48 KiB
Stewart Platform - Vibration Isolation
- Introduction
- HAC-LAC (Cascade) Control - Integral Control
- MIMO Analysis
- Diagonal Control based on the damped plant
- Time Domain Simulation
- Functions
Introduction ignore
HAC-LAC (Cascade) Control - Integral Control
Introduction
In this section, we wish to study the use of the High Authority Control - Low Authority Control (HAC-LAC) architecture on the Stewart platform.
The control architectures are shown in Figures fig:control_arch_hac_iff and fig:control_arch_hac_dvf.
First, the LAC loop is closed (the LAC control is described here), and then the HAC controller is designed and the outer loop is closed.
\begin{tikzpicture}
% Blocs
\node[block={2.0cm}{2.0cm}] (P) {};
\node[above] at (P.north) {Plant};
\node[block, below=0.7 of P] (Kiff) {$\bm{K}_\text{IFF}$};
\node[block, below=0.7 of Kiff] (Khac) {$\bm{K}_\text{HAC}$};
% Add
\node[addb, left=1 of P] (add) {};
\node[block, left=1 of add] (J) {$\bm{J}^{-T}$};
% Input and outputs coordinates
\coordinate[] (outputhac) at ($(P.south east)!0.75!(P.north east)$);
\coordinate[] (outputiff) at ($(P.south east)!0.25!(P.north east)$);
\draw[->] (outputiff) node[above right]{$\bm{\tau}_m$} -- ++(0.8, 0) |- (Kiff.east);
\draw[->] (outputhac) node[above right]{$\bm{\mathcal{X}}$} -- ++(1.6, 0) |- (Khac.east);
\draw[->] (Kiff.west) -| (add.south);
\draw[->] (J.east) -- (add.west);
\draw[<-] (J.west) node[above left]{$\bm{\mathcal{F}}$} -- ++(-0.8, 0) |- (Khac.west);
\draw[->] (add.east) -- (P.west) node[above left]{$\bm{\tau}$};
\end{tikzpicture}
\begin{tikzpicture}
% Blocs
\node[block={2.0cm}{2.0cm}] (P) {};
\node[above] at (P.north) {Plant};
\node[block, below=0.7 of P] (Kdvf) {$\bm{K}_\text{DVF}$};
\node[block, below=0.7 of Kdvf] (Khac) {$\bm{K}_\text{HAC}$};
% Add
\node[addb, left=1 of P] (add) {};
\node[block, left=1 of add] (J) {$\bm{J}^{-T}$};
% Input and outputs coordinates
\coordinate[] (outputhac) at ($(P.south east)!0.75!(P.north east)$);
\coordinate[] (outputdvf) at ($(P.south east)!0.25!(P.north east)$);
\draw[->] (outputdvf) node[above right]{$\delta \bm{\mathcal{L}}_m$} -- ++(0.8, 0) |- (Kdvf.east);
\draw[->] (outputhac) node[above right]{$\bm{\mathcal{X}}$} -- ++(1.6, 0) |- (Khac.east);
\draw[->] (Kdvf.west) -| (add.south);
\draw[->] (J.east) -- (add.west);
\draw[<-] (J.west) node[above left]{$\bm{\mathcal{F}}$} -- ++(-0.8, 0) |- (Khac.west);
\draw[->] (add.east) -- (P.west) node[above left]{$\bm{\tau}$};
\end{tikzpicture}
Initialization
We first initialize the Stewart platform.
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, 'type', 'none');
The rotation point of the ground is located at the origin of frame $\{A\}$.
