359 lines
13 KiB
Org Mode
359 lines
13 KiB
Org Mode
#+TITLE: Kinematic Study of the Stewart Platform
|
|
:DRAWER:
|
|
#+HTML_LINK_HOME: ./index.html
|
|
#+HTML_LINK_UP: ./index.html
|
|
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
|
#+HTML_HEAD: <script src="./js/jquery.min.js"></script>
|
|
#+HTML_HEAD: <script src="./js/bootstrap.min.js"></script>
|
|
#+HTML_HEAD: <script src="./js/jquery.stickytableheaders.min.js"></script>
|
|
#+HTML_HEAD: <script src="./js/readtheorg.js"></script>
|
|
|
|
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
#+PROPERTY: header-args:matlab+ :tangle matlab/kinematic_study.m
|
|
#+PROPERTY: header-args:matlab+ :comments org
|
|
#+PROPERTY: header-args:matlab+ :exports both
|
|
#+PROPERTY: header-args:matlab+ :results none
|
|
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
#+PROPERTY: header-args:matlab+ :noweb yes
|
|
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
:END:
|
|
|
|
* Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :results none :exports none
|
|
simulinkproject('./');
|
|
#+end_src
|
|
|
|
* Needed Actuator Stroke
|
|
The goal is to determine the needed stroke of the actuators to obtain wanted translations and rotations.
|
|
|
|
** Stewart architecture definition
|
|
We use a cubic architecture.
|
|
|
|
#+begin_src matlab :results silent
|
|
opts = struct(...
|
|
'H_tot', 90, ... % Total height of the Hexapod [mm]
|
|
'L', 200/sqrt(3), ... % Size of the Cube [mm]
|
|
'H', 60, ... % Height between base joints and platform joints [mm]
|
|
'H0', 200/2-60/2 ... % Height between the corner of the cube and the plane containing the base joints [mm]
|
|
);
|
|
stewart = initializeCubicConfiguration(opts);
|
|
opts = struct(...
|
|
'Jd_pos', [0, 0, 100], ... % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]
|
|
'Jf_pos', [0, 0, -50] ... % Position of the Jacobian for force location from the top of the mobile platform [mm]
|
|
);
|
|
stewart = computeGeometricalProperties(stewart, opts);
|
|
opts = struct(...
|
|
'stroke', 50e-6 ... % Maximum stroke of each actuator [m]
|
|
);
|
|
stewart = initializeMechanicalElements(stewart, opts);
|
|
|
|
save('./mat/stewart.mat', 'stewart');
|
|
#+end_src
|
|
|
|
** Wanted translations and rotations
|
|
We define wanted translations and rotations
|
|
#+begin_src matlab :results silent
|
|
Tx_max = 15e-6; % Translation [m]
|
|
Ty_max = 15e-6; % Translation [m]
|
|
Tz_max = 15e-6; % Translation [m]
|
|
Rx_max = 30e-6; % Rotation [rad]
|
|
Ry_max = 30e-6; % Rotation [rad]
|
|
#+end_src
|
|
|
|
** Needed stroke for "pure" rotations or translations
|
|
First, we estimate the needed actuator stroke for "pure" rotations and translation.
|
|
#+begin_src matlab :results silent
|
|
LTx = stewart.Jd*[Tx_max 0 0 0 0 0]';
|
|
LTy = stewart.Jd*[0 Ty_max 0 0 0 0]';
|
|
LTz = stewart.Jd*[0 0 Tz_max 0 0 0]';
|
|
LRx = stewart.Jd*[0 0 0 Rx_max 0 0]';
|
|
LRy = stewart.Jd*[0 0 0 0 Ry_max 0]';
|
|
#+end_src
|
|
|
|
#+begin_src matlab :results value :exports results
|
|
ans = sprintf('From %.2g[m] to %.2g[m]: Total stroke = %.1f[um]', min(min([LTx,LTy,LTz,LRx,LRy])), max(max([LTx,LTy,LTz,LRx,LRy])), 1e6*(max(max([LTx,LTy,LTz,LRx,LRy]))-min(min([LTx,LTy,LTz,LRx,LRy]))))
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
: From -1.2e-05[m] to 1.1e-05[m]: Total stroke = 22.9[um]
|
|
|
|
** Needed stroke for combined translations and rotations
|
|
Now, we combine translations and rotations, and we try to find the worst case (that we suppose to happen at the border).
