2020-10-13 15:01:42 +02:00
|
|
|
%% Clear Workspace and Close figures
|
|
|
|
clear; close all; clc;
|
|
|
|
|
|
|
|
%% Intialize Laplace variable
|
|
|
|
s = zpk('s');
|
|
|
|
|
|
|
|
addpath('STEP');
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% Simscape Model - Parameters
|
|
|
|
% <<sec:stewart_simscape>>
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
open('drone_platform.slx');
|
|
|
|
|
|
|
|
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% Definition of spring parameters:
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
kx = 0.5*1e3/3; % [N/m]
|
|
|
|
ky = 0.5*1e3/3;
|
|
|
|
kz = 1e3/3;
|
|
|
|
|
|
|
|
cx = 0.025; % [Nm/rad]
|
|
|
|
cy = 0.025;
|
|
|
|
cz = 0.025;
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
|
|
|
|
|
|
|
|
% Gravity:
|
|
|
|
|
2020-10-22 18:04:39 +02:00
|
|
|
g = 0;
|
|
|
|
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% We load the Jacobian (previously computed from the geometry):
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
|
|
|
|
|
|
|
|
% We initialize other parameters:
|
|
|
|
|
|
|
|
U = eye(6);
|
|
|
|
V = eye(6);
|
|
|
|
Kc = tf(zeros(6));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% #+name: fig:stewart_platform_plant
|
|
|
|
% #+caption: Considered plant $\bm{G} = \begin{bmatrix}G_d\\G_u\end{bmatrix}$. $D_w$ is the translation/rotation of the support, $\tau$ the actuator forces, $a$ the acceleration/angular acceleration of the top platform
|
|
|
|
% #+RESULTS:
|
|
|
|
% [[file:figs/stewart_platform_plant.png]]
|
|
|
|
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
%% Name of the Simulink File
|
|
|
|
mdl = 'drone_platform';
|
|
|
|
|
|
|
|
%% Input/Output definition
|
|
|
|
clear io; io_i = 1;
|
2020-11-09 14:37:04 +01:00
|
|
|
io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1; % Ground Motion
|
|
|
|
io(io_i) = linio([mdl, '/V-T'], 1, 'openinput'); io_i = io_i + 1; % Actuator Forces
|
|
|
|
io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Top platform acceleration
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
G = linearize(mdl, io);
|
|
|
|
G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
|
|
|
|
'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
|
|
|
G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% Plant
|
|
|
|
Gu = G(:, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'});
|
|
|
|
% Disturbance dynamics
|
|
|
|
Gd = G(:, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'});
|
|
|
|
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
|
|
|
|
% There are 24 states (6dof for the bottom platform + 6dof for the top platform).
|
|
|
|
|
|
|
|
size(G)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% #+RESULTS:
|
|
|
|
% : State-space model with 6 outputs, 12 inputs, and 24 states.
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% The elements of the transfer matrix $\bm{G}$ corresponding to the transfer function from actuator forces $\tau$ to the measured acceleration $a$ are shown in Figure [[fig:stewart_platform_coupled_plant]].
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% One can easily see that the system is strongly coupled.
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
|
|
|
|
freqs = logspace(-1, 2, 1000);
|
|
|
|
|
|
|
|
figure;
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% Magnitude
|
2020-10-13 15:01:42 +02:00
|
|
|
hold on;
|
2020-11-09 14:37:04 +01:00
|
|
|
for i_in = 1:6
|
|
|
|
for i_out = [1:i_in-1, i_in+1:6]
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gu(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
|
|
|
'HandleVisibility', 'off');
|
|
|
|
end
|
2020-10-13 15:01:42 +02:00
|
|
|
end
|
2020-11-09 14:37:04 +01:00
|
|
|
plot(freqs, abs(squeeze(freqresp(Gu(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
|
|
|
'DisplayName', '$G_u(i,j)\ i \neq j$');
|
|
|
|
set(gca,'ColorOrderIndex',1)
|
|
|
|
for i_in_out = 1:6
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gu(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_u(%d,%d)$', i_in_out, i_in_out));
|
2020-10-13 15:01:42 +02:00
|
|
|
end
|
|
|
|
hold off;
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
2020-11-09 14:37:04 +01:00
|
|
|
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
|
|
|
ylim([1e-2, 1e5]);
|
|
|
|
legend('location', 'northwest');
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% #+name: fig:plant_decouple_jacobian
|
|
|
|
% #+caption: Decoupled plant $\bm{G}_x$ using the Jacobian matrix $J$
|
2020-10-13 15:01:42 +02:00
|
|
|
% #+RESULTS:
|
2020-11-09 14:37:04 +01:00
|
|
|
% [[file:figs/plant_decouple_jacobian.png]]
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% We define a new plant:
|
|
|
|
% \[ G_x(s) = G(s) J^{-T} \]
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% $G_x(s)$ correspond to the transfer function from forces and torques applied to the top platform to the absolute acceleration of the top platform.