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
payload = initializePayload('type', 'none');
Identification
Introduction ignore
We identify the transfer function from the actuator forces $\bm{\tau}$ to the absolute displacement of the mobile platform $\bm{\mathcal{X}}$ in three different cases:
- Open Loop plant
- Already damped plant using Integral Force Feedback
- Already damped plant using Direct velocity feedback
HAC - Without LAC
controller = initializeController('type', 'open-loop');
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad]
%% Run the linearization
G_ol = linearize(mdl, io);
G_ol.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G_ol.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
HAC - IFF
controller = initializeController('type', 'iff');
K_iff = -(1e4/s)*eye(6);
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad]
%% Run the linearization
G_iff = linearize(mdl, io);
G_iff.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G_iff.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
HAC - DVF
controller = initializeController('type', 'dvf');
K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6);
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad]
%% Run the linearization
G_dvf = linearize(mdl, io);
G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
Control Architecture
We use the Jacobian to express the actuator forces in the cartesian frame, and thus we obtain the transfer functions from $\bm{\mathcal{F}}$ to $\bm{\mathcal{X}}$.
Gc_ol = minreal(G_ol)/stewart.kinematics.J';
Gc_ol.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Gc_iff = minreal(G_iff)/stewart.kinematics.J';
Gc_iff.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Gc_dvf = minreal(G_dvf)/stewart.kinematics.J';
Gc_dvf.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
We then design a controller based on the transfer functions from $\bm{\mathcal{F}}$ to $\bm{\mathcal{X}}$, finally, we will pre-multiply the controller by $\bm{J}^{-T}$.
6x6 Plant Comparison
<<plt-matlab>>
HAC - DVF
Plant
<<plt-matlab>>
Controller Design
We design a diagonal controller with equal bandwidth for the 6 terms. The controller is a pure integrator with a small lead near the crossover.
wc = 2*pi*300; % Wanted Bandwidth [rad/s]
h = 1.2;
H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h));
Kd_dvf = diag(1./abs(diag(freqresp(1/s*Gc_dvf, wc)))) .* H_lead .* 1/s;
<<plt-matlab>>
Finally, we pre-multiply the diagonal controller by $\bm{J}^{-T}$ prior implementation.
K_hac_dvf = inv(stewart.kinematics.J')*Kd_dvf;
Obtained Performance
We identify the transmissibility and compliance of the system.
controller = initializeController('type', 'open-loop');
[T_ol, T_norm_ol, freqs] = computeTransmissibility();
[C_ol, C_norm_ol, ~] = computeCompliance();
controller = initializeController('type', 'dvf');
[T_dvf, T_norm_dvf, ~] = computeTransmissibility();
[C_dvf, C_norm_dvf, ~] = computeCompliance();
controller = initializeController('type', 'hac-dvf');
[T_hac_dvf, T_norm_hac_dvf, ~] = computeTransmissibility();
[C_hac_dvf, C_norm_hac_dvf, ~] = computeCompliance();
<<plt-matlab>>
HAC - IFF
Plant
<<plt-matlab>>
Controller Design
We design a diagonal controller with equal bandwidth for the 6 terms. The controller is a pure integrator with a small lead near the crossover.
wc = 2*pi*300; % Wanted Bandwidth [rad/s]
h = 1.2;
H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h));
Kd_iff = diag(1./abs(diag(freqresp(1/s*Gc_iff, wc)))) .* H_lead .* 1/s;
<<plt-matlab>>
Finally, we pre-multiply the diagonal controller by $\bm{J}^{-T}$ prior implementation.
K_hac_iff = inv(stewart.kinematics.J')*Kd_iff;
Obtained Performance
We identify the transmissibility and compliance of the system.
controller = initializeController('type', 'open-loop');
[T_ol, T_norm_ol, freqs] = computeTransmissibility();
[C_ol, C_norm_ol, ~] = computeCompliance();
controller = initializeController('type', 'iff');
[T_iff, T_norm_iff, ~] = computeTransmissibility();
[C_iff, C_norm_iff, ~] = computeCompliance();
controller = initializeController('type', 'hac-iff');
[T_hac_iff, T_norm_hac_iff, ~] = computeTransmissibility();
[C_hac_iff, C_norm_hac_iff, ~] = computeCompliance();
<<plt-matlab>>
Comparison
<<plt-matlab>>
<<plt-matlab>>
<<plt-matlab>>
MIMO Analysis
Introduction ignore
Let's define the system as shown in figure fig:general_control_names.