|
|
#+begin_src matlab :results none
|
|
Lmax = 0;
|
|
Lmin = 0;
|
|
pos = [0, 0, 0, 0, 0];
|
|
for Tx = [-Tx_max,Tx_max]
|
|
for Ty = [-Ty_max,Ty_max]
|
|
for Tz = [-Tz_max,Tz_max]
|
|
for Rx = [-Rx_max,Rx_max]
|
|
for Ry = [-Ry_max,Ry_max]
|
|
lmax = max(stewart.Jd*[Tx Ty Tz Rx Ry 0]');
|
|
lmin = min(stewart.Jd*[Tx Ty Tz Rx Ry 0]');
|
|
if lmax > Lmax
|
|
Lmax = lmax;
|
|
pos = [Tx Ty Tz Rx Ry];
|
|
end
|
|
if lmin < Lmin
|
|
Lmin = lmin;
|
|
end
|
|
end
|
|
end
|
|
end
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
We obtain a needed stroke shown below (almost two times the needed stroke for "pure" rotations and translations).
|
|
#+begin_src matlab :results value :exports results
|
|
ans = sprintf('From %.2g[m] to %.2g[m]: Total stroke = %.1f[um]', Lmin, Lmax, 1e6*(Lmax-Lmin))
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
: From -3.1e-05[m] to 3.1e-05[m]: Total stroke = 61.5[um]
|
|
|
|
* Maximum Stroke
|
|
From a specified actuator stroke, we try to estimate the available maneuverability of the Stewart platform.
|
|
|
|
#+begin_src matlab :results silent
|
|
[X, Y, Z] = getMaxPositions(stewart);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :results silent
|
|
figure;
|
|
plot3(X, Y, Z, 'k-')
|
|
#+end_src
|
|
|
|
* Functions
|
|
:PROPERTIES:
|
|
:HEADER-ARGS:matlab+: :exports code
|
|
:HEADER-ARGS:matlab+: :comments no
|
|
:HEADER-ARGS:matlab+: :mkdir yes
|
|
:HEADER-ARGS:matlab+: :eval no
|
|
:END:
|
|
** getMaxPositions
|
|
:PROPERTIES:
|
|
:HEADER-ARGS:matlab+: :tangle src/getMaxPositions.m
|
|
:END:
|
|
#+begin_src matlab
|
|
function [X, Y, Z] = getMaxPositions(stewart)
|
|
Leg = stewart.Leg;
|
|
J = stewart.Jd;
|
|
theta = linspace(0, 2*pi, 100);
|
|
phi = linspace(-pi/2 , pi/2, 100);
|
|
dmax = zeros(length(theta), length(phi));
|
|
|
|
for i = 1:length(theta)
|
|
for j = 1:length(phi)
|
|
L = J*[cos(phi(j))*cos(theta(i)) cos(phi(j))*sin(theta(i)) sin(phi(j)) 0 0 0]';
|
|
dmax(i, j) = Leg.stroke/max(abs(L));
|
|
end
|
|
end
|
|
|
|
X = dmax.*cos(repmat(phi,length(theta),1)).*cos(repmat(theta,length(phi),1))';
|
|
Y = dmax.*cos(repmat(phi,length(theta),1)).*sin(repmat(theta,length(phi),1))';
|
|
Z = dmax.*sin(repmat(phi,length(theta),1));
|
|
end
|
|
#+end_src
|
|
|
|
** getMaxPureDisplacement
|
|
:PROPERTIES:
|
|
:HEADER-ARGS:matlab+: :tangle src/getMaxPureDisplacement.m
|
|
:END:
|
|
#+begin_src matlab
|
|
function [max_disp] = getMaxPureDisplacement(Leg, J)
|
|
max_disp = zeros(6, 1);
|
|
max_disp(1) = Leg.stroke/max(abs(J*[1 0 0 0 0 0]'));
|
|
max_disp(2) = Leg.stroke/max(abs(J*[0 1 0 0 0 0]'));
|
|
max_disp(3) = Leg.stroke/max(abs(J*[0 0 1 0 0 0]'));
|
|
max_disp(4) = Leg.stroke/max(abs(J*[0 0 0 1 0 0]'));
|
|
max_disp(5) = Leg.stroke/max(abs(J*[0 0 0 0 1 0]'));
|
|
max_disp(6) = Leg.stroke/max(abs(J*[0 0 0 0 0 1]'));
|
|
end
|
|
#+end_src
|
|
** =computeJacobian=: Compute the Jacobian Matrix
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle src/computeJacobian.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:computeJacobian>>
|
|
|
|
This Matlab function is accessible [[file:src/computeJacobian.m][here]].