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
Gx = Gu*inv(J');
|
|
|
|
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
% Real Approximation of $G$ at the decoupling frequency
|
2020-11-09 14:37:04 +01:00
|
|
|
% <<sec:stewart_real_approx>>
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_u(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
wc = 2*pi*30; % Decoupling frequency [rad/s]
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
H1 = evalfr(Gu, j*wc);
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% The real approximation is computed as follows:
|
|
|
|
|
|
|
|
D = pinv(real(H1'*H1));
|
|
|
|
H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% SVD Decoupling
|
|
|
|
% <<sec:stewart_svd_decoupling>>
|
|
|
|
|
2020-10-13 15:01:42 +02:00
|
|
|
% First, the Singular Value Decomposition of $H_1$ is performed:
|
|
|
|
% \[ H_1 = U \Sigma V^H \]
|
|
|
|
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
[U,~,V] = svd(H1);
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% #+name: fig:plant_decouple_svd
|
|
|
|
% #+caption: Decoupled plant $\bm{G}_{SVD}$ using the Singular Value Decomposition
|
|
|
|
% #+RESULTS:
|
|
|
|
% [[file:figs/plant_decouple_svd.png]]
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% The decoupled plant is then:
|
|
|
|
% \[ G_{SVD}(s) = U^{-1} G_u(s) V^{-H} \]
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
Gsvd = inv(U)*Gu*inv(V');
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% Verification of the decoupling using the "Gershgorin Radii"
|
|
|
|
% <<sec:comp_decoupling>>
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% The "Gershgorin Radii" is computed for the coupled plant $G(s)$, for the "Jacobian plant" $G_x(s)$ and the "SVD Decoupled Plant" $G_{SVD}(s)$:
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% The "Gershgorin Radii" of a matrix $S$ is defined by:
|
|
|
|
% \[ \zeta_i(j\omega) = \frac{\sum\limits_{j\neq i}|S_{ij}(j\omega)|}{|S_{ii}(j\omega)|} \]
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% This is computed over the following frequencies.
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
freqs = logspace(-2, 2, 1000); % [Hz]
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% Gershgorin Radii for the coupled plant:
|
|
|
|
Gr_coupled = zeros(length(freqs), size(Gu,2));
|
|
|
|
H = abs(squeeze(freqresp(Gu, freqs, 'Hz')));
|
|
|
|
for out_i = 1:size(Gu,2)
|
|
|
|
Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
|
|
|
|
end
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
% Gershgorin Radii for the decoupled plant using SVD:
|
2020-11-09 14:37:04 +01:00
|
|
|
Gr_decoupled = zeros(length(freqs), size(Gsvd,2));
|
|
|
|
H = abs(squeeze(freqresp(Gsvd, freqs, 'Hz')));
|
|
|
|
for out_i = 1:size(Gsvd,2)
|
2020-10-13 15:01:42 +02:00
|
|
|
Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
|
|
|
|
end
|
|
|
|
|
|
|
|
% Gershgorin Radii for the decoupled plant using the Jacobian:
|
2020-11-09 14:37:04 +01:00
|
|
|
Gr_jacobian = zeros(length(freqs), size(Gx,2));
|
|
|
|
H = abs(squeeze(freqresp(Gx, freqs, 'Hz')));
|
|
|
|
for out_i = 1:size(Gx,2)
|
2020-10-13 15:01:42 +02:00
|
|
|
Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
|
|
|
|
end
|
|
|
|
|
|
|
|
figure;
|
|
|
|
hold on;
|
|
|
|
plot(freqs, Gr_coupled(:,1), 'DisplayName', 'Coupled');
|
|
|
|
plot(freqs, Gr_decoupled(:,1), 'DisplayName', 'SVD');
|
|
|
|
plot(freqs, Gr_jacobian(:,1), 'DisplayName', 'Jacobian');
|
|
|
|
for in_i = 2:6
|
|
|
|
set(gca,'ColorOrderIndex',1)
|
|
|
|
plot(freqs, Gr_coupled(:,in_i), 'HandleVisibility', 'off');
|
|
|
|
set(gca,'ColorOrderIndex',2)
|
|
|
|
plot(freqs, Gr_decoupled(:,in_i), 'HandleVisibility', 'off');
|
|
|
|
set(gca,'ColorOrderIndex',3)
|
|
|
|
plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off');
|
|
|
|
end
|
|
|
|
plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit')
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
|
|
hold off;
|
|
|
|
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
|
2020-11-09 14:37:04 +01:00
|
|
|
legend('location', 'northwest');
|
|
|
|
ylim([1e-3, 1e3]);
|
|
|
|
|
|
|
|
% Obtained Decoupled Plants
|
|
|
|
% <<sec:stewart_decoupled_plant>>
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown in Figure [[fig:simscape_model_decoupled_plant_svd]].
