5),opts)
 | 
			
		||||
  legend('OL','Centralized','SVD')
 | 
			
		||||
  subplot(236)
 | 
			
		||||
  bodemag(TR(6,6),TRcen(6,6),TRsvd(6,6),opts)
 | 
			
		||||
  legend('OL','Centralized','SVD')
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :tangle no :exports results :results file replace
 | 
			
		||||
  exportFig('figs/stewart_platform_analytical_svd_cen_comp.pdf', 'width', 'full', 'height', 'full');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+name: fig:stewart_platform_analytical_svd_cen_comp
 | 
			
		||||
#+caption: Comparison of the obtained transmissibility for the centralized control and the SVD control
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
[[file:figs/stewart_platform_analytical_svd_cen_comp.png]]
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user