1375 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			1375 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<?xml version="1.0" encoding="utf-8"?>
 | 
						|
<?xml version="1.0" encoding="utf-8"?>
 | 
						|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 | 
						|
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 | 
						|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 | 
						|
<head>
 | 
						|
<!-- 2020-01-27 lun. 17:41 -->
 | 
						|
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 | 
						|
<meta name="viewport" content="width=device-width, initial-scale=1" />
 | 
						|
<title>Cubic configuration for the Stewart Platform</title>
 | 
						|
<meta name="generator" content="Org mode" />
 | 
						|
<meta name="author" content="Dehaeze Thomas" />
 | 
						|
<style type="text/css">
 | 
						|
 <!--/*--><![CDATA[/*><!--*/
 | 
						|
  .title  { text-align: center;
 | 
						|
             margin-bottom: .2em; }
 | 
						|
  .subtitle { text-align: center;
 | 
						|
              font-size: medium;
 | 
						|
              font-weight: bold;
 | 
						|
              margin-top:0; }
 | 
						|
  .todo   { font-family: monospace; color: red; }
 | 
						|
  .done   { font-family: monospace; color: green; }
 | 
						|
  .priority { font-family: monospace; color: orange; }
 | 
						|
  .tag    { background-color: #eee; font-family: monospace;
 | 
						|
            padding: 2px; font-size: 80%; font-weight: normal; }
 | 
						|
  .timestamp { color: #bebebe; }
 | 
						|
  .timestamp-kwd { color: #5f9ea0; }
 | 
						|
  .org-right  { margin-left: auto; margin-right: 0px;  text-align: right; }
 | 
						|
  .org-left   { margin-left: 0px;  margin-right: auto; text-align: left; }
 | 
						|
  .org-center { margin-left: auto; margin-right: auto; text-align: center; }
 | 
						|
  .underline { text-decoration: underline; }
 | 
						|
  #postamble p, #preamble p { font-size: 90%; margin: .2em; }
 | 
						|
  p.verse { margin-left: 3%; }
 | 
						|
  pre {
 | 
						|
    border: 1px solid #ccc;
 | 
						|
    box-shadow: 3px 3px 3px #eee;
 | 
						|
    padding: 8pt;
 | 
						|
    font-family: monospace;
 | 
						|
    overflow: auto;
 | 
						|
    margin: 1.2em;
 | 
						|
  }
 | 
						|
  pre.src {
 | 
						|
    position: relative;
 | 
						|
    overflow: visible;
 | 
						|
    padding-top: 1.2em;
 | 
						|
  }
 | 
						|
  pre.src:before {
 | 
						|
    display: none;
 | 
						|
    position: absolute;
 | 
						|
    background-color: white;
 | 
						|
    top: -10px;
 | 
						|
    right: 10px;
 | 
						|
    padding: 3px;
 | 
						|
    border: 1px solid black;
 | 
						|
  }
 | 
						|
  pre.src:hover:before { display: inline;}
 | 
						|
  /* Languages per Org manual */
 | 
						|
  pre.src-asymptote:before { content: 'Asymptote'; }
 | 
						|
  pre.src-awk:before { content: 'Awk'; }
 | 
						|
  pre.src-C:before { content: 'C'; }
 | 
						|
  /* pre.src-C++ doesn't work in CSS */
 | 
						|
  pre.src-clojure:before { content: 'Clojure'; }
 | 
						|
  pre.src-css:before { content: 'CSS'; }
 | 
						|
  pre.src-D:before { content: 'D'; }
 | 
						|
  pre.src-ditaa:before { content: 'ditaa'; }
 | 
						|
  pre.src-dot:before { content: 'Graphviz'; }
 | 
						|
  pre.src-calc:before { content: 'Emacs Calc'; }
 | 
						|
  pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
 | 
						|
  pre.src-fortran:before { content: 'Fortran'; }
 | 
						|
  pre.src-gnuplot:before { content: 'gnuplot'; }
 | 
						|
  pre.src-haskell:before { content: 'Haskell'; }
 | 
						|
  pre.src-hledger:before { content: 'hledger'; }
 | 
						|
  pre.src-java:before { content: 'Java'; }
 | 
						|
  pre.src-js:before { content: 'Javascript'; }
 | 
						|
  pre.src-latex:before { content: 'LaTeX'; }
 | 
						|
  pre.src-ledger:before { content: 'Ledger'; }
 | 
						|
  pre.src-lisp:before { content: 'Lisp'; }
 | 
						|
  pre.src-lilypond:before { content: 'Lilypond'; }
 | 
						|
  pre.src-lua:before { content: 'Lua'; }
 | 
						|
  pre.src-matlab:before { content: 'MATLAB'; }
 | 
						|
  pre.src-mscgen:before { content: 'Mscgen'; }
 | 
						|
  pre.src-ocaml:before { content: 'Objective Caml'; }
 | 
						|
  pre.src-octave:before { content: 'Octave'; }
 | 
						|
  pre.src-org:before { content: 'Org mode'; }
 | 
						|
  pre.src-oz:before { content: 'OZ'; }
 | 
						|
  pre.src-plantuml:before { content: 'Plantuml'; }
 | 
						|
  pre.src-processing:before { content: 'Processing.js'; }
 | 
						|
  pre.src-python:before { content: 'Python'; }
 | 
						|
  pre.src-R:before { content: 'R'; }
 | 
						|
  pre.src-ruby:before { content: 'Ruby'; }
 | 
						|
  pre.src-sass:before { content: 'Sass'; }
 | 
						|
  pre.src-scheme:before { content: 'Scheme'; }
 | 
						|
  pre.src-screen:before { content: 'Gnu Screen'; }
 | 
						|
  pre.src-sed:before { content: 'Sed'; }
 | 
						|
  pre.src-sh:before { content: 'shell'; }
 | 
						|
  pre.src-sql:before { content: 'SQL'; }
 | 
						|
  pre.src-sqlite:before { content: 'SQLite'; }
 | 
						|
  /* additional languages in org.el's org-babel-load-languages alist */
 | 
						|
  pre.src-forth:before { content: 'Forth'; }
 | 
						|
  pre.src-io:before { content: 'IO'; }
 | 
						|
  pre.src-J:before { content: 'J'; }
 | 
						|
  pre.src-makefile:before { content: 'Makefile'; }
 | 
						|
  pre.src-maxima:before { content: 'Maxima'; }
 | 
						|
  pre.src-perl:before { content: 'Perl'; }
 | 
						|
  pre.src-picolisp:before { content: 'Pico Lisp'; }
 | 
						|
  pre.src-scala:before { content: 'Scala'; }
 | 
						|
  pre.src-shell:before { content: 'Shell Script'; }
 | 
						|
  pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
 | 
						|
  /* additional language identifiers per "defun org-babel-execute"
 | 
						|
       in ob-*.el */
 | 
						|