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
|
|
|
|
freqs = logspace(-1, 2, 1000);
|
|
|
|
|
|
|
|
figure;
|
2020-11-09 14:37:04 +01:00
|
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
|
|
|
|
% Magnitude
|
|
|
|
ax1 = nexttile([2, 1]);
|
2020-10-13 15:01:42 +02:00
|
|
|
hold on;
|
2020-11-09 14:37:04 +01:00
|
|
|
for i_in = 1:6
|
|
|
|
for i_out = [1:i_in-1, i_in+1:6]
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
|
|
|
'HandleVisibility', 'off');
|
|
|
|
end
|
2020-10-13 15:01:42 +02:00
|
|
|
end
|
2020-11-09 14:37:04 +01:00
|
|
|
plot(freqs, abs(squeeze(freqresp(Gsvd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
|
|
|
|
'DisplayName', '$G_{SVD}(i,j),\ i \neq j$');
|
|
|
|
set(gca,'ColorOrderIndex',1)
|
|
|
|
for ch_i = 1:6
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))), ...
|
|
|
|
'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i));
|
2020-10-13 15:01:42 +02:00
|
|
|
end
|
|
|
|
hold off;
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
2020-11-09 14:37:04 +01:00
|
|
|
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
|
|
|
|
legend('location', 'northwest');
|
|
|
|
ylim([1e-1, 1e5])
|
|
|
|
|
|
|
|
% Phase
|
|
|
|
ax2 = nexttile;
|
|
|
|
hold on;
|
|
|
|
for ch_i = 1:6
|
|
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))));
|
|
|
|
end
|
|
|
|
hold off;
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
|
|
ylim([-180, 180]);
|
|
|
|
yticks([-180:90:360]);
|
|
|
|
|
|
|
|
linkaxes([ax1,ax2],'x');
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% #+name: fig:simscape_model_decoupled_plant_svd
|
|
|
|
% #+caption: Decoupled Plant using SVD
|
|
|
|
% #+RESULTS:
|
|
|
|
% [[file:figs/simscape_model_decoupled_plant_svd.png]]
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant $G_x(s)$ using the Jacobian are shown in Figure [[fig:simscape_model_decoupled_plant_jacobian]].
