stewart-simscape/org/identification.org

20 KiB

Identification of the Stewart Platform using Simscape

Introduction   ignore

In this document, we discuss the various methods to identify the behavior of the Stewart platform.

Modal Analysis of the Stewart Platform

<<sec:modal_analysis>>

Introduction   ignore

Initialize the Stewart Platform

  stewart = initializeStewartPlatform();
  stewart = initializeFramesPositions(stewart);
  stewart = generateGeneralConfiguration(stewart);
  stewart = computeJointsPose(stewart);
  stewart = initializeStrutDynamics(stewart);
  stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
  stewart = initializeCylindricalPlatforms(stewart);
  stewart = initializeCylindricalStruts(stewart);
  stewart = computeJacobian(stewart);
  stewart = initializeStewartPose(stewart);
  stewart = initializeInertialSensor(stewart);
  ground = initializeGround('type', 'none');
  payload = initializePayload('type', 'none');
  controller = initializeController('type', 'open-loop');

Identification

  %% Options for Linearized
  options = linearizeOptions;
  options.SampleTime = 0;

  %% Name of the Simulink File
  mdl = 'stewart_platform_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller'],              1, 'openinput');  io_i = io_i + 1; % Actuator Force Inputs [N]
  io(io_i) = linio([mdl, '/Relative Motion Sensor'],  1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
  io(io_i) = linio([mdl, '/Relative Motion Sensor'],  2, 'openoutput'); io_i = io_i + 1; % Velocity of {B} w.r.t. {A}

  %% Run the linearization
  G = linearize(mdl, io);
  % G.InputName  = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'};
  % G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', 'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'};

Let's check the size of G:

  size(G)
size(G)
State-space model with 12 outputs, 6 inputs, and 18 states.
'org_babel_eoe'
ans =
    'org_babel_eoe'

We expect to have only 12 states (corresponding to the 6dof of the mobile platform).

  Gm = minreal(G);
Gm = minreal(G);
6 states removed.

And indeed, we obtain 12 states.

Coordinate transformation

We can perform the following transformation using the ss2ss command.

  Gt = ss2ss(Gm, Gm.C);

Then, the C matrix of Gt is the unity matrix which means that the states of the state space model are equal to the measurements $\bm{Y}$.

The measurements are the 6 displacement and 6 velocities of mobile platform with respect to $\{B\}$.

We could perform the transformation by hand:

  At = Gm.C*Gm.A*pinv(Gm.C);

  Bt = Gm.C*Gm.B;

  Ct = eye(12);
  Dt = zeros(12, 6);

  Gt = ss(At, Bt, Ct, Dt);

Analysis

  [V,D] = eig(Gt.A);
Mode Number Resonance Frequency [Hz] Damping Ratio [%]
1.0 780.6 0.4
2.0 780.6 0.3
3.0 903.9 0.3
4.0 1061.4 0.3
5.0 1061.4 0.2
6.0 1269.6 0.2

Visualizing the modes

To visualize the i'th mode, we may excite the system using the inputs $U_i$ such that $B U_i$ is co-linear to $\xi_i$ (the mode we want to excite).

\[ U(t) = e^{\alpha t} ( ) \]

Let's first sort the modes and just take the modes corresponding to a eigenvalue with a positive imaginary part.

  ws = imag(diag(D));
  [ws,I] = sort(ws)
  ws = ws(7:end); I = I(7:end);
  for i = 1:length(ws)
  i_mode = I(i); % the argument is the i'th mode
  lambda_i = D(i_mode, i_mode);
  xi_i = V(:,i_mode);

  a_i = real(lambda_i);
  b_i = imag(lambda_i);

Let do 10 periods of the mode.

  t = linspace(0, 10/(imag(lambda_i)/2/pi), 1000);
  U_i = pinv(Gt.B) * real(xi_i * lambda_i * (cos(b_i * t) + 1i*sin(b_i * t)));
  U = timeseries(U_i, t);