\begin{tikzpicture}
% Blocs
\node[block={2.0cm}{2.0cm}] (P) {$P$};
\node[block={1.5cm}{1.5cm}, below=0.7 of P] (K) {$K$};
% Input and outputs coordinates
\coordinate[] (inputw) at ($(P.south west)!0.75!(P.north west)$);
\coordinate[] (inputu) at ($(P.south west)!0.25!(P.north west)$);
\coordinate[] (outputz) at ($(P.south east)!0.75!(P.north east)$);
\coordinate[] (outputv) at ($(P.south east)!0.25!(P.north east)$);
% Connections and labels
\draw[<-] (inputw) node[above left, align=right]{(weighted)\\exogenous inputs\\$w$} -- ++(-1.5, 0);
\draw[<-] (inputu) -- ++(-0.8, 0) |- node[left, near start, align=right]{control signals\\$u$} (K.west);
\draw[->] (outputz) node[above right, align=left]{(weighted)\\exogenous outputs\\$z$} -- ++(1.5, 0);
\draw[->] (outputv) -- ++(0.8, 0) |- node[right, near start, align=left]{sensed output\\$v$} (K.east);
\end{tikzpicture}
Symbol | Meaning | |
---|---|---|
Exogenous Inputs | $\bm{\mathcal{X}}_w$ | Ground motion |
$\bm{\mathcal{F}}_d$ | External Forces applied to the Payload | |
$\bm{r}$ | Reference signal for tracking | |
Exogenous Outputs | $\bm{\mathcal{X}}$ | Absolute Motion of the Payload |
$\bm{\tau}$ | Actuator Rate | |
Sensed Outputs | $\bm{\tau}_m$ | Force Sensors in each leg |
$\delta \bm{\mathcal{L}}_m$ | Measured displacement of each leg | |
$\bm{\mathcal{X}}$ | Absolute Motion of the Payload | |
Control Signals | $\bm{\tau}$ | Actuator Inputs |
Initialization
We first initialize the Stewart platform.
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, 'type', 'none');
The rotation point of the ground is located at the origin of frame $\{A\}$.
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
payload = initializePayload('type', 'none');
Identification
HAC - Without LAC
controller = initializeController('type', 'open-loop');
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad]
%% Run the linearization
G_ol = linearize(mdl, io);
G_ol.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G_ol.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
HAC - DVF
controller = initializeController('type', 'dvf');
K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6);
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad]
%% Run the linearization
G_dvf = linearize(mdl, io);
G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
Cartesian Frame
Gc_ol = minreal(G_ol)/stewart.kinematics.J';
Gc_ol.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Gc_dvf = minreal(G_dvf)/stewart.kinematics.J';
Gc_dvf.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Singular Value Decomposition
freqs = logspace(1, 4, 1000);
U_ol = zeros(6,6,length(freqs));
S_ol = zeros(6,length(freqs));
V_ol = zeros(6,6,length(freqs));
U_dvf = zeros(6,6,length(freqs));
S_dvf = zeros(6,length(freqs));
V_dvf = zeros(6,6,length(freqs));
for i = 1:length(freqs)
[U,S,V] = svd(freqresp(Gc_ol, freqs(i), 'Hz'));
U_ol(:,:,i) = U;
S_ol(:,i) = diag(S);
V_ol(:,:,i) = V;
[U,S,V] = svd(freqresp(Gc_dvf, freqs(i), 'Hz'));
U_dvf(:,:,i) = U;
S_dvf(:,i) = diag(S);
V_dvf(:,:,i) = V;
end
Diagonal Control based on the damped plant
Introduction ignore
From cite:skogestad07_multiv_feedb_contr, a simple approach to multivariable control is the following two-step procedure:
- Design a pre-compensator $W_1$, which counteracts the interactions in the plant and results in a new shaped plant $G_S(s) = G(s) W_1(s)$ which is more diagonal and easier to control than the original plant $G(s)$.
- Design a diagonal controller $K_S(s)$ for the shaped plant using methods similar to those for SISO systems.
The overall controller is then: \[ K(s) = W_1(s)K_s(s) \]
There are mainly three different cases:
- Dynamic decoupling: $G_S(s)$ is diagonal at all frequencies. For that we can choose $W_1(s) = G^{-1}(s)$ and this is an inverse-based controller.