|
|
|
|
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
freqs = logspace(-1, 2, 1000);
|
|
|
|
|
|
|
|
figure;
|
2020-11-09 14:37:04 +01:00
|
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
|
|
|
|
% Magnitude
|
|
|
|
ax1 = nexttile([2, 1]);
|
2020-10-13 15:01:42 +02:00
|
|
|
hold on;
|
2020-11-09 14:37:04 +01:00
|
|
|
for i_in = 1:6
|
|
|
|
for i_out = [1:i_in-1, i_in+1:6]
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gx(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
|
|
|
'HandleVisibility', 'off');
|
|
|
|
end
|
2020-10-13 15:01:42 +02:00
|
|
|
end
|
2020-11-09 14:37:04 +01:00
|
|
|
plot(freqs, abs(squeeze(freqresp(Gx(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
|
|
|
|
'DisplayName', '$G_x(i,j),\ i \neq j$');
|
|
|
|
set(gca,'ColorOrderIndex',1)
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))), 'DisplayName', '$G_x(1,1) = A_x/F_x$');
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))), 'DisplayName', '$G_x(2,2) = A_y/F_y$');
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = A_z/F_z$');
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))), 'DisplayName', '$G_x(4,4) = A_{R_x}/M_x$');
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))), 'DisplayName', '$G_x(5,5) = A_{R_y}/M_y$');
|
|
|
|
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))), 'DisplayName', '$G_x(6,6) = A_{R_z}/M_z$');
|
2020-10-13 15:01:42 +02:00
|
|
|
hold off;
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
2020-11-09 14:37:04 +01:00
|
|
|
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
|
|
|
|
legend('location', 'northwest');
|
|
|
|
ylim([1e-2, 2e6])
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% Phase
|
|
|
|
ax2 = nexttile;
|
|
|
|
hold on;
|
|
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))));
|
|
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))));
|
|
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))));
|
|
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))));
|
|
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))));
|
|
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))));
|
|
|
|
hold off;
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
|
|
ylim([0, 180]);
|
|
|
|
yticks([0:45:360]);
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
linkaxes([ax1,ax2],'x');
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% #+name: fig:svd_control
|
|
|
|
% #+caption: Control Diagram for the SVD control
|
|
|
|
% #+RESULTS:
|
|
|
|
% [[file:figs/svd_control.png]]
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% We choose the controller to be a low pass filter:
|
|
|
|
% \[ K_c(s) = \frac{G_0}{1 + \frac{s}{\omega_0}} \]
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
% $G_0$ is tuned such that the crossover frequency corresponding to the diagonal terms of the loop gain is equal to $\omega_c$
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
wc = 2*pi*80; % Crossover Frequency [rad/s]
|
|
|
|
w0 = 2*pi*0.1; % Controller Pole [rad/s]
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
K_cen = diag(1./diag(abs(evalfr(Gx, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
|
|
|
|
L_cen = K_cen*Gx;
|
|
|
|
G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]);
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
K_svd = diag(1./diag(abs(evalfr(Gsvd, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
|
|
|
|
L_svd = K_svd*Gsvd;
|
|
|
|
G_svd = feedback(G, inv(V')*K_svd*inv(U), [7:12], [1:6]);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% The obtained diagonal elements of the loop gains are shown in Figure [[fig:stewart_comp_loop_gain_diagonal]].
|
|
|
|
|
|
|
|
|
|
|
|
freqs = logspace(-1, 2, 1000);
|
|
|
|
|
|
|
|
figure;
|
|
|
|
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
|
|
|
|
|
|
|
% Magnitude
|
|
|
|
ax1 = nexttile([2, 1]);
|
|
|
|
hold on;
|
|
|
|
plot(freqs, abs(squeeze(freqresp(L_svd(1, 1), freqs, 'Hz'))), 'DisplayName', '$L_{SVD}(i,i)$');
|
|
|
|
for i_in_out = 2:6
|
|
|
|
set(gca,'ColorOrderIndex',1)
|
|
|
|
plot(freqs, abs(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
|
|
|
|
end
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
set(gca,'ColorOrderIndex',2)
|
|
|
|
plot(freqs, abs(squeeze(freqresp(L_cen(1, 1), freqs, 'Hz'))), ...