Simulation:

  load('mat/conf_simscape.mat');
  set_param(conf_simscape, 'StopTime', num2str(t(end)));
  sim(mdl);

Save the movie of the mode shape.

  smwritevideo(mdl, sprintf('figs/mode%i', i), ...
               'PlaybackSpeedRatio', 1/(b_i/2/pi), ...
               'FrameRate', 30, ...
               'FrameSize', [800, 400]);
  end
/tdehaeze/stewart-simscape/media/commit/ae6678257a2c355291681f7028bf021a40b3b003/org/figs/mode1.gif
Identified mode - 1
/tdehaeze/stewart-simscape/media/commit/ae6678257a2c355291681f7028bf021a40b3b003/org/figs/mode3.gif
Identified mode - 3
/tdehaeze/stewart-simscape/media/commit/ae6678257a2c355291681f7028bf021a40b3b003/org/figs/mode5.gif
Identified mode - 5

Transmissibility Analysis

<<sec:transmissibility>>

Introduction   ignore

Initialize the Stewart platform

  stewart = initializeStewartPlatform();
  stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
  stewart = generateGeneralConfiguration(stewart);
  stewart = computeJointsPose(stewart);
  stewart = initializeStrutDynamics(stewart);
  stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
  stewart = initializeCylindricalPlatforms(stewart);
  stewart = initializeCylindricalStruts(stewart);
  stewart = computeJacobian(stewart);
  stewart = initializeStewartPose(stewart);
  stewart = initializeInertialSensor(stewart, 'type', 'accelerometer', 'freq', 5e3);

We set the rotation point of the ground to be at the same point at frames $\{A\}$ and $\{B\}$.

  ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A);
  payload = initializePayload('type', 'rigid');
  controller = initializeController('type', 'open-loop');

Transmissibility

  %% Options for Linearized
  options = linearizeOptions;
  options.SampleTime = 0;

  %% Name of the Simulink File
  mdl = 'stewart_platform_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Disturbances/D_w'],        1, 'openinput');  io_i = io_i + 1; % Base Motion [m, rad]
  io(io_i) = linio([mdl, '/Absolute Motion Sensor'],  1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad]

  %% Run the linearization
  T = linearize(mdl, io, options);
  T.InputName = {'Wdx', 'Wdy', 'Wdz', 'Wrx', 'Wry', 'Wrz'};
  T.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
  freqs = logspace(1, 4, 1000);

  figure;
  for ix = 1:6
    for iy = 1:6
      subplot(6, 6, (ix-1)*6 + iy);
      hold on;
      plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, 'Hz'))), 'k-');
      set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
      ylim([1e-5, 10]);
      xlim([freqs(1), freqs(end)]);
      if ix < 6
        xticklabels({});
      end
      if iy > 1
        yticklabels({});
      end
    end
  end

From cite:preumont07_six_axis_singl_stage_activ, one can use the Frobenius norm of the transmissibility matrix to obtain a scalar indicator of the transmissibility performance of the system:

\begin{align*} \| \bm{T}(\omega) \| &= \sqrt{\text{Trace}[\bm{T}(\omega) \bm{T}(\omega)^H]}\\ &= \sqrt{\Sigma_{i=1}^6 \Sigma_{j=1}^6 |T_{ij}|^2} \end{align*}
  freqs = logspace(1, 4, 1000);

  T_norm = zeros(length(freqs), 1);

  for i = 1:length(freqs)
    T_norm(i) = sqrt(trace(freqresp(T, freqs(i), 'Hz')*freqresp(T, freqs(i), 'Hz')'));
  end

And we normalize by a factor $\sqrt{6}$ to obtain a performance metric comparable to the transmissibility of a one-axis isolator: \[ \Gamma(\omega) = \|\bm{T}(\omega)\| / \sqrt{6} \]

  Gamma = T_norm/sqrt(6);
  figure;
  plot(freqs, Gamma)
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');