|
|
|
|
*** Function description
|
|
#+begin_src matlab
|
|
function [stewart] = computeJacobian(stewart)
|
|
% computeJacobian -
|
|
%
|
|
% Syntax: [stewart] = computeJacobian(stewart)
|
|
%
|
|
% Inputs:
|
|
% - stewart - With at least the following fields:
|
|
% - As [3x6] - The 6 unit vectors for each strut expressed in {A}
|
|
% - Ab [3x6] - The 6 position of the joints bi expressed in {A}
|
|
%
|
|
% Outputs:
|
|
% - stewart - With the 3 added field:
|
|
% - J [6x6] - The Jacobian Matrix
|
|
% - K [6x6] - The Stiffness Matrix
|
|
% - C [6x6] - The Compliance Matrix
|
|
#+end_src
|
|
|
|
*** Compute Jacobian Matrix
|
|
#+begin_src matlab
|
|
stewart.J = [stewart.As' , cross(stewart.Ab, stewart.As)'];
|
|
#+end_src
|
|
|
|
*** Compute Stiffness Matrix
|
|
#+begin_src matlab
|
|
stewart.K = stewart.J'*diag(stewart.Ki)*stewart.J;
|
|
#+end_src
|
|
|
|
*** Compute Compliance Matrix
|
|
#+begin_src matlab
|
|
stewart.C = inv(stewart.K);
|
|
#+end_src
|
|
|
|
** =inverseKinematics=: Compute Inverse Kinematics
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle src/inverseKinematics.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:inverseKinematics>>
|
|
|
|
This Matlab function is accessible [[file:src/inverseKinematics.m][here]].
|
|
|
|
*** Function description
|
|
#+begin_src matlab
|
|
function [Li, dLi] = inverseKinematics(stewart, args)
|
|
% inverseKinematics - Compute the needed length of each strut to have the wanted position and orientation of {B} with respect to {A}
|
|
%
|
|
% Syntax: [stewart] = inverseKinematics(stewart)
|
|
%
|
|
% Inputs:
|
|
% - stewart - A structure with the following fields
|
|
% - Aa [3x6] - The positions ai expressed in {A}
|
|
% - Bb [3x6] - The positions bi expressed in {B}
|
|
% - args - Can have the following fields:
|
|
% - AP [3x1] - The wanted position of {B} with respect to {A}
|
|
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
|
|
%
|
|
% Outputs:
|
|
% - Li [6x1] - The 6 needed length of the struts in [m] to have the wanted pose of {B} w.r.t. {A}
|
|
% - dLi [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}
|
|
#+end_src
|
|
|
|
*** Optional Parameters
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
|
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
|
end
|
|
#+end_src
|
|
|
|
*** Theory
|
|
For inverse kinematic analysis, it is assumed that the position ${}^A\bm{P}$ and orientation of the moving platform ${}^A\bm{R}_B$ are given and the problem is to obtain the joint variables, namely, $\bm{L} = [l_1, l_2, \dots, l_6]^T$.
|
|
|
|
From the geometry of the manipulator, the loop closure for each limb, $i = 1, 2, \dots, 6$ can be written as
|
|
\begin{align*}
|
|
l_i {}^A\hat{\bm{s}}_i &= {}^A\bm{A} + {}^A\bm{b}_i - {}^A\bm{a}_i \\
|
|
&= {}^A\bm{A} + {}^A\bm{R}_b {}^B\bm{b}_i - {}^A\bm{a}_i
|
|
\end{align*}
|
|
|
|
To obtain the length of each actuator and eliminate $\hat{\bm{s}}_i$, it is sufficient to dot multiply each side by itself:
|
|
\begin{equation}
|
|
l_i^2 \left[ {}^A\hat{\bm{s}}_i^T {}^A\hat{\bm{s}}_i \right] = \left[ {}^A\bm{P} + {}^A\bm{R}_B {}^B\bm{b}_i - {}^A\bm{a}_i \right]^T \left[ {}^A\bm{P} + {}^A\bm{R}_B {}^B\bm{b}_i - {}^A\bm{a}_i \right]
|
|
\end{equation}
|
|
|
|
Hence, for $i = 1, 2, \dots, 6$, each limb length can be uniquely determined by:
|
|
\begin{equation}
|
|
l_i = \sqrt{{}^A\bm{P}^T {}^A\bm{P} + {}^B\bm{b}_i^T {}^B\bm{b}_i + {}^A\bm{a}_i^T {}^A\bm{a}_i - 2 {}^A\bm{P}^T {}^A\bm{a}_i + 2 {}^A\bm{P}^T \left[{}^A\bm{R}_B {}^B\bm{b}_i\right] - 2 \left[{}^A\bm{R}_B {}^B\bm{b}_i\right]^T {}^A\bm{a}_i}
|
|
\end{equation}
|
|
|
|
If the position and orientation of the moving platform lie in the feasible workspace of the manipulator, one unique solution to the limb length is determined by the above equation.