  pre.src-cpp:before  { content: 'C++'; }
 | 
						|
  pre.src-abc:before  { content: 'ABC'; }
 | 
						|
  pre.src-coq:before  { content: 'Coq'; }
 | 
						|
  pre.src-groovy:before  { content: 'Groovy'; }
 | 
						|
  /* additional language identifiers from org-babel-shell-names in
 | 
						|
     ob-shell.el: ob-shell is the only babel language using a lambda to put
 | 
						|
     the execution function name together. */
 | 
						|
  pre.src-bash:before  { content: 'bash'; }
 | 
						|
  pre.src-csh:before  { content: 'csh'; }
 | 
						|
  pre.src-ash:before  { content: 'ash'; }
 | 
						|
  pre.src-dash:before  { content: 'dash'; }
 | 
						|
  pre.src-ksh:before  { content: 'ksh'; }
 | 
						|
  pre.src-mksh:before  { content: 'mksh'; }
 | 
						|
  pre.src-posh:before  { content: 'posh'; }
 | 
						|
  /* Additional Emacs modes also supported by the LaTeX listings package */
 | 
						|
  pre.src-ada:before { content: 'Ada'; }
 | 
						|
  pre.src-asm:before { content: 'Assembler'; }
 | 
						|
  pre.src-caml:before { content: 'Caml'; }
 | 
						|
  pre.src-delphi:before { content: 'Delphi'; }
 | 
						|
  pre.src-html:before { content: 'HTML'; }
 | 
						|
  pre.src-idl:before { content: 'IDL'; }
 | 
						|
  pre.src-mercury:before { content: 'Mercury'; }
 | 
						|
  pre.src-metapost:before { content: 'MetaPost'; }
 | 
						|
  pre.src-modula-2:before { content: 'Modula-2'; }
 | 
						|
  pre.src-pascal:before { content: 'Pascal'; }
 | 
						|
  pre.src-ps:before { content: 'PostScript'; }
 | 
						|
  pre.src-prolog:before { content: 'Prolog'; }
 | 
						|
  pre.src-simula:before { content: 'Simula'; }
 | 
						|
  pre.src-tcl:before { content: 'tcl'; }
 | 
						|
  pre.src-tex:before { content: 'TeX'; }
 | 
						|
  pre.src-plain-tex:before { content: 'Plain TeX'; }
 | 
						|
  pre.src-verilog:before { content: 'Verilog'; }
 | 
						|
  pre.src-vhdl:before { content: 'VHDL'; }
 | 
						|
  pre.src-xml:before { content: 'XML'; }
 | 
						|
  pre.src-nxml:before { content: 'XML'; }
 | 
						|
  /* add a generic configuration mode; LaTeX export needs an additional
 | 
						|
     (add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
 | 
						|
  pre.src-conf:before { content: 'Configuration File'; }
 | 
						|
 | 
						|
  table { border-collapse:collapse; }
 | 
						|
  caption.t-above { caption-side: top; }
 | 
						|
  caption.t-bottom { caption-side: bottom; }
 | 
						|
  td, th { vertical-align:top;  }
 | 
						|
  th.org-right  { text-align: center;  }
 | 
						|
  th.org-left   { text-align: center;   }
 | 
						|
  th.org-center { text-align: center; }
 | 
						|
  td.org-right  { text-align: right;  }
 | 
						|
  td.org-left   { text-align: left;   }
 | 
						|
  td.org-center { text-align: center; }
 | 
						|
  dt { font-weight: bold; }
 | 
						|
  .footpara { display: inline; }
 | 
						|
  .footdef  { margin-bottom: 1em; }
 | 
						|
  .figure { padding: 1em; }
 | 
						|
  .figure p { text-align: center; }
 | 
						|
  .equation-container {
 | 
						|
    display: table;
 | 
						|
    text-align: center;
 | 
						|
    width: 100%;
 | 
						|
  }
 | 
						|
  .equation {
 | 
						|
    vertical-align: middle;
 | 
						|
  }
 | 
						|
  .equation-label {
 | 
						|
    display: table-cell;
 | 
						|
    text-align: right;
 | 
						|
    vertical-align: middle;
 | 
						|
  }
 | 
						|
  .inlinetask {
 | 
						|
    padding: 10px;
 | 
						|
    border: 2px solid gray;
 | 
						|
    margin: 10px;
 | 
						|
    background: #ffffcc;
 | 
						|
  }
 | 
						|
  #org-div-home-and-up
 | 
						|
   { text-align: right; font-size: 70%; white-space: nowrap; }
 | 
						|
  textarea { overflow-x: auto; }
 | 
						|
  .linenr { font-size: smaller }
 | 
						|
  .code-highlighted { background-color: #ffff00; }
 | 
						|
  .org-info-js_info-navigation { border-style: none; }
 | 
						|
  #org-info-js_console-label
 | 
						|
    { font-size: 10px; font-weight: bold; white-space: nowrap; }
 | 
						|
  .org-info-js_search-highlight
 | 
						|
    { background-color: #ffff00; color: #000000; font-weight: bold; }
 | 
						|
  .org-svg { width: 90%; }
 | 
						|
  /*]]>*/-->
 | 
						|
</style>
 | 
						|
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
 | 
						|
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
 | 
						|
<script src="./js/jquery.min.js"></script>
 | 
						|
<script src="./js/bootstrap.min.js"></script>
 | 
						|
<script src="./js/jquery.stickytableheaders.min.js"></script>
 | 
						|
<script src="./js/readtheorg.js"></script>
 | 
						|
<script type="text/javascript">
 | 
						|
/*
 | 
						|
@licstart  The following is the entire license notice for the
 | 
						|
JavaScript code in this tag.
 | 
						|
 | 
						|
Copyright (C) 2012-2020 Free Software Foundation, Inc.
 | 
						|
 | 
						|
The JavaScript code in this tag is free software: you can
 | 
						|
redistribute it and/or modify it under the terms of the GNU
 | 
						|
General Public License (GNU GPL) as published by the Free Software
 | 
						|
Foundation, either version 3 of the License, or (at your option)
 | 
						|
any later version.  The code is distributed WITHOUT ANY WARRANTY;
 | 
						|
without even the implied warranty of MERCHANTABILITY or FITNESS
 | 
						|
FOR A PARTICULAR PURPOSE.  See the GNU GPL for more details.
 | 
						|
 | 
						|
As additional permission under GNU GPL version 3 section 7, you
 | 
						|
may distribute non-source (e.g., minimized or compacted) forms of
 | 
						|
that code without the copy of the GNU GPL normally required by
 | 
						|
section 4, provided you include this license notice and a URL
 | 
						|
through which recipients can access the Corresponding Source.
 | 
						|
 | 
						|
 | 
						|
@licend  The above is the entire license notice
 | 
						|
for the JavaScript code in this tag.