Compliance Analysis

<<sec:compliance>>

Introduction   ignore

Initialize the Stewart platform

  stewart = initializeStewartPlatform();
  stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
  stewart = generateGeneralConfiguration(stewart);
  stewart = computeJointsPose(stewart);
  stewart = initializeStrutDynamics(stewart);
  stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
  stewart = initializeCylindricalPlatforms(stewart);
  stewart = initializeCylindricalStruts(stewart);
  stewart = computeJacobian(stewart);
  stewart = initializeStewartPose(stewart);
  stewart = initializeInertialSensor(stewart, 'type', 'accelerometer', 'freq', 5e3);

We set the rotation point of the ground to be at the same point at frames $\{A\}$ and $\{B\}$.

  ground = initializeGround('type', 'none');
  payload = initializePayload('type', 'rigid');
  controller = initializeController('type', 'open-loop');

Compliance

  %% Options for Linearized
  options = linearizeOptions;
  options.SampleTime = 0;

  %% Name of the Simulink File
  mdl = 'stewart_platform_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Disturbances/F_ext'],        1, 'openinput');  io_i = io_i + 1; % Base Motion [m, rad]
  io(io_i) = linio([mdl, '/Absolute Motion Sensor'],  1, 'openoutput'); io_i = io_i + 1; % Absolute Motion [m, rad]

  %% Run the linearization
  C = linearize(mdl, io, options);
  C.InputName = {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
  C.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
  freqs = logspace(1, 4, 1000);

  figure;
  for ix = 1:6
    for iy = 1:6
      subplot(6, 6, (ix-1)*6 + iy);
      hold on;
      plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, 'Hz'))), 'k-');
      set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
      ylim([1e-10, 1e-3]);
      xlim([freqs(1), freqs(end)]);
      if ix < 6
        xticklabels({});
      end
      if iy > 1
        yticklabels({});
      end
    end
  end

We can try to use the Frobenius norm to obtain a scalar value representing the 6-dof compliance of the Stewart platform.

  freqs = logspace(1, 4, 1000);

  C_norm = zeros(length(freqs), 1);

  for i = 1:length(freqs)
    C_norm(i) = sqrt(trace(freqresp(C, freqs(i), 'Hz')*freqresp(C, freqs(i), 'Hz')'));
  end
  figure;
  plot(freqs, C_norm)
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');

Functions

Compute the Transmissibility

<<sec:computeTransmissibility>>

Function description

  function [T, T_norm, freqs] = computeTransmissibility(args)
  % computeTransmissibility -
  %
  % Syntax: [T, T_norm, freqs] = computeTransmissibility(args)
  %
  % Inputs:
  %    - args - Structure with the following fields:
  %        - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm
  %        - freqs [] - Frequency vector to estimate the Frobenius norm
  %
  % Outputs:
  %    - T      [6x6 ss] - Transmissibility matrix
  %    - T_norm [length(freqs)x1] - Frobenius norm of the Transmissibility matrix
  %    - freqs  [length(freqs)x1] - Frequency vector in [Hz]

Optional Parameters

    arguments
      args.plots logical {mustBeNumericOrLogical} = false
      args.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000)
    end
  freqs = args.freqs;

Identification of the Transmissibility Matrix

  %% Options for Linearized
  options = linearizeOptions;
  options.SampleTime = 0;

  %% Name of the Simulink File
  mdl = 'stewart_platform_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Disturbances/D_w'],        1, 'openinput');  io_i = io_i + 1; % Base Motion [m, rad]
  io(io_i) = linio([mdl, '/Absolute Motion Sensor'],  1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad]

  %% Run the linearization
  T = linearize(mdl, io, options);
  T.InputName = {'Wdx', 'Wdy', 'Wdz', 'Wrx', 'Wry', 'Wrz'};
  T.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};

If wanted, the 6x6 transmissibility matrix is plotted.