- Steady-state decoupling: $G_S(0)$ is diagonal. This can be obtained by selecting $W_1(s) = G^{-1}(0)$.
- Approximate decoupling at frequency $\w_0$: $G_S(j\w_0)$ is as diagonal as possible. Decoupling the system at $\w_0$ is a good choice because the effect on performance of reducing interaction is normally greatest at this frequency.
Initialization
We first initialize the Stewart platform.
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, 'type', 'none');
The rotation point of the ground is located at the origin of frame $\{A\}$.
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
payload = initializePayload('type', 'none');
Identification
controller = initializeController('type', 'dvf');
K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6);
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad]
%% Run the linearization
G_dvf = linearize(mdl, io);
G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
Steady State Decoupling
Pre-Compensator Design
We choose $W_1 = G^{-1}(0)$.
W1 = inv(freqresp(G_dvf, 0));
The (static) decoupled plant is $G_s(s) = G(s) W_1$.
Gs = G_dvf*W1;
In the case of the Stewart platform, the pre-compensator for static decoupling is equal to $\mathcal{K} \bm{J}$:
\begin{align*} W_1 &= \left( \frac{\bm{\mathcal{X}}}{\bm{\tau}}(s=0) \right)^{-1}\\ &= \left( \frac{\bm{\mathcal{X}}}{\bm{\tau}}(s=0) \bm{J}^T \right)^{-1}\\ &= \left( \bm{C} \bm{J}^T \right)^{-1}\\ &= \left( \bm{J}^{-1} \mathcal{K}^{-1} \right)^{-1}\\ &= \mathcal{K} \bm{J} \end{align*}The static decoupled plant is schematic shown in Figure fig:control_arch_static_decoupling and the bode plots of its diagonal elements are shown in Figure fig:static_decoupling_diagonal_plant.
\begin{tikzpicture}
% Blocs
\node[block] (G) {$G(s)$};
\node[block, left=1 of G] (J) {$\mathcal{K}\bm{J}$};
\node[block, left=1 of J] (Ks) {$\bm{K}_s(s)$};
\draw[->] (Ks.east) -- (J.west);
\draw[->] (J.east) -- (G.west) node[above left]{$\bm{\tau}$};
\draw[->] (G.east) node[above right]{$\bm{\mathcal{X}}$} -| ++(0.8, -0.8) -| ($(Ks.west) + (-0.8, 0)$) -- (Ks.west);
\begin{scope}[on background layer]
\node[fit={(J.north west) (G.south east)}, inner sep=4pt, draw, dashed, fill=black!20!white, label={$G_s(s)$}] {};
\end{scope}
\end{tikzpicture}
<<plt-matlab>>
Diagonal Control Design
We design a diagonal controller $K_s(s)$ that consist of a pure integrator and a lead around the crossover.
wc = 2*pi*300; % Wanted Bandwidth [rad/s]
h = 1.5;
H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h));
Ks_dvf = diag(1./abs(diag(freqresp(1/s*Gs, wc)))) .* H_lead .* 1/s;
The overall controller is then $K(s) = W_1 K_s(s)$ as shown in Figure fig:control_arch_static_decoupling_K.
K_hac_dvf = W1 * Ks_dvf;
\begin{tikzpicture}
% Blocs
\node[block] (G) {$G(s)$};
\node[block, left=1 of G] (J) {$\mathcal{K}\bm{J}$};
\node[block, left=1 of J] (Ks) {$\bm{K}_s(s)$};
\draw[->] (Ks.east) -- (J.west);
\draw[->] (J.east) -- (G.west) node[above left]{$\bm{\tau}$};
\draw[->] (G.east) node[above right]{$\bm{\mathcal{X}}$} -| ++(0.8, -0.8) -| ($(Ks.west) + (-0.8, 0)$) -- (Ks.west);
\begin{scope}[on background layer]
\node[fit={(Ks.north west) (J.south east)}, inner sep=4pt, draw, dashed, fill=black!20!white, label={$K(s)$}] {};
\end{scope}
\end{tikzpicture}
Results
We identify the transmissibility and compliance of the Stewart platform under open-loop and closed-loop control.