 | 
						|
*/
 | 
						|
<!--/*--><![CDATA[/*><!--*/
 | 
						|
 function CodeHighlightOn(elem, id)
 | 
						|
 {
 | 
						|
   var target = document.getElementById(id);
 | 
						|
   if(null != target) {
 | 
						|
     elem.cacheClassElem = elem.className;
 | 
						|
     elem.cacheClassTarget = target.className;
 | 
						|
     target.className = "code-highlighted";
 | 
						|
     elem.className   = "code-highlighted";
 | 
						|
   }
 | 
						|
 }
 | 
						|
 function CodeHighlightOff(elem, id)
 | 
						|
 {
 | 
						|
   var target = document.getElementById(id);
 | 
						|
   if(elem.cacheClassElem)
 | 
						|
     elem.className = elem.cacheClassElem;
 | 
						|
   if(elem.cacheClassTarget)
 | 
						|
     target.className = elem.cacheClassTarget;
 | 
						|
 }
 | 
						|
/*]]>*///-->
 | 
						|
</script>
 | 
						|
<script type="text/x-mathjax-config">
 | 
						|
    MathJax.Hub.Config({
 | 
						|
        displayAlign: "center",
 | 
						|
        displayIndent: "0em",
 | 
						|
 | 
						|
        "HTML-CSS": { scale: 100,
 | 
						|
                        linebreaks: { automatic: "false" },
 | 
						|
                        webFont: "TeX"
 | 
						|
                       },
 | 
						|
        SVG: {scale: 100,
 | 
						|
              linebreaks: { automatic: "false" },
 | 
						|
              font: "TeX"},
 | 
						|
        NativeMML: {scale: 100},
 | 
						|
        TeX: { equationNumbers: {autoNumber: "AMS"},
 | 
						|
               MultLineWidth: "85%",
 | 
						|
               TagSide: "right",
 | 
						|
               TagIndent: ".8em",
 | 
						|
               Macros: {
 | 
						|
                 bm: ["{\\boldsymbol #1}",1],
 | 
						|
               }
 | 
						|
             }
 | 
						|
});
 | 
						|
</script>
 | 
						|
<script type="text/javascript"
 | 
						|
        src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script>
 | 
						|
</head>
 | 
						|
<body>
 | 
						|
<div id="org-div-home-and-up">
 | 
						|
 <a accesskey="h" href="./index.html"> UP </a>
 | 
						|
 |
 | 
						|
 <a accesskey="H" href="./index.html"> HOME </a>
 | 
						|
</div><div id="content">
 | 
						|
<h1 class="title">Cubic configuration for the Stewart Platform</h1>
 | 
						|
<div id="table-of-contents">
 | 
						|
<h2>Table of Contents</h2>
 | 
						|
<div id="text-table-of-contents">
 | 
						|
<ul>
 | 
						|
<li><a href="#org86c83bf">1. Questions we wish to answer with this analysis</a></li>
 | 
						|
<li><a href="#org0b05973">2. <span class="todo TODO">TODO</span> Configuration Analysis - Stiffness Matrix</a>
 | 
						|
<ul>
 | 
						|
<li><a href="#org3f035e8">2.1. Cubic Stewart platform centered with the cube center - Jacobian estimated at the cube center</a></li>
 | 
						|
<li><a href="#org77ecb36">2.2. Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center</a></li>
 | 
						|
<li><a href="#org42ea8ad">2.3. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center</a></li>
 | 
						|
<li><a href="#org38870ce">2.4. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center</a></li>
 | 
						|
<li><a href="#org08c7461">2.5. Conclusion</a></li>
 | 
						|
</ul>
 | 
						|
</li>
 | 
						|
<li><a href="#orgc4c2abd">3. <span class="todo TODO">TODO</span> Cubic size analysis</a></li>
 | 
						|
<li><a href="#org36a27e6">4. <span class="todo TODO">TODO</span> initializeCubicConfiguration</a>
 | 
						|
<ul>
 | 
						|
<li><a href="#orgf299c5c">4.1. Function description</a></li>
 | 
						|
<li><a href="#org46c8589">4.2. Optional Parameters</a></li>
 | 
						|
<li><a href="#orgd8d9b14">4.3. Cube Creation</a></li>
 | 
						|
<li><a href="#org181d1d8">4.4. Vectors of each leg</a></li>
 | 
						|
<li><a href="#orgb396e98">4.5. Verification of Height of the Stewart Platform</a></li>
 | 
						|
<li><a href="#orgf38af83">4.6. Determinate the location of the joints</a></li>
 | 
						|
<li><a href="#orgdf9e3cf">4.7. Returns Stewart Structure</a></li>
 | 
						|
</ul>
 | 
						|
</li>
 | 
						|
<li><a href="#orgf8fb731">5. <span class="todo TODO">TODO</span> Tests</a>
 | 
						|
<ul>
 | 
						|
<li><a href="#org4434fe5">5.1. First attempt to parametrisation</a></li>
 | 
						|
<li><a href="#org723e6eb">5.2. Second attempt</a></li>
 | 
						|
<li><a href="#orgcc173ac">5.3. Generate the Stewart platform for a Cubic configuration</a></li>
 | 
						|
</ul>
 | 
						|
</li>
 | 
						|
</ul>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
The discovery of the Cubic configuration is done in <a class='org-ref-reference' href="#geng94_six_degree_of_freed_activ">geng94_six_degree_of_freed_activ</a>.
 | 
						|
Further analysis is conducted in <a class='org-ref-reference' href="#jafari03_orthog_gough_stewar_platf_microm">jafari03_orthog_gough_stewar_platf_microm</a>.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
People using orthogonal/cubic configuration: <a class='org-ref-reference' href="#preumont07_six_axis_singl_stage_activ">preumont07_six_axis_singl_stage_activ</a>.
 | 
						|
</p>
 | 
						|
 | 
						|
 | 
						|
<p>
 | 
						|
The specificity of the Cubic configuration is that each actuator is orthogonal with the others.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
To generate and study the Cubic configuration, <code>initializeCubicConfiguration</code> is used (description in section <a href="#org8b1f609">4</a>).
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
According to <a class='org-ref-reference' href="#preumont07_six_axis_singl_stage_activ">preumont07_six_axis_singl_stage_activ</a>, the cubic configuration provides a uniform stiffness in all directions and <b>minimizes the crosscoupling</b> from actuator to sensor of different legs (being orthogonal to each other).
 | 
						|
</p>
 | 
						|
 | 
						|
<div id="outline-container-org86c83bf" class="outline-2">
 | 
						|
<h2 id="org86c83bf"><span class="section-number-2">1</span> Questions we wish to answer with this analysis</h2>
 | 
						|
<div class="outline-text-2" id="text-1">
 | 
						|
<p>
 | 
						|
The goal is to study the benefits of using a cubic configuration:
 | 
						|
</p>
 | 
						|
<ul class="org-ul">
 | 
						|
<li>Equal stiffness in all the degrees of freedom?</li>
 | 
						|
<li>No coupling between the actuators?</li>
 | 
						|
<li>Is the center of the cube an important point?</li>
 | 
						|
</ul>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org0b05973" class="outline-2">
 | 
						|
<h2 id="org0b05973"><span class="section-number-2">2</span> <span class="todo TODO">TODO</span> Configuration Analysis - Stiffness Matrix</h2>
 | 
						|
<div class="outline-text-2" id="text-2">
 | 
						|
</div>
 | 
						|
<div id="outline-container-org3f035e8" class="outline-3">
 | 
						|
<h3 id="org3f035e8"><span class="section-number-3">2.1</span> Cubic Stewart platform centered with the cube center - Jacobian estimated at the cube center</h3>
 | 
						|
<div class="outline-text-3" id="text-2-1">
 | 
						|
<p>
 | 
						|
We create a cubic Stewart platform (figure <a href="#org1effc0f">1</a>) in such a way that the center of the cube (black dot) is located at the center of the Stewart platform (blue dot).
 | 
						|
The Jacobian matrix is estimated at the location of the center of the cube.
 | 
						|
</p>
 | 
						|
 | 
						|
 | 
						|
<div id="org1effc0f" class="figure">
 | 
						|
<p><img src="./figs/3d-cubic-stewart-aligned.png" alt="3d-cubic-stewart-aligned.png" />
 | 
						|
</p>
 | 
						|
<p><span class="figure-number">Figure 1: </span>Centered cubic configuration</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">opts = struct(...
 | 
						|
    <span class="org-string">'H_tot'</span>, 100, ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
 | 
						|
    <span class="org-string">'L'</span>,     200<span class="org-type">/</span>sqrt(3), ...<span class="org-comment"> % Size of the Cube [mm]</span>
 | 
						|
    <span class="org-string">'H'</span>,     60, ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
 | 
						|
    <span class="org-string">'H0'</span>,    200<span class="org-type">/</span>2<span class="org-type">-</span>60<span class="org-type">/</span>2 ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
 | 
						|
    );
 | 
						|
stewart = initializeCubicConfiguration(opts);
 | 
						|
opts = struct(...