  p_handle = zeros(6*6,1);

  if args.plots
    fig = figure;
    for ix = 1:6
      for iy = 1:6
        p_handle((ix-1)*6 + iy) = subplot(6, 6, (ix-1)*6 + iy);
        hold on;
        plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, 'Hz'))), 'k-');
        set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
        if ix < 6
            xticklabels({});
        end
        if iy > 1
            yticklabels({});
        end
      end
    end

    linkaxes(p_handle, 'xy')
    xlim([freqs(1), freqs(end)]);
    ylim([1e-5, 1e2]);

    han = axes(fig, 'visible', 'off');
    han.XLabel.Visible = 'on';
    han.YLabel.Visible = 'on';
    xlabel(han, 'Frequency [Hz]');
    ylabel(han, 'Transmissibility [m/m]');
  end

Computation of the Frobenius norm

  T_norm = zeros(length(freqs), 1);

  for i = 1:length(freqs)
    T_norm(i) = sqrt(trace(freqresp(T, freqs(i), 'Hz')*freqresp(T, freqs(i), 'Hz')'));
  end
  T_norm = T_norm/sqrt(6);
  if args.plots
    figure;
    plot(freqs, T_norm)
    set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
    xlabel('Frequency [Hz]');
    ylabel('Transmissibility - Frobenius Norm');
  end

Compute the Compliance

<<sec:computeCompliance>>

Function description

  function [C, C_norm, freqs] = computeCompliance(args)
  % computeCompliance -
  %
  % Syntax: [C, C_norm, freqs] = computeCompliance(args)
  %
  % Inputs:
  %    - args - Structure with the following fields:
  %        - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm
  %        - freqs [] - Frequency vector to estimate the Frobenius norm
  %
  % Outputs:
  %    - C      [6x6 ss] - Compliance matrix
  %    - C_norm [length(freqs)x1] - Frobenius norm of the Compliance matrix
  %    - freqs  [length(freqs)x1] - Frequency vector in [Hz]

Optional Parameters

    arguments
      args.plots logical {mustBeNumericOrLogical} = false
      args.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000)
    end
  freqs = args.freqs;

Identification of the Compliance Matrix

  %% Options for Linearized
  options = linearizeOptions;
  options.SampleTime = 0;

  %% Name of the Simulink File
  mdl = 'stewart_platform_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Disturbances/F_ext'],      1, 'openinput');  io_i = io_i + 1; % External forces [N, N*m]
  io(io_i) = linio([mdl, '/Absolute Motion Sensor'],  1, 'output'); io_i = io_i + 1; % Absolute Motion [m, rad]

  %% Run the linearization
  C = linearize(mdl, io, options);
  C.InputName  = {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
  C.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};

If wanted, the 6x6 transmissibility matrix is plotted.

  p_handle = zeros(6*6,1);

  if args.plots
    fig = figure;
    for ix = 1:6
      for iy = 1:6
        p_handle((ix-1)*6 + iy) = subplot(6, 6, (ix-1)*6 + iy);
        hold on;
        plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, 'Hz'))), 'k-');
        set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
        if ix < 6
            xticklabels({});
        end
        if iy > 1
            yticklabels({});
        end
      end
    end

    linkaxes(p_handle, 'xy')
    xlim([freqs(1), freqs(end)]);

    han = axes(fig, 'visible', 'off');
    han.XLabel.Visible = 'on';
    han.YLabel.Visible = 'on';
    xlabel(han, 'Frequency [Hz]');
    ylabel(han, 'Compliance [m/N, rad/(N*m)]');
  end

Computation of the Frobenius norm

  freqs = args.freqs;

  C_norm = zeros(length(freqs), 1);

  for i = 1:length(freqs)
    C_norm(i) = sqrt(trace(freqresp(C, freqs(i), 'Hz')*freqresp(C, freqs(i), 'Hz')'));
  end
  if args.plots
    figure;
    plot(freqs, C_norm)
    set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
    xlabel('Frequency [Hz]');
    ylabel('Compliance - Frobenius Norm');
  end