stewart-simscape/org/static-analysis.org
2020-02-11 15:50:52 +01:00

2.6 KiB

Stewart Platform - Static Analysis

Coupling

What causes the coupling from $F_i$ to $X_i$ ?

  \begin{tikzpicture}
    \node[block] (Jt) at (0, 0) {$J^{-T}$};
    \node[block, right= of Jt] (G) {$G$};
    \node[block, right= of G] (J) {$J^{-1}$};

    \draw[->] ($(Jt.west)+(-0.8, 0)$) -- (Jt.west) node[above left]{$F_i$};
    \draw[->] (Jt.east) -- (G.west) node[above left]{$\tau_i$};
    \draw[->] (G.east) -- (J.west) node[above left]{$q_i$};
    \draw[->] (J.east) -- ++(0.8, 0) node[above left]{$X_i$};
  \end{tikzpicture}

/tdehaeze/stewart-simscape/media/commit/de392e5c40f31cf91c9a93d86fa0917052a24068/org/figs/coupling.png

Block diagram to control an hexapod

There is no coupling from $F_i$ to $X_j$ if $J^{-1} G J^{-T}$ is diagonal.

If $G$ is diagonal (cubic configuration), then $J^{-1} G J^{-T} = G J^{-1} J^{-T} = G (J^{T} J)^{-1} = G K^{-1}$

Thus, the system is uncoupled if $G$ and $K$ are diagonal.