 | 
						|
    <span class="org-string">'Jd_pos'</span>, [0, 0, <span class="org-type">-</span>50], ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
 | 
						|
    <span class="org-string">'Jf_pos'</span>, [0, 0, <span class="org-type">-</span>50]  ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
 | 
						|
    );
 | 
						|
stewart = computeGeometricalProperties(stewart, opts);
 | 
						|
 | 
						|
save(<span class="org-string">'./mat/stewart.mat'</span>, <span class="org-string">'stewart'</span>);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">K = stewart.Jf<span class="org-type">'*</span>stewart.Jf;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
 | 
						|
 | 
						|
 | 
						|
<colgroup>
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
</colgroup>
 | 
						|
<tbody>
 | 
						|
<tr>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">1.9e-18</td>
 | 
						|
<td class="org-right">-2.3e-17</td>
 | 
						|
<td class="org-right">1.8e-18</td>
 | 
						|
<td class="org-right">5.5e-17</td>
 | 
						|
<td class="org-right">-1.5e-17</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">1.9e-18</td>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">6.8e-18</td>
 | 
						|
<td class="org-right">-6.1e-17</td>
 | 
						|
<td class="org-right">-1.6e-18</td>
 | 
						|
<td class="org-right">4.8e-18</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">-2.3e-17</td>
 | 
						|
<td class="org-right">6.8e-18</td>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">-6.7e-18</td>
 | 
						|
<td class="org-right">4.9e-18</td>
 | 
						|
<td class="org-right">5.3e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">1.8e-18</td>
 | 
						|
<td class="org-right">-6.1e-17</td>
 | 
						|
<td class="org-right">-6.7e-18</td>
 | 
						|
<td class="org-right">0.0067</td>
 | 
						|
<td class="org-right">-2.3e-20</td>
 | 
						|
<td class="org-right">-6.1e-20</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">5.5e-17</td>
 | 
						|
<td class="org-right">-1.6e-18</td>
 | 
						|
<td class="org-right">4.9e-18</td>
 | 
						|
<td class="org-right">-2.3e-20</td>
 | 
						|
<td class="org-right">0.0067</td>
 | 
						|
<td class="org-right">1e-18</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">-1.5e-17</td>
 | 
						|
<td class="org-right">4.8e-18</td>
 | 
						|
<td class="org-right">5.3e-19</td>
 | 
						|
<td class="org-right">-6.1e-20</td>
 | 
						|
<td class="org-right">1e-18</td>
 | 
						|
<td class="org-right">0.027</td>
 | 
						|
</tr>
 | 
						|
</tbody>
 | 
						|
</table>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org77ecb36" class="outline-3">
 | 
						|
<h3 id="org77ecb36"><span class="section-number-3">2.2</span> Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center</h3>
 | 
						|
<div class="outline-text-3" id="text-2-2">
 | 
						|
<p>
 | 
						|
We create a cubic Stewart platform with center of the cube located at the center of the Stewart platform (figure <a href="#org1effc0f">1</a>).
 | 
						|
The Jacobian matrix is not estimated at the location of the center of the cube.
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">opts = struct(...
 | 
						|
    <span class="org-string">'H_tot'</span>, 100, ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
 | 
						|
    <span class="org-string">'L'</span>,     200<span class="org-type">/</span>sqrt(3), ...<span class="org-comment"> % Size of the Cube [mm]</span>
 | 
						|
    <span class="org-string">'H'</span>,     60, ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
 | 
						|
    <span class="org-string">'H0'</span>,    200<span class="org-type">/</span>2<span class="org-type">-</span>60<span class="org-type">/</span>2 ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
 | 
						|
    );
 | 
						|
stewart = initializeCubicConfiguration(opts);
 | 
						|
opts = struct(...
 | 
						|
    <span class="org-string">'Jd_pos'</span>, [0, 0, 0], ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
 | 
						|
    <span class="org-string">'Jf_pos'</span>, [0, 0, 0]  ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
 | 
						|
    );
 | 
						|
stewart = computeGeometricalProperties(stewart, opts);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">K = stewart.Jf<span class="org-type">'*</span>stewart.Jf;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
 | 
						|
 | 
						|
 | 
						|
<colgroup>
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
</colgroup>
 | 
						|
<tbody>
 | 
						|
<tr>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">1.9e-18</td>
 | 
						|
<td class="org-right">-2.3e-17</td>
 | 
						|
<td class="org-right">1.5e-18</td>
 | 
						|
<td class="org-right">-0.1</td>
 | 
						|
<td class="org-right">-1.5e-17</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">1.9e-18</td>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">6.8e-18</td>
 | 
						|
<td class="org-right">0.1</td>
 | 
						|
<td class="org-right">-1.6e-18</td>
 | 
						|
<td class="org-right">4.8e-18</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">-2.3e-17</td>
 | 
						|
<td class="org-right">6.8e-18</td>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">-5.1e-19</td>
 | 
						|
<td class="org-right">-5.5e-18</td>
 | 
						|
<td class="org-right">5.3e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">1.5e-18</td>
 | 
						|
<td class="org-right">0.1</td>
 | 
						|
<td class="org-right">-5.1e-19</td>
 | 
						|
<td class="org-right">0.012</td>
 | 
						|
<td class="org-right">-3e-19</td>
 | 
						|
<td class="org-right">3.1e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">-0.1</td>
 | 
						|
<td class="org-right">-1.6e-18</td>
 | 
						|
<td class="org-right">-5.5e-18</td>
 | 
						|
<td class="org-right">-3e-19</td>
 | 
						|
<td class="org-right">0.012</td>
 | 
						|
<td class="org-right">1.9e-18</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">-1.5e-17</td>
 | 
						|
<td class="org-right">4.8e-18</td>
 | 
						|
<td class="org-right">5.3e-19</td>
 | 
						|
<td class="org-right">3.1e-19</td>
 | 
						|
<td class="org-right">1.9e-18</td>
 | 
						|
<td class="org-right">0.027</td>
 | 
						|
</tr>
 | 
						|
</tbody>
 | 
						|
</table>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org42ea8ad" class="outline-3">
 | 
						|
<h3 id="org42ea8ad"><span class="section-number-3">2.3</span> Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center</h3>
 | 
						|
<div class="outline-text-3" id="text-2-3">
 | 
						|
<p>
 | 
						|
Here, the “center” of the Stewart platform is not at the cube center (figure <a href="#org3f10bc2">2</a>).
 | 
						|
The Jacobian is estimated at the cube center.
 | 
						|
</p>
 | 
						|
 | 
						|
 | 
						|
<div id="org3f10bc2" class="figure">
 | 
						|
<p><img src="./figs/3d-cubic-stewart-misaligned.png" alt="3d-cubic-stewart-misaligned.png" />
 | 
						|
</p>
 | 
						|
<p><span class="figure-number">Figure 2: </span>Not centered cubic configuration</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
The center of the cube is at \(z = 110\).
 | 
						|
The Stewart platform is from \(z = H_0 = 75\) to \(z = H_0 + H_{tot} = 175\).
 | 
						|
The center height of the Stewart platform is then at \(z = \frac{175-75}{2} = 50\).
 | 
						|
The center of the cube from the top platform is at \(z = 110 - 175 = -65\).
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">opts = struct(...
 | 
						|
    <span class="org-string">'H_tot'</span>, 100,         ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
 | 
						|
    <span class="org-string">'L'</span>,     220<span class="org-type">/</span>sqrt(3), ...<span class="org-comment"> % Size of the Cube [mm]</span>
 | 
						|
    <span class="org-string">'H'</span>,     60,          ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
 | 
						|
    <span class="org-string">'H0'</span>,    75           ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
 | 
						|
    );
 | 
						|
stewart = initializeCubicConfiguration(opts);
 | 
						|
opts = struct(...
 | 
						|
    <span class="org-string">'Jd_pos'</span>, [0, 0, <span class="org-type">-</span>65], ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
 | 
						|
    <span class="org-string">'Jf_pos'</span>, [0, 0, <span class="org-type">-</span>65]  ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
 | 
						|
    );
 | 
						|
stewart = computeGeometricalProperties(stewart, opts);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">K = stewart.Jf<span class="org-type">'*</span>stewart.Jf;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
 | 
						|
 | 
						|
 | 
						|
<colgroup>
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
</colgroup>
 | 
						|
<tbody>
 | 
						|
<tr>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">-1.8e-17</td>
 | 
						|
<td class="org-right">2.6e-17</td>
 | 
						|
<td class="org-right">3.3e-18</td>
 | 
						|
<td class="org-right">0.04</td>
 | 
						|
<td class="org-right">1.7e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">-1.8e-17</td>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">1.9e-16</td>
 | 
						|
<td class="org-right">-0.04</td>
 | 
						|
<td class="org-right">2.2e-19</td>
 | 
						|
<td class="org-right">-5.3e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">2.6e-17</td>
 | 
						|
<td class="org-right">1.9e-16</td>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">-8.9e-18</td>
 | 
						|
<td class="org-right">6.5e-19</td>
 | 
						|
<td class="org-right">-5.8e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">3.3e-18</td>
 | 
						|
<td class="org-right">-0.04</td>
 | 
						|
<td class="org-right">-8.9e-18</td>
 | 
						|
<td class="org-right">0.0089</td>
 | 
						|
<td class="org-right">-9.3e-20</td>
 | 
						|
<td class="org-right">9.8e-20</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">0.04</td>
 | 
						|
<td class="org-right">2.2e-19</td>
 | 
						|
<td class="org-right">6.5e-19</td>
 | 
						|
<td class="org-right">-9.3e-20</td>
 | 
						|
<td class="org-right">0.0089</td>
 | 
						|
<td class="org-right">-2.4e-18</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">1.7e-19</td>
 | 
						|
<td class="org-right">-5.3e-19</td>
 | 
						|
<td class="org-right">-5.8e-19</td>
 | 
						|
<td class="org-right">9.8e-20</td>
 | 
						|
<td class="org-right">-2.4e-18</td>
 | 
						|
<td class="org-right">0.032</td>
 | 
						|
</tr>
 | 
						|
</tbody>
 | 
						|
</table>
 | 
						|
 | 
						|
<p>
 | 
						|
We obtain \(k_x = k_y = k_z\) and \(k_{\theta_x} = k_{\theta_y}\), but the Stiffness matrix is not diagonal.