controller = initializeController('type', 'open-loop');
[T_ol, T_norm_ol, freqs] = computeTransmissibility();
[C_ol, C_norm_ol, ~] = computeCompliance();
controller = initializeController('type', 'hac-dvf');
[T_hac_dvf, T_norm_hac_dvf, ~] = computeTransmissibility();
[C_hac_dvf, C_norm_hac_dvf, ~] = computeCompliance();
The results are shown in figure
<<plt-matlab>>
TODO Decoupling at Crossover
- Find a method for real approximation of a complex matrix
Time Domain Simulation
Initialization
We first initialize the Stewart platform.
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical');
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, 'type', 'none');
The rotation point of the ground is located at the origin of frame $\{A\}$.
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
payload = initializePayload('type', 'none');
load('./mat/motion_error_ol.mat', 'Eg')
HAC IFF
controller = initializeController('type', 'iff');
K_iff = -(1e4/s)*eye(6);
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad]
%% Run the linearization
G_iff = linearize(mdl, io);
G_iff.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G_iff.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
Gc_iff = minreal(G_iff)/stewart.kinematics.J';
Gc_iff.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
wc = 2*pi*100; % Wanted Bandwidth [rad/s]
h = 1.2;
H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h));
Kd_iff = diag(1./abs(diag(freqresp(1/s*Gc_iff, wc)))) .* H_lead .* 1/s;
K_hac_iff = inv(stewart.kinematics.J')*Kd_iff;
controller = initializeController('type', 'hac-iff');
HAC-DVF
controller = initializeController('type', 'dvf');
K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6);
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad]
%% Run the linearization
G_dvf = linearize(mdl, io);
G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
Gc_dvf = minreal(G_dvf)/stewart.kinematics.J';
Gc_dvf.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
wc = 2*pi*100; % Wanted Bandwidth [rad/s]
h = 1.2;
H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h));
Kd_dvf = diag(1./abs(diag(freqresp(1/s*Gc_dvf, wc)))) .* H_lead .* 1/s;
K_hac_dvf = inv(stewart.kinematics.J')*Kd_dvf;
controller = initializeController('type', 'hac-dvf');
Results
figure;
subplot(1, 2, 1);
hold on;
plot(Eg.Time, Eg.Data(:, 1), 'DisplayName', 'X');
plot(Eg.Time, Eg.Data(:, 2), 'DisplayName', 'Y');
plot(Eg.Time, Eg.Data(:, 3), 'DisplayName', 'Z');
hold off;
xlabel('Time [s]');
ylabel('Position error [m]');
legend();
subplot(1, 2, 2);
hold on;
plot(simout.Xa.Time, simout.Xa.Data(:, 1));
plot(simout.Xa.Time, simout.Xa.Data(:, 2));
plot(simout.Xa.Time, simout.Xa.Data(:, 3));
hold off;
xlabel('Time [s]');
ylabel('Orientation error [rad]');
Functions
initializeController
: Initialize the Controller
<<sec:initializeController>>
Function description
function [controller] = initializeController(args)
% initializeController - Initialize the Controller
%
% Syntax: [] = initializeController(args)
%
% Inputs:
% - args - Can have the following fields:
Optional Parameters
arguments
args.type char {mustBeMember(args.type, {'open-loop', 'iff', 'dvf', 'hac-iff', 'hac-dvf', 'ref-track-L', 'ref-track-X', 'ref-track-hac-dvf'})} = 'open-loop'
end
Structure initialization
controller = struct();
Add Type
switch args.type
case 'open-loop'
controller.type = 0;
case 'iff'
controller.type = 1;
case 'dvf'
controller.type = 2;
case 'hac-iff'
controller.type = 3;
case 'hac-dvf'
controller.type = 4;
case 'ref-track-L'
controller.type = 5;
case 'ref-track-X'
controller.type = 6;
case 'ref-track-hac-dvf'
controller.type = 7;
end