|
|
Otherwise, when the limbs' lengths derived yield complex numbers, then the position or orientation of the moving platform is not reachable.
|
|
|
|
*** Compute
|
|
#+begin_src matlab
|
|
Li = sqrt(args.AP'*args.AP + diag(stewart.Bb'*stewart.Bb) + diag(stewart.Aa'*stewart.Aa) - (2*args.AP'*stewart.Aa)' + (2*args.AP'*(args.ARB*stewart.Bb))' - diag(2*(args.ARB*stewart.Bb)'*stewart.Aa));
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
dLi = Li-stewart.l;
|
|
#+end_src
|
|
|
|
** =forwardKinematicsApprox=: Compute the Approximate Forward Kinematics
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle src/forwardKinematicsApprox.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:forwardKinematicsApprox>>
|
|
|
|
This Matlab function is accessible [[file:src/forwardKinematicsApprox.m][here]].
|
|
|
|
*** Function description
|
|
#+begin_src matlab
|
|
function [P, R] = forwardKinematicsApprox(stewart, args)
|
|
% forwardKinematicsApprox - Computed the approximate pose of {B} with respect to {A} from the length of each strut and using
|
|
% the Jacobian Matrix
|
|
%
|
|
% Syntax: [P, R] = forwardKinematicsApprox(stewart, args)
|
|
%
|
|
% Inputs:
|
|
% - stewart - A structure with the following fields
|
|
% - J [6x6] - The Jacobian Matrix
|
|
% - args - Can have the following fields:
|
|
% - dL [6x1] - Displacement of each strut [m]
|
|
%
|
|
% Outputs:
|
|
% - P [3x1] - The estimated position of {B} with respect to {A}
|
|
% - R [3x3] - The estimated rotation matrix that gives the orientation of {B} with respect to {A}
|
|
#+end_src
|
|
|
|
*** Optional Parameters
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
args.dL (6,1) double {mustBeNumeric} = zeros(6,1)
|
|
end
|
|
#+end_src
|
|
|
|
*** Computation
|
|
From a small displacement of each strut $d\bm{\mathcal{L}}$, we can compute the
|
|
position and orientation of {B} with respect to {A} using the following formula:
|
|
\[ d \bm{\mathcal{X}} = \bm{J}^{-1} d\bm{\mathcal{L}} \]
|
|
#+begin_src matlab
|
|
X = stewart.J\args.dL;
|
|
#+end_src
|
|
|
|
The position vector corresponds to the first 3 elements.
|
|
#+begin_src matlab
|
|
P = X(1:3);
|
|
#+end_src
|
|
|
|
The next 3 elements are the orientation of {B} with respect to {A} expressed
|
|
using the screw axis.
|
|
#+begin_src matlab
|
|
theta = norm(X(4:6));
|
|
s = X(4:6)/theta;
|
|
#+end_src
|
|
|
|
We then compute the corresponding rotation matrix.
|
|
#+begin_src matlab
|
|
R = [s(1)^2*(1-cos(theta)) + cos(theta) , s(1)*s(2)*(1-cos(theta)) - s(3)*sin(theta), s(1)*s(3)*(1-cos(theta)) + s(2)*sin(theta);
|
|
s(2)*s(1)*(1-cos(theta)) + s(3)*sin(theta), s(2)^2*(1-cos(theta)) + cos(theta), s(2)*s(3)*(1-cos(theta)) - s(1)*sin(theta);
|
|
s(3)*s(1)*(1-cos(theta)) - s(2)*sin(theta), s(3)*s(2)*(1-cos(theta)) + s(1)*sin(theta), s(3)^2*(1-cos(theta)) + cos(theta)];
|
|
#+end_src
|