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org38870ce" class="outline-3">
 | 
						|
<h3 id="org38870ce"><span class="section-number-3">2.4</span> Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center</h3>
 | 
						|
<div class="outline-text-3" id="text-2-4">
 | 
						|
<p>
 | 
						|
Here, the “center” of the Stewart platform is not at the cube center.
 | 
						|
The Jacobian is estimated at the center of the Stewart platform.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
The center of the cube is at \(z = 110\).
 | 
						|
The Stewart platform is from \(z = H_0 = 75\) to \(z = H_0 + H_{tot} = 175\).
 | 
						|
The center height of the Stewart platform is then at \(z = \frac{175-75}{2} = 50\).
 | 
						|
The center of the cube from the top platform is at \(z = 110 - 175 = -65\).
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">opts = struct(...
 | 
						|
    <span class="org-string">'H_tot'</span>, 100, ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
 | 
						|
    <span class="org-string">'L'</span>,     220<span class="org-type">/</span>sqrt(3), ...<span class="org-comment"> % Size of the Cube [mm]</span>
 | 
						|
    <span class="org-string">'H'</span>,     60, ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
 | 
						|
    <span class="org-string">'H0'</span>,    75 ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
 | 
						|
    );
 | 
						|
stewart = initializeCubicConfiguration(opts);
 | 
						|
opts = struct(...
 | 
						|
    <span class="org-string">'Jd_pos'</span>, [0, 0, <span class="org-type">-</span>60], ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
 | 
						|
    <span class="org-string">'Jf_pos'</span>, [0, 0, <span class="org-type">-</span>60]  ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
 | 
						|
    );
 | 
						|
stewart = computeGeometricalProperties(stewart, opts);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">K = stewart.Jf<span class="org-type">'*</span>stewart.Jf;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
 | 
						|
 | 
						|
 | 
						|
<colgroup>
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
 | 
						|
<col  class="org-right" />
 | 
						|
</colgroup>
 | 
						|
<tbody>
 | 
						|
<tr>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">-1.8e-17</td>
 | 
						|
<td class="org-right">2.6e-17</td>
 | 
						|
<td class="org-right">-5.7e-19</td>
 | 
						|
<td class="org-right">0.03</td>
 | 
						|
<td class="org-right">1.7e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">-1.8e-17</td>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">1.9e-16</td>
 | 
						|
<td class="org-right">-0.03</td>
 | 
						|
<td class="org-right">2.2e-19</td>
 | 
						|
<td class="org-right">-5.3e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">2.6e-17</td>
 | 
						|
<td class="org-right">1.9e-16</td>
 | 
						|
<td class="org-right">2</td>
 | 
						|
<td class="org-right">-1.5e-17</td>
 | 
						|
<td class="org-right">6.5e-19</td>
 | 
						|
<td class="org-right">-5.8e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">-5.7e-19</td>
 | 
						|
<td class="org-right">-0.03</td>
 | 
						|
<td class="org-right">-1.5e-17</td>
 | 
						|
<td class="org-right">0.0085</td>
 | 
						|
<td class="org-right">4.9e-20</td>
 | 
						|
<td class="org-right">1.7e-19</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">0.03</td>
 | 
						|
<td class="org-right">2.2e-19</td>
 | 
						|
<td class="org-right">6.5e-19</td>
 | 
						|
<td class="org-right">4.9e-20</td>
 | 
						|
<td class="org-right">0.0085</td>
 | 
						|
<td class="org-right">-1.1e-18</td>
 | 
						|
</tr>
 | 
						|
 | 
						|
<tr>
 | 
						|
<td class="org-right">1.7e-19</td>
 | 
						|
<td class="org-right">-5.3e-19</td>
 | 
						|
<td class="org-right">-5.8e-19</td>
 | 
						|
<td class="org-right">1.7e-19</td>
 | 
						|
<td class="org-right">-1.1e-18</td>
 | 
						|
<td class="org-right">0.032</td>
 | 
						|
</tr>
 | 
						|
</tbody>
 | 
						|
</table>
 | 
						|
 | 
						|
<p>
 | 
						|
We obtain \(k_x = k_y = k_z\) and \(k_{\theta_x} = k_{\theta_y}\), but the Stiffness matrix is not diagonal.
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org08c7461" class="outline-3">
 | 
						|
<h3 id="org08c7461"><span class="section-number-3">2.5</span> Conclusion</h3>
 | 
						|
<div class="outline-text-3" id="text-2-5">
 | 
						|
<div class="important">
 | 
						|
<ul class="org-ul">
 | 
						|
<li>The cubic configuration permits to have \(k_x = k_y = k_z\) and \(k_{\theta\x} = k_{\theta_y}\)</li>
 | 
						|
<li>The stiffness matrix \(K\) is diagonal for the cubic configuration if the Stewart platform and the cube are centered <b>and</b> the Jacobian is estimated at the cube center</li>
 | 
						|
</ul>
 | 
						|
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgc4c2abd" class="outline-2">
 | 
						|
<h2 id="orgc4c2abd"><span class="section-number-2">3</span> <span class="todo TODO">TODO</span> Cubic size analysis</h2>
 | 
						|
<div class="outline-text-2" id="text-3">
 | 
						|
<p>
 | 
						|
We here study the effect of the size of the cube used for the Stewart configuration.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
We fix the height of the Stewart platform, the center of the cube is at the center of the Stewart platform.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
We only vary the size of the cube.
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">H_cubes = 250<span class="org-type">:</span>20<span class="org-type">:</span>350;
 | 
						|
stewarts = {zeros(length(H_cubes), 1)};
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(H_cubes)</span>
 | 
						|
  H_cube = H_cubes(<span class="org-constant">i</span>);
 | 
						|
  H_tot = 100;
 | 
						|
  H = 80;
 | 
						|
 | 
						|
  opts = struct(...
 | 
						|
      <span class="org-string">'H_tot'</span>, H_tot, ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
 | 
						|
      <span class="org-string">'L'</span>,     H_cube<span class="org-type">/</span>sqrt(3), ...<span class="org-comment"> % Size of the Cube [mm]</span>
 | 
						|
      <span class="org-string">'H'</span>,     H, ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
 | 
						|
      <span class="org-string">'H0'</span>,    H_cube<span class="org-type">/</span>2<span class="org-type">-</span>H<span class="org-type">/</span>2 ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
 | 
						|
      );
 | 
						|
  stewart = initializeCubicConfiguration(opts);
 | 
						|
 | 
						|
  opts = struct(...
 | 
						|
      <span class="org-string">'Jd_pos'</span>, [0, 0, H_cube<span class="org-type">/</span>2<span class="org-type">-</span>opts.H0<span class="org-type">-</span>opts.H_tot], ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
 | 
						|
      <span class="org-string">'Jf_pos'</span>, [0, 0, H_cube<span class="org-type">/</span>2<span class="org-type">-</span>opts.H0<span class="org-type">-</span>opts.H_tot]  ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
 | 
						|
      );
 | 
						|
  stewart = computeGeometricalProperties(stewart, opts);
 | 
						|
  stewarts(<span class="org-constant">i</span>) = {stewart};
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
 | 
						|
<p>
 | 
						|
The Stiffness matrix is computed for all generated Stewart platforms.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Ks = zeros(6, 6, length(H_cube));
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(H_cubes)</span>
 | 
						|
  Ks(<span class="org-type">:</span>, <span class="org-type">:</span>, <span class="org-constant">i</span>) = stewarts{<span class="org-constant">i</span>}.Jd<span class="org-type">'*</span>stewarts{<span class="org-constant">i</span>}.Jd;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
The only elements of \(K\) that vary are \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\).