|
|
|
|
'DisplayName', '$L_{J}(i,i)$');
|
|
|
|
for i_in_out = 2:6
|
|
|
|
set(gca,'ColorOrderIndex',2)
|
|
|
|
plot(freqs, abs(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
|
|
|
|
end
|
|
|
|
hold off;
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
|
|
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
|
|
|
|
legend('location', 'northwest');
|
|
|
|
ylim([5e-2, 2e3])
|
|
|
|
|
|
|
|
% Phase
|
|
|
|
ax2 = nexttile;
|
|
|
|
hold on;
|
|
|
|
for i_in_out = 1:6
|
|
|
|
set(gca,'ColorOrderIndex',1)
|
|
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))));
|
|
|
|
end
|
|
|
|
set(gca,'ColorOrderIndex',2)
|
|
|
|
for i_in_out = 1:6
|
|
|
|
set(gca,'ColorOrderIndex',2)
|
|
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))));
|
|
|
|
end
|
|
|
|
hold off;
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
|
|
ylim([-180, 180]);
|
|
|
|
yticks([-180:90:360]);
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
linkaxes([ax1,ax2],'x');
|
|
|
|
|
|
|
|
% Closed-Loop system Performances
|
|
|
|
% <<sec:stewart_closed_loop_results>>
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
% Let's first verify the stability of the closed-loop systems:
|
|
|
|
|
|
|
|
isstable(G_cen)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% #+RESULTS:
|
|
|
|
% : ans =
|
|
|
|
% : logical
|
|
|
|
% : 1
|
|
|
|
|
|
|
|
|
|
|
|
isstable(G_svd)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% #+RESULTS:
|
|
|
|
% : ans =
|
|
|
|
% : logical
|
2020-11-09 14:37:04 +01:00
|
|
|
% : 1
|
2020-10-13 15:01:42 +02:00
|
|
|
|
|
|
|
% The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:stewart_platform_simscape_cl_transmissibility]].
|
|
|
|
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
freqs = logspace(-2, 2, 1000);
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
figure;
|
|
|
|
tiledlayout(2, 2, 'TileSpacing', 'None', 'Padding', 'None');
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
ax1 = nexttile;
|
2020-10-13 15:01:42 +02:00
|
|
|
hold on;
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
|
2020-11-09 14:37:04 +01:00
|
|
|
plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
|
|
|
|
set(gca,'ColorOrderIndex',1)
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
2020-10-13 15:01:42 +02:00
|
|
|
hold off;
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
2020-11-09 14:37:04 +01:00
|
|
|
ylabel('$D_x/D_{w,x}$, $D_y/D_{w, y}$'); set(gca, 'XTickLabel',[]);
|
2020-10-13 15:01:42 +02:00
|
|
|
legend('location', 'southwest');
|
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
ax2 = nexttile;
|
2020-10-13 15:01:42 +02:00
|
|
|
hold on;
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Az', 'Dwz')/s^2, freqs, 'Hz'))));
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz'))));
|
2020-11-09 14:37:04 +01:00
|
|
|
plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz'))), '--');
|
2020-10-13 15:01:42 +02:00
|
|
|
hold off;
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
2020-11-09 14:37:04 +01:00
|
|
|
ylabel('$D_z/D_{w,z}$'); set(gca, 'XTickLabel',[]);
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
ax3 = nexttile;
|
2020-10-13 15:01:42 +02:00
|
|
|
hold on;
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Arx', 'Rwx')/s^2, freqs, 'Hz'))));
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz'))));
|
2020-11-09 14:37:04 +01:00
|
|
|
plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz'))), '--');
|
|
|
|
set(gca,'ColorOrderIndex',1)
|
2020-10-13 15:01:42 +02:00
|
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Ary', 'Rwy')/s^2, freqs, 'Hz'))));
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
|
2020-11-09 14:37:04 +01:00
|
|
|
plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz'))), '--');
|
2020-10-13 15:01:42 +02:00
|
|
|
hold off;
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
2020-11-09 14:37:04 +01:00
|
|
|
ylabel('$R_x/R_{w,x}$, $R_y/R_{w,y}$'); xlabel('Frequency [Hz]');
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
ax4 = nexttile;
|
2020-10-13 15:01:42 +02:00
|
|
|
hold on;
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Arz', 'Rwz')/s^2, freqs, 'Hz'))));
|
|
|
|
plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz'))));
|
2020-11-09 14:37:04 +01:00
|
|
|
plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz'))), '--');
|
2020-10-13 15:01:42 +02:00
|
|
|
hold off;
|
|
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
2020-11-09 14:37:04 +01:00
|
|
|
ylabel('$R_z/R_{w,z}$'); xlabel('Frequency [Hz]');
|
2020-10-13 15:01:42 +02:00
|
|
|
|
2020-11-09 14:37:04 +01:00
|
|
|
linkaxes([ax1,ax2,ax3,ax4],'xy');
|
2020-10-13 15:01:42 +02:00
|
|
|
xlim([freqs(1), freqs(end)]);
|
2020-11-09 14:37:04 +01:00
|
|
|
ylim([1e-3, 1e2]);
|