6.3 KiB
6.3 KiB
Kinematic Study of the Stewart Platform
Needed Actuator Stroke
The goal is to determine the needed stroke of the actuators to obtain wanted translations and rotations.
Stewart architecture definition
We use a cubic architecture.
opts = struct(...
'H_tot', 90, ... % Total height of the Hexapod [mm]
'L', 200/sqrt(3), ... % Size of the Cube [mm]
'H', 60, ... % Height between base joints and platform joints [mm]
'H0', 200/2-60/2 ... % Height between the corner of the cube and the plane containing the base joints [mm]
);
stewart = initializeCubicConfiguration(opts);
opts = struct(...
'Jd_pos', [0, 0, 100], ... % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]
'Jf_pos', [0, 0, -50] ... % Position of the Jacobian for force location from the top of the mobile platform [mm]
);
stewart = computeGeometricalProperties(stewart, opts);
opts = struct(...
'stroke', 50e-6 ... % Maximum stroke of each actuator [m]
);
stewart = initializeMechanicalElements(stewart, opts);
save('./mat/stewart.mat', 'stewart');
Wanted translations and rotations
We define wanted translations and rotations
Tx_max = 15e-6; % Translation [m]
Ty_max = 15e-6; % Translation [m]
Tz_max = 15e-6; % Translation [m]
Rx_max = 30e-6; % Rotation [rad]
Ry_max = 30e-6; % Rotation [rad]
Needed stroke for "pure" rotations or translations
First, we estimate the needed actuator stroke for "pure" rotations and translation.
LTx = stewart.Jd*[Tx_max 0 0 0 0 0]';
LTy = stewart.Jd*[0 Ty_max 0 0 0 0]';
LTz = stewart.Jd*[0 0 Tz_max 0 0 0]';
LRx = stewart.Jd*[0 0 0 Rx_max 0 0]';
LRy = stewart.Jd*[0 0 0 0 Ry_max 0]';
From -1.2e-05[m] to 1.1e-05[m]: Total stroke = 22.9[um]
Needed stroke for combined translations and rotations
Now, we combine translations and rotations, and we try to find the worst case (that we suppose to happen at the border).
Lmax = 0;
Lmin = 0;
pos = [0, 0, 0, 0, 0];
for Tx = [-Tx_max,Tx_max]
for Ty = [-Ty_max,Ty_max]
for Tz = [-Tz_max,Tz_max]
for Rx = [-Rx_max,Rx_max]
for Ry = [-Ry_max,Ry_max]
lmax = max(stewart.Jd*[Tx Ty Tz Rx Ry 0]');
lmin = min(stewart.Jd*[Tx Ty Tz Rx Ry 0]');
if lmax > Lmax
Lmax = lmax;
pos = [Tx Ty Tz Rx Ry];
end
if lmin < Lmin
Lmin = lmin;
end
end
end
end
end
end
We obtain a needed stroke shown below (almost two times the needed stroke for "pure" rotations and translations).
From -3.1e-05[m] to 3.1e-05[m]: Total stroke = 61.5[um]
Maximum Stroke
From a specified actuator stroke, we try to estimate the available maneuverability of the Stewart platform.
[X, Y, Z] = getMaxPositions(stewart);
figure;
plot3(X, Y, Z, 'k-')
Functions
getMaxPositions
function [X, Y, Z] = getMaxPositions(stewart)
Leg = stewart.Leg;
J = stewart.Jd;
theta = linspace(0, 2*pi, 100);
phi = linspace(-pi/2 , pi/2, 100);
dmax = zeros(length(theta), length(phi));
for i = 1:length(theta)
for j = 1:length(phi)
L = J*[cos(phi(j))*cos(theta(i)) cos(phi(j))*sin(theta(i)) sin(phi(j)) 0 0 0]';
dmax(i, j) = Leg.stroke/max(abs(L));
end
end
X = dmax.*cos(repmat(phi,length(theta),1)).*cos(repmat(theta,length(phi),1))';
Y = dmax.*cos(repmat(phi,length(theta),1)).*sin(repmat(theta,length(phi),1))';
Z = dmax.*sin(repmat(phi,length(theta),1));
end
getMaxPureDisplacement
function [max_disp] = getMaxPureDisplacement(Leg, J)
max_disp = zeros(6, 1);
max_disp(1) = Leg.stroke/max(abs(J*[1 0 0 0 0 0]'));
max_disp(2) = Leg.stroke/max(abs(J*[0 1 0 0 0 0]'));
max_disp(3) = Leg.stroke/max(abs(J*[0 0 1 0 0 0]'));
max_disp(4) = Leg.stroke/max(abs(J*[0 0 0 1 0 0]'));
max_disp(5) = Leg.stroke/max(abs(J*[0 0 0 0 1 0]'));
max_disp(6) = Leg.stroke/max(abs(J*[0 0 0 0 0 1]'));
end