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
Finally, we plot \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\)
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-type">figure</span>;
 | 
						|
hold on;
 | 
						|
plot(H_cubes, squeeze(Ks(4, 4, <span class="org-type">:</span>)), <span class="org-string">'DisplayName'</span>, <span class="org-string">'$k_{\theta_x}$'</span>);
 | 
						|
plot(H_cubes, squeeze(Ks(6, 6, <span class="org-type">:</span>)), <span class="org-string">'DisplayName'</span>, <span class="org-string">'$k_{\theta_z}$'</span>);
 | 
						|
hold off;
 | 
						|
legend(<span class="org-string">'location'</span>, <span class="org-string">'northwest'</span>);
 | 
						|
xlabel(<span class="org-string">'Cube Size [mm]'</span>); ylabel(<span class="org-string">'Rotational stiffnes [normalized]'</span>);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
 | 
						|
<div id="org659a01f" class="figure">
 | 
						|
<p><img src="figs/stiffness_cube_size.png" alt="stiffness_cube_size.png" />
 | 
						|
</p>
 | 
						|
<p><span class="figure-number">Figure 3: </span>\(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) function of the size of the cube</p>
 | 
						|
</div>
 | 
						|
 | 
						|
 | 
						|
<p>
 | 
						|
We observe that \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) increase linearly with the cube size.
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="important">
 | 
						|
<p>
 | 
						|
In order to maximize the rotational stiffness of the Stewart platform, the size of the cube should be the highest possible.
 | 
						|
In that case, the legs will the further separated. Size of the cube is then limited by allowed space.
 | 
						|
</p>
 | 
						|
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org36a27e6" class="outline-2">
 | 
						|
<h2 id="org36a27e6"><span class="section-number-2">4</span> <span class="todo TODO">TODO</span> initializeCubicConfiguration</h2>
 | 
						|
<div class="outline-text-2" id="text-4">
 | 
						|
<p>
 | 
						|
<a id="org8b1f609"></a>
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgf299c5c" class="outline-3">
 | 
						|
<h3 id="orgf299c5c"><span class="section-number-3">4.1</span> Function description</h3>
 | 
						|
<div class="outline-text-3" id="text-4-1">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[stewart]</span> = <span class="org-function-name">initializeCubicConfiguration</span>(<span class="org-variable-name">opts_param</span>)
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org46c8589" class="outline-3">
 | 
						|
<h3 id="org46c8589"><span class="section-number-3">4.2</span> Optional Parameters</h3>
 | 
						|
<div class="outline-text-3" id="text-4-2">
 | 
						|
<p>
 | 
						|
Default values for opts.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">opts = struct(...
 | 
						|
    <span class="org-string">'H_tot'</span>, 90,  ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
 | 
						|
    <span class="org-string">'L'</span>,     110, ...<span class="org-comment"> % Size of the Cube [mm]</span>
 | 
						|
    <span class="org-string">'H'</span>,     40,  ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
 | 
						|
    <span class="org-string">'H0'</span>,    75   ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
 | 
						|
    );
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
Populate opts with input parameters
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-keyword">if</span> exist(<span class="org-string">'opts_param'</span>,<span class="org-string">'var'</span>)
 | 
						|
    <span class="org-keyword">for</span> <span class="org-variable-name">opt</span> = <span class="org-constant">fieldnames(opts_param)'</span>
 | 
						|
        opts.(opt{1}) = opts_param.(opt{1});
 | 
						|
    <span class="org-keyword">end</span>
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgd8d9b14" class="outline-3">
 | 
						|
<h3 id="orgd8d9b14"><span class="section-number-3">4.3</span> Cube Creation</h3>
 | 
						|
<div class="outline-text-3" id="text-4-3">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">points = [0, 0, 0; ...
 | 
						|
          0, 0, 1; ...
 | 
						|
          0, 1, 0; ...
 | 
						|
          0, 1, 1; ...
 | 
						|
          1, 0, 0; ...
 | 
						|
          1, 0, 1; ...
 | 
						|
          1, 1, 0; ...
 | 
						|
          1, 1, 1];
 | 
						|
points = opts.L<span class="org-type">*</span>points;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
We create the rotation matrix to rotate the cube
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">sx = cross([1, 1, 1], [1 0 0]);
 | 
						|
sx = sx<span class="org-type">/</span>norm(sx);
 | 
						|
 | 
						|
sy = <span class="org-type">-</span>cross(sx, [1, 1, 1]);
 | 
						|
sy = sy<span class="org-type">/</span>norm(sy);
 | 
						|
 | 
						|
sz = [1, 1, 1];
 | 
						|
sz = sz<span class="org-type">/</span>norm(sz);
 | 
						|
 | 
						|
R = [sx<span class="org-type">'</span>, sy<span class="org-type">'</span>, sz<span class="org-type">'</span>]<span class="org-type">'</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
We use to rotation matrix to rotate the cube
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">cube = zeros(size(points));
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:size(points, 1)</span>
 | 
						|
  cube(<span class="org-constant">i</span>, <span class="org-type">:</span>) = R <span class="org-type">*</span> points(<span class="org-constant">i</span>, <span class="org-type">:</span>)<span class="org-type">'</span>;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org181d1d8" class="outline-3">
 | 
						|
<h3 id="org181d1d8"><span class="section-number-3">4.4</span> Vectors of each leg</h3>
 | 
						|
<div class="outline-text-3" id="text-4-4">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">leg_indices = [3, 4; ...
 | 
						|
               2, 4; ...
 | 
						|
               2, 6; ...
 | 
						|
               5, 6; ...
 | 
						|
               5, 7; ...
 | 
						|
               3, 7];
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
Vectors are:
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">legs = zeros(6, 3);
 | 
						|
legs_start = zeros(6, 3);
 | 
						|
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:6</span>
 | 
						|
  legs(<span class="org-constant">i</span>, <span class="org-type">:</span>) = cube(leg_indices(<span class="org-constant">i</span>, 2), <span class="org-type">:</span>) <span class="org-type">-</span> cube(leg_indices(<span class="org-constant">i</span>, 1), <span class="org-type">:</span>);
 | 
						|
  legs_start(<span class="org-constant">i</span>, <span class="org-type">:</span>) = cube(leg_indices(<span class="org-constant">i</span>, 1), <span class="org-type">:</span>);
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgb396e98" class="outline-3">
 | 
						|
<h3 id="orgb396e98"><span class="section-number-3">4.5</span> Verification of Height of the Stewart Platform</h3>
 | 
						|
<div class="outline-text-3" id="text-4-5">
 | 
						|
<p>
 | 
						|
If the Stewart platform is not contained in the cube, throw an error.
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Hmax = cube(4, 3) <span class="org-type">-</span> cube(2, 3);
 | 
						|
<span class="org-keyword">if</span> opts.H0 <span class="org-type"><</span> cube(2, 3)
 | 
						|
  error(sprintf(<span class="org-string">'H0 is not high enought. Minimum H0 = %.1f'</span>, cube(2, 3)));
 | 
						|
<span class="org-keyword">else</span> <span class="org-keyword">if</span> opts.H0 <span class="org-type">+</span> opts.H <span class="org-type">></span> cube(4, 3)
 | 
						|
  error(sprintf(<span class="org-string">'H0+H is too high. Maximum H0+H = %.1f'</span>, cube(4, 3)));
 | 
						|
  error(<span class="org-string">'H0+H is too high'</span>);
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgf38af83" class="outline-3">
 | 
						|
<h3 id="orgf38af83"><span class="section-number-3">4.6</span> Determinate the location of the joints</h3>
 | 
						|
<div class="outline-text-3" id="text-4-6">
 | 
						|
<p>
 | 
						|
We now determine the location of the joints on the fixed platform w.r.t the fixed frame \(\{A\}\).
 | 
						|
\(\{A\}\) is fixed to the bottom of the base.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Aa = zeros(6, 3);
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:6</span>
 | 
						|
  t = (opts.H0<span class="org-type">-</span>legs_start(<span class="org-constant">i</span>, 3))<span class="org-type">/</span>(legs(<span class="org-constant">i</span>, 3));
 | 
						|
  Aa(<span class="org-constant">i</span>, <span class="org-type">:</span>) = legs_start(<span class="org-constant">i</span>, <span class="org-type">:</span>) <span class="org-type">+</span> t<span class="org-type">*</span>legs(<span class="org-constant">i</span>, <span class="org-type">:</span>);
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
And the location of the joints on the mobile platform with respect to \(\{A\}\).
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Ab = zeros(6, 3);
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:6</span>
 | 
						|
  t = (opts.H0<span class="org-type">+</span>opts.H<span class="org-type">-</span>legs_start(<span class="org-constant">i</span>, 3))<span class="org-type">/</span>(legs(<span class="org-constant">i</span>, 3));
 | 
						|
  Ab(<span class="org-constant">i</span>, <span class="org-type">:</span>) = legs_start(<span class="org-constant">i</span>, <span class="org-type">:</span>) <span class="org-type">+</span> t<span class="org-type">*</span>legs(<span class="org-constant">i</span>, <span class="org-type">:</span>);
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
And the location of the joints on the mobile platform with respect to \(\{B\}\).
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Bb = zeros(6, 3);
 | 
						|
Bb = Ab <span class="org-type">-</span> (opts.H0 <span class="org-type">+</span> opts.H_tot<span class="org-type">/</span>2 <span class="org-type">+</span> opts.H<span class="org-type">/</span>2)<span class="org-type">*</span>[0, 0, 1];
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">h = opts.H0 <span class="org-type">+</span> opts.H<span class="org-type">/</span>2 <span class="org-type">-</span> opts.H_tot<span class="org-type">/</span>2;
 | 
						|
Aa = Aa <span class="org-type">-</span> h<span class="org-type">*</span>[0, 0, 1];
 | 
						|
Ab = Ab <span class="org-type">-</span> h<span class="org-type">*</span>[0, 0, 1];
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgdf9e3cf" class="outline-3">
 | 
						|
<h3 id="orgdf9e3cf"><span class="section-number-3">4.7</span> Returns Stewart Structure</h3>
 | 
						|
<div class="outline-text-3" id="text-4-7">
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">  stewart = struct();
 | 
						|
  stewart.Aa = Aa;
 | 
						|
  stewart.Ab = Ab;
 | 
						|
  stewart.Bb = Bb;
 | 
						|
  stewart.H_tot = opts.H_tot;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgf8fb731" class="outline-2">
 | 
						|
<h2 id="orgf8fb731"><span class="section-number-2">5</span> <span class="todo TODO">TODO</span> Tests</h2>
 | 
						|
<div class="outline-text-2" id="text-5">
 | 
						|
</div>
 | 
						|
<div id="outline-container-org4434fe5" class="outline-3">
 | 
						|
<h3 id="org4434fe5"><span class="section-number-3">5.1</span> First attempt to parametrisation</h3>
 | 
						|
<div class="outline-text-3" id="text-5-1">
 | 
						|
 | 
						|
<div id="org8dfcb96" class="figure">
 | 
						|
<p><img src="./figs/stewart_bottom_plate.png" alt="stewart_bottom_plate.png" />
 | 
						|
</p>
 | 
						|
<p><span class="figure-number">Figure 4: </span>Schematic of the bottom plates with all the parameters</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
The goal is to choose \(\alpha\), \(\beta\), \(R_\text{leg, t}\) and \(R_\text{leg, b}\) in such a way that the configuration is cubic.
 | 
						|
</p>
 | 
						|
 | 
						|
 | 
						|
<p>
 | 
						|
The configuration is cubic if:
 | 
						|
\[ \overrightarrow{a_i b_i} \cdot \overrightarrow{a_j b_j} = 0, \ \forall i, j = [1, \hdots, 6], i \ne j \]
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
Lets express \(a_i\), \(b_i\) and \(a_j\):
 | 
						|
</p>
 | 
						|
\begin{equation*}
 | 
						|
  a_1 = \begin{bmatrix}R_{\text{leg,b}} \cos(120 - \alpha) \\  R_{\text{leg,b}} \cos(120 - \alpha) \\ 0\end{bmatrix} ; \quad
 | 
						|
  a_2 = \begin{bmatrix}R_{\text{leg,b}} \cos(120 + \alpha) \\  R_{\text{leg,b}} \cos(120 + \alpha) \\ 0\end{bmatrix} ; \quad
 | 
						|
\end{equation*}
 | 
						|
 | 
						|
\begin{equation*}
 | 
						|
  b_1 = \begin{bmatrix}R_{\text{leg,t}} \cos(120 - \beta) \\  R_{\text{leg,t}} \cos(120 - \beta\\ H\end{bmatrix} ; \quad
 | 
						|
  b_2 = \begin{bmatrix}R_{\text{leg,t}} \cos(120 + \beta) \\  R_{\text{leg,t}} \cos(120 + \beta\\ H\end{bmatrix} ; \quad
 | 
						|
\end{equation*}
 | 
						|
 | 
						|
<p>
 | 
						|
\[ \overrightarrow{a_1 b_1} = b_1 - a_1 = \begin{bmatrix}R_{\text{leg}} \cos(120 - \alpha) \\  R_{\text{leg}} \cos(120 - \alpha) \\ 0\end{bmatrix}\]
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-org723e6eb" class="outline-3">
 | 
						|
<h3 id="org723e6eb"><span class="section-number-3">5.2</span> Second attempt</h3>
 | 
						|
<div class="outline-text-3" id="text-5-2">
 | 
						|
<p>
 | 
						|
We start with the point of a cube in space:
 | 
						|
</p>
 | 
						|
\begin{align*}
 | 
						|
  [0, 0, 0] ; \ [0, 0, 1]; \ ...
 | 
						|
\end{align*}
 | 
						|
 | 
						|
<p>
 | 
						|
We also want the cube to point upward:
 | 
						|
\[ [1, 1, 1] \Rightarrow [0, 0, 1] \]
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
Then we have the direction of all the vectors expressed in the frame of the hexapod.
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">points = [0, 0, 0; ...
 | 
						|
          0, 0, 1; ...
 | 
						|
          0, 1, 0; ...
 | 
						|
          0, 1, 1; ...
 | 
						|
          1, 0, 0; ...
 | 
						|
          1, 0, 1; ...
 | 
						|
          1, 1, 0; ...
 | 
						|
          1, 1, 1];
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-type">figure</span>;
 | 
						|
plot3(points(<span class="org-type">:</span>,1), points(<span class="org-type">:</span>,2), points(<span class="org-type">:</span>,3), <span class="org-string">'ko'</span>)
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">sx = cross([1, 1, 1], [1 0 0]);
 | 
						|
sx = sx<span class="org-type">/</span>norm(sx);
 | 
						|
 | 
						|
sy = <span class="org-type">-</span>cross(sx, [1, 1, 1]);
 | 
						|
sy = sy<span class="org-type">/</span>norm(sy);
 | 
						|
 | 
						|
sz = [1, 1, 1];
 | 
						|
sz = sz<span class="org-type">/</span>norm(sz);
 | 
						|
 | 
						|
R = [sx<span class="org-type">'</span>, sy<span class="org-type">'</span>, sz<span class="org-type">'</span>]<span class="org-type">'</span>;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">cube = zeros(size(points));
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:size(points, 1)</span>
 | 
						|
  cube(<span class="org-constant">i</span>, <span class="org-type">:</span>) = R <span class="org-type">*</span> points(<span class="org-constant">i</span>, <span class="org-type">:</span>)<span class="org-type">'</span>;
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-type">figure</span>;
 | 
						|
hold on;
 | 
						|
plot3(points(<span class="org-type">:</span>,1), points(<span class="org-type">:</span>,2), points(<span class="org-type">:</span>,3), <span class="org-string">'ko'</span>);
 | 
						|
plot3(cube(<span class="org-type">:</span>,1), cube(<span class="org-type">:</span>,2), cube(<span class="org-type">:</span>,3), <span class="org-string">'ro'</span>);
 | 
						|
hold off;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
Now we plot the legs of the hexapod.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">leg_indices = [3, 4; ...
 | 
						|
               2, 4; ...
 | 
						|
               2, 6; ...
 | 
						|
               5, 6; ...
 | 
						|
               5, 7; ...
 | 
						|
               3, 7]
 | 
						|
 | 
						|
<span class="org-type">figure</span>;
 | 
						|
hold on;
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:6</span>
 | 
						|
  plot3(cube(leg_indices(<span class="org-constant">i</span>, <span class="org-type">:</span>),1), cube(leg_indices(<span class="org-constant">i</span>, <span class="org-type">:</span>),2), cube(leg_indices(<span class="org-constant">i</span>, <span class="org-type">:</span>),3), <span class="org-string">'-'</span>);
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
hold off;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
Vectors are:
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">legs = zeros(6, 3);
 | 
						|
legs_start = zeros(6, 3);
 | 
						|
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:6</span>
 | 
						|
  legs(<span class="org-constant">i</span>, <span class="org-type">:</span>) = cube(leg_indices(<span class="org-constant">i</span>, 2), <span class="org-type">:</span>) <span class="org-type">-</span> cube(leg_indices(<span class="org-constant">i</span>, 1), <span class="org-type">:</span>);
 | 
						|
  legs_start(<span class="org-constant">i</span>, <span class="org-type">:</span>) = cube(leg_indices(<span class="org-constant">i</span>, 1), <span class="org-type">:</span>)
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
We now have the orientation of each leg.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
We here want to see if the position of the “slice” changes something.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>
 | 
						|
Let’s first estimate the maximum height of the Stewart platform.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Hmax = cube(4, 3) <span class="org-type">-</span> cube(2, 3);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
Let’s then estimate the middle position of the platform
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Hmid = cube(8, 3)<span class="org-type">/</span>2;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<div id="outline-container-orgcc173ac" class="outline-3">
 | 
						|
<h3 id="orgcc173ac"><span class="section-number-3">5.3</span> Generate the Stewart platform for a Cubic configuration</h3>
 | 
						|
<div class="outline-text-3" id="text-5-3">
 | 
						|
<p>
 | 
						|
First we defined the height of the Hexapod.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">H = Hmax<span class="org-type">/</span>2;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Zs = 1.2<span class="org-type">*</span>cube(2, 3); <span class="org-comment">% Height of the fixed platform</span>
 | 
						|
Ze = Zs <span class="org-type">+</span> H; <span class="org-comment">% Height of the mobile platform</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
We now determine the location of the joints on the fixed platform.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Aa = zeros(6, 3);
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:6</span>
 | 
						|
  t = (Zs<span class="org-type">-</span>legs_start(<span class="org-constant">i</span>, 3))<span class="org-type">/</span>(legs(<span class="org-constant">i</span>, 3));
 | 
						|
  Aa(<span class="org-constant">i</span>, <span class="org-type">:</span>) = legs_start(<span class="org-constant">i</span>, <span class="org-type">:</span>) <span class="org-type">+</span> t<span class="org-type">*</span>legs(<span class="org-constant">i</span>, <span class="org-type">:</span>);
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
And the location of the joints on the mobile platform
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab">Ab = zeros(6, 3);
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:6</span>
 | 
						|
  t = (Ze<span class="org-type">-</span>legs_start(<span class="org-constant">i</span>, 3))<span class="org-type">/</span>(legs(<span class="org-constant">i</span>, 3));
 | 
						|
  Ab(<span class="org-constant">i</span>, <span class="org-type">:</span>) = legs_start(<span class="org-constant">i</span>, <span class="org-type">:</span>) <span class="org-type">+</span> t<span class="org-type">*</span>legs(<span class="org-constant">i</span>, <span class="org-type">:</span>);
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
And we plot the legs.
 | 
						|
</p>
 | 
						|
<div class="org-src-container">
 | 
						|
<pre class="src src-matlab"><span class="org-type">figure</span>;
 | 
						|
hold on;
 | 
						|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:6</span>
 | 
						|
  plot3([Ab(<span class="org-constant">i</span>, 1),Aa(<span class="org-constant">i</span>, 1)], [Ab(<span class="org-constant">i</span>, 2),Aa(<span class="org-constant">i</span>, 2)], [Ab(<span class="org-constant">i</span>, 3),Aa(<span class="org-constant">i</span>, 3)], <span class="org-string">'k-'</span>);
 | 
						|
<span class="org-keyword">end</span>
 | 
						|
hold off;
 | 
						|
xlim([<span class="org-type">-</span>1, 1]);
 | 
						|
ylim([<span class="org-type">-</span>1, 1]);
 | 
						|
zlim([0, 2]);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
 | 
						|
<h1 class='org-ref-bib-h1'>Bibliography</h1>
 | 
						|
<ul class='org-ref-bib'><li><a id="geng94_six_degree_of_freed_activ">[geng94_six_degree_of_freed_activ]</a> <a name="geng94_six_degree_of_freed_activ"></a>Geng & Haynes, Six Degree-Of-Freedom Active Vibration Control Using the  Stewart Platforms, <i>IEEE Transactions on Control Systems Technology</i>, <b>2(1)</b>, 45-53 (1994). <a href="https://doi.org/10.1109/87.273110">link</a>. <a href="http://dx.doi.org/10.1109/87.273110">doi</a>.</li>
 | 
						|
<li><a id="jafari03_orthog_gough_stewar_platf_microm">[jafari03_orthog_gough_stewar_platf_microm]</a> <a name="jafari03_orthog_gough_stewar_platf_microm"></a>Jafari & McInroy, Orthogonal Gough-Stewart Platforms for Micromanipulation, <i>IEEE Transactions on Robotics and Automation</i>, <b>19(4)</b>, 595-603 (2003). <a href="https://doi.org/10.1109/tra.2003.814506">link</a>. <a href="http://dx.doi.org/10.1109/tra.2003.814506">doi</a>.</li>
 | 
						|
<li><a id="preumont07_six_axis_singl_stage_activ">[preumont07_six_axis_singl_stage_activ]</a> <a name="preumont07_six_axis_singl_stage_activ"></a>Preumont, Horodinca, Romanescu, de, Marneffe, Avraam, Deraemaeker, Bossens, & Abu Hanieh, A Six-Axis Single-Stage Active Vibration Isolator Based on  Stewart Platform, <i>Journal of Sound and Vibration</i>, <b>300(3-5)</b>, 644-661 (2007). <a href="https://doi.org/10.1016/j.jsv.2006.07.050">link</a>. <a href="http://dx.doi.org/10.1016/j.jsv.2006.07.050">doi</a>.</li>
 | 
						|
</ul>
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
<div id="postamble" class="status">
 | 
						|
<p class="author">Author: Dehaeze Thomas</p>
 | 
						|
<p class="date">Created: 2020-01-27 lun. 17:41</p>
 | 
						|
</div>
 | 
						|
</body>
 | 
						|
</html